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1 Introduction  

Fractional calculus is the study of the mathematical science that comes out of the customary 

meaning of the integer-order differentiation and integration. It gives a few tools for fathoming 

arbitrary order differential and integral equation. The fractional calculus is as old as 

traditional calculus, however, has gained significant importance amid the previous few 

decades, because of its immense importance in various assorted fields of science and 

engineering which include fluid flow, viscoelasticity, solid mechanics, signal processing, 

probability, statistics, etc. The number of works managing dynamical frameworks portrayed 

by fractional-order equation that include derivative and integral of arbitrary order as they 

delineate the memory and innate properties of various substances. In 1695, L'Hopital wrote a 

letter to Leibnitz in which he used to get some information about a particular notation he 

published for derivative of the linear function with order 𝑛. He made an inquiry to Leibniz, 

what may the result be if n is half. Leibniz responded by saying that it is an obvious 

conundrum, which will result in significant outcomes one day. So, this was the first time 

when fractional derivative came into the picture.  

 

Fractional calculus emerged as a great tool in explaining the physical and chemical 

phenomenon with alienate kinetics having microscopic complex behavior. There are 

fractional differential models which have a non-differentiable but continuous solution such as 

Weierstrass type functions[1]. These kinds of characteristics are not possible to explain with 

the help of ordinary or partial differential models.  Earlier the field of fractional calculus was 

purely mathematical without any visible application but in these days, fractional calculus has 

gained a huge importance because of its application in the various field like theory of thermo-

elasticity[2], viscoelastic fluids[3], dynamics of earthquakes[4, 5], fluid dynamics[6, 7], etc. 

In one of the experiments of Bagley and Torvik in which they studied the motion of rigid 

plate immersed into the Newtonian fluid. It was found in the experiment that retarding force 

is proportional to the fractional derivative of the displacement instead of the velocity. It has 

been observed during the experiment also that fractional model is superior to the integer-
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order model for the prediction of characteristics of the same material. It has also been 

observed experimentally and from the real-time observation that there are many complex 

systems in the real world like relaxation in viscoelastic material, pollution diffusion in the 

surrounding, charge transport in amorphous semiconductors and many more which show 

anomalous dynamics. This capability of fractional differential equations in explaining the 

abnormal dynamic happing in the system with more efficiency and accuracy has gained huge 

attention from the scientific community. Many of the important classical differential 

equations with integer-order has got extensions to the generalized fraction differential 

equation with an arbitrary order for in-depth study of the corresponding physical model 

 

 But general closed-form solution for fractional differential equation has yet not been 

established. Therefore, many researchers are involved in developing the various numerical 

and semi-analytic schemes for investigating the different phenomena governed by the 

fractional equation such as Adomian decomposition method [8], , Haar wavelet method with 

dilation factor 2[9] , Homotopy analysis method[8], Generalized Taylor collocation method 

[10] , Variational iteration method[7]  Fractional iteration method[11] , Bessel collocation 

method [12] ,  Chebyshev wavelet method [13] , Fractional Taylor Method[14], Hybrid 

functions approximation [15] , Gegenbauer Wavelet Method[16], Reproducing kernel [17], 

Sumudu transformation method [18] etc. 

But the study of characteristics of different materials governed by these fractional differential 

equations has yet not been investigated by Haar scale 3 wavelet-based technique. Wavelets 

are one of the modernistic orthonormal functions which have a capability of dilation and 

translation. Because of these properties, numerical techniques which involve wavelets bases 

are showing the qualitative improvement in contrast with other methods. In literature, dyadic 

wavelets are in preponderance. In 1995, Chui and Lian [19] has developed the Haar scale 

3wavelets by using the process of multiresolution analysis. In 2018, Mittal and Pandit have 

used the Haar scale 3wavelets [20-22] for solving the various types of differential equations 

and found that these wavelet bases are equally competent in solving the various types of 

mathematical models governed by differential equations. Also, it was shown by them that the 

Haar scale 3wavelet has a faster rate of convergence as compared to the dyadic wavelets. 

Moreover, investigation of characteristics of  different phenomena governed by  fractional 

differential equation has yet not been much studied by Haar scale 3 wavelet methods.  This 

encourages us to develop a new technique using Haar scale 3 for analyzing the behavior of 

systems governed by these fractional differential equations [23-24].   

The prime purpose of proposed work is to establish a new computational technique for 

obtaining the solution of fractional equations emerging in the various field of science and 

technology using Haar scale 3 wavelet bases. 

This chapter follows the sequence of sections as described: In section 2, the basic definitions 

of fractional calculus are given. In section 3, explicit forms of Haar scale 3 parent wavelets 

with their families and procedure to find their integrals have been explained briefly. 

Representation of the solution using Haar scale 3 wavelets is explained in section 4. Section 5 

explains the method of solution using Haar scale 3wavelets. In section 6, Argument for the 

convergence of the technique is given. In section 7, solutions of five different examples of 

fractional differential equations are produced using the present method to analyze the 

efficiency and performance of the present method. In section 8, the conclusion drawn from 

the results and in future research idea is given. 
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2 Some basic definitions of Fractional calculus 

2.1 Mittag-Leffler Function  

It is an extension of exponential function which has huge importance in the field of fractional 

calculus. It has two forms of expression as given below  

i. One Parameter Mittag-Leffler Function [23]for a set of complex numbers and any 

positive real no 𝛼  is defined as  

𝐸𝛼 = ∑
𝑧𝑚

Γ(𝛼𝑚+1)
 , 𝛼 >  0, 𝛼𝜖ℝ ∞

𝑚=0 , 𝑧 ∈ ℂ            (2.1) 

ii. Two-Parameter Mittag-Leffler Function [23] for a set of complex numbers and for 

positive real no’s 𝛼 , 𝛽  is defined as  

𝐸𝛼,𝛽 = ∑
𝑍𝑚

Γ(𝛼𝑚+𝛽)
 , 𝛼 , 𝛽 > 0, 𝛼, 𝛽𝜖ℝ, 𝑧 ∈ ℂ

 
∞
𝑚=0    (2.2) 

2.2 Riemann-Liouville Fractional Integral Operator [23] 

The fractional integral operator defined by the mathematician Riemann-Liouville for the 

positive real nos. 𝛼 , 𝑎, 𝑡  over the interval [𝑎, 𝑏] is given by  

𝐽𝑅𝐿 𝑎
𝛼𝑓(𝑡) =

1

Γ(𝛼)
∫ 𝑓(𝑧)(𝑡 − 𝑧)𝛼−1𝑑𝑧 
𝑡

𝑎

 (2.3) 

where 𝛼 denotes the order of derivative and 𝑡𝜖[𝑎, 𝑏]. 
 

2.3 Riemann-Liouville Fractional Differential Operator [23] 

The fractional differential operator defined by the mathematician Riemann-Liouville for the 

positive real nos. 𝛼 , 𝑎, 𝑡  over the interval [𝑎, 𝑏] is given by  

𝐷𝑅𝐿 𝑎
𝛼𝑓(𝑡) = {

1

Γ(𝑚−𝛼)
 
𝑑𝑚

𝑑𝑡𝑚
∫

𝑓(𝑧)

(𝑡−𝑧)𝛼−𝑚+1
𝑑𝑧  , 𝑚 − 1 < 𝛼 < 𝑚 ∈ ℕ

𝑡

𝑎

𝑑𝑚

𝑑𝑡𝑚
𝑓(𝑡)                                   ,                     𝛼 = 𝑚 ∈ ℕ

  

 

(2.4) 

where 𝛼 denotes the order of derivative and 𝑡𝜖[𝑎, 𝑏]. 
 

2.4  Caputo Fractional Differential Operator [23] 

The fractional differential operator defined by the Italian mathematician Caputo for the 

positive real nos. 𝛼 , 𝑎, 𝑡 is  

𝐷𝑐 𝑎
𝛼𝑓(𝑡) =

{
 

 
1

Γ(𝑚 − 𝛼)
∫

𝑓𝑚(𝑧)

(𝑡 − 𝑧)𝛼−𝑚+1
𝑑𝑧  , 𝑚 − 1 < 𝛼 < 𝑚 ∈ ℕ

𝑡

𝑎

𝑑𝑚

𝑑𝑡𝑚
𝑓(𝑡)                                   ,             𝛼 = 𝑚 ∈ ℕ

 (2.5) 

where 𝛼 denotes the order of derivative and 𝑡𝜖[𝑎, 𝑏]. 

3 Integrals of Haar scale 3 Wavelet 

The closed-form expressions for father wavelet, symmetric and antisymmetric mother 

wavelets for Haar scale 3 wavelet family [19], [25-27]  are given below  

Haar scale 3 function  

𝜑(𝑡)     =    {
1         0 ≤ 𝑡 < 1
0      𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 
(3.1) 
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Haar scale 3 symmetric wavelet function  

𝜓1(𝑡)   =   
1

√2

{
  
 

  
 

  

−1           0 ≤ 𝑡 <
1

3

2           
1

3
≤ 𝑡 <

2

3

  −1           
2

3
≤ 𝑡 < 1     

 0           𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 
(3.2) 

Haar scale 3 antisymmetric wavelet function   

𝜓2(𝑡)   =   √
3

2

{
  
 

  
 1           0 ≤ 𝑡 <

1

3

0           
1

3
≤ 𝑡 <

2

3

 −1           
2

3
≤ 𝑡 < 1     

 0           𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 
(3.3) 

 The main difference which makes the Haar scale 3wavelets better than the dyadic wavelets is 

that only one mother wavelet is responsible for the construction of whole wavelet family but 

in case of Haar scale 3wavelets, two mother wavelets with different shapes are responsible 

for the construction of the whole family. Because of this fact, Haar scale 3 wavelets increase 

the convergence rate of the solution. Wavelets represented by equations (3.2)-(3.3) are the 

mother wavelets which generate the whole Haar scale 3wavelet family. A multi-resolution 

analysis is used to get the whole Haar scale 3 wavelet family as defined below. 

3.1 Multi-resolution Analysis (MRA) 

MRA for the space  𝐿2(𝑅) is demarcated as a sequence of subspace  𝑊𝑗 , 𝑉𝑗 ⊂ 𝐿2(𝑅), 𝑗 ∈ ℤ  

which closed and has the features as given below  

𝑎) 𝜙(𝑡) ∈ 𝑉0   ⟹ 𝜙(3𝑗𝑡) ∈ 𝑉𝑗  

𝑏) 𝜙(𝑡) ∈ 𝑉0    ⟹ 𝜑(3𝑗𝑡 − 𝑘) ∈ 𝑉𝑗
 

 

𝑐) 𝜓𝑖(𝑡) ∈ 𝑊0
𝑖  , 𝑖 = 1,2  ⟹ 𝜓𝑖(3𝑗𝑡) ∈ 𝑊𝑗

𝑖 

𝑑) 𝜓𝑖(𝑡) ∈ 𝑊0
𝑖  , 𝑖 = 1,2 ⟹ 𝜓𝑖(3𝑗𝑡 − 𝑘) ∈ 𝑊𝑗

𝑖 

𝑒) 𝑊𝐽 = 𝑊𝑗
1⨁𝑊𝑗

2 = ⨁𝑊𝑗
𝑖   , 𝑖 = 1,2 

𝑓) ⋯ ⊂ 𝑉0 ⊂ 𝑉1 ⊂ 𝑉2 ⊂ 𝑉3 ⊂ 𝑉4 ⊂ ⋯ 

𝑔) ⋯ ⊥ 𝑊0 ⊥ 𝑊1 ⊥ 𝑊2 ⊥ 𝑊3 ⊥ 𝑊4 ⊥ ⋯ 

ℎ) 𝑉𝑗 = 𝑉0   +∑𝑊𝑗
1

𝑗−1

𝑖=0

+ ∑𝑊𝑗
2

𝑗−1

𝑖=0

 

𝑖) 𝜙(𝑡) ∈ 𝑉0 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝜙(t − k) ∈ 𝑉0; 𝑘 ∈ ℤ and it forms Riesz basis in 𝑉0  

Now using the above said propertied, comprehensive explicit form of Haar scale 3 wavelet 

family is obtained as: 
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𝐹𝑜𝑟  𝑖 = 1 

 ℎ𝑖(𝑡) = 𝜑(𝑡) = {
1         0 ≤ 𝑡 < 1
0      𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

                                 

 

(3.4) 

𝐹𝑜𝑟      𝑖 = 2,4, … 3𝑝 − 1 

ℎ𝑖(𝑡) = 𝜓
1(3𝑗𝑡 − 𝑘) =

1

√2
{  

−1         𝛼1(𝑖) ≤ 𝑡 < 𝛼2(𝑖)

   2         𝛼2(𝑖) ≤ 𝑡 < 𝛼3(𝑖)

−1         𝛼3(𝑖) ≤ 𝑡 < 𝛼4(𝑖)

0                 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 
(3.5) 

𝐹𝑜𝑟       𝑖 = 3,6, … 3𝑝 

ℎ𝑖(𝑡) = 𝜓
2(3𝑗𝑡 − 𝑘) = √

3

2
{

  1           𝛼1(𝑖) ≤ 𝑡 < 𝛼2(𝑖)

   0           𝛼2(𝑖) ≤ 𝑡 < 𝛼3(𝑖)

−1           𝛼3(𝑖) ≤ 𝑡 < 𝛼4(𝑖)

0                    𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

, 
(3.6) 

where 𝛼1(𝑖) =
𝑘

𝑝
,𝛼2(𝑖) =  

3𝑘+1

3𝑝
, 𝛼3(𝑖) =

(3𝑘+2)

3𝑝
,   𝛼4(𝑖) =

𝑘+1

𝑝
, 𝑝 = 3𝑗  ,   𝑗 = 0,1,2, …  ,  𝑘 =

0,1,2, … , 𝑝 − 1.  

Here  𝑖 , 𝑗 , 𝑘  respectively represent the wavelet number, level of resolution (dilation) and 

translation parameters of wavelets family. The values of  𝑖 (𝑓𝑜𝑟 𝑖 > 1) can be calculated with 

help of  𝑗 , 𝑘   by using the following relations  {
𝑖 − 1 = 3𝑗 + 2𝑘      𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑖

 𝑖 − 2 = 3𝑗 + 2𝑘     𝑓𝑜𝑟  𝑜𝑑𝑑  𝑖 
}.By using 

this relation for different dilation and translations of  ℎ2(𝑡), ℎ3(𝑡), we will get the wavelet 

family as  ℎ2(𝑡), ℎ3(𝑡), ℎ4(𝑡), ℎ5(𝑡), ℎ6 (𝑡),… where ℎ2(𝑡)and ℎ3(𝑡) are also called mother 

wavelets and rest all the wavelets which we have obtained from mother wavelet are called 

daughter wavelets. 

Now one can easily integrate the equations (3.4)-(3.6) the desired number of times over the 

interval [A, B) by using Riemann Liouville Integral formula [23] as given below 

𝑞𝛽, (𝑖 )𝑡 =
1

(Γ )
∫

𝛽
 ℎ (𝑖 )(𝑥 𝑡 − )𝑥 𝛽−1𝑑𝑥

𝑡

𝐴
         ∀     0 ≤ 𝛽 ≤ 𝑚 , 

𝑚 = 1,2,3……   ,         𝑖 = 1,2,3, ……3𝑝 
(3.7) 

Appling the definition as given in Equation (3.7) on Equations (3.4) -(3.6), we get  

𝑞𝛽, (𝑖 )𝑡 =
𝑡𝛽

Γ(𝛽+1)
 𝑓𝑜𝑟   𝑖 = 1 (3.8) 

𝑞𝛽, (𝑖 )𝑡 ′𝑠   𝑓𝑜𝑟   𝑖 = 2,4,6,8,⋯ , 3𝑝 − 1  are given below  

𝑞𝛽, (𝑖 )𝑡 = 

√

{
 
 
 
 

 
 
 
 

1

2

0                                                                                                                                     𝑓𝑜𝑟     0 ≤  𝑡 ≤ 𝛼 (1 )𝑖
−1

Γ(𝛽 + 1
(
)
𝑡 − 𝛼 (1 ))𝑖

𝛽
                                                                                                𝑓𝑜𝑟   𝛼 (1 )𝑖 ≤ 𝑡 ≤ 𝛼 (2 )𝑖

1

Γ(𝛽 + 1)
[ (− 𝑡 − 𝛼 (1 ))𝑖

𝛽
+ (3 𝑡 − 𝛼 (2 ))𝑖

𝛽
]                                                             𝑓𝑜𝑟    𝛼2(𝑖) ≤ 𝑡 ≤ 𝛼3(𝑖)

1

Γ(𝛽 + 1)
[ (− 𝑡 − 𝛼 (1 ))𝑖

𝛽
+ (3 𝑡 − 𝛼 (2 ))𝑖

𝛽
− (3 𝑡 − 𝛼 (3 ))𝑖

𝛽
]                            𝑓𝑜𝑟 𝛼3(𝑖) ≤ 𝑡 ≤ 𝛼4(𝑖)    

1

Γ(𝛽 + 1)
[ (− 𝑡 − 𝛼 (1 ))𝑖

𝛽
+ (3 𝑡 − 𝛼 (2 ))𝑖

𝛽
− (3 𝑡 − 𝛼 (3 ))𝑖

𝛽
(+ 𝑡 − 𝛼 (4 ))𝑖

𝛽
]  𝑓𝑜𝑟 𝛼4(𝑖) ≤ 𝑡 ≤ 1

}
 
 
 
 

 
 
 
 

        

 

 (3.9) 

𝑞𝛽, (𝑖 )𝑡 ′𝑠   𝑓𝑜𝑟   𝑖 = 3,5,7,9,⋯ , 3𝑝  are given by 

𝑞𝛽, (𝑖 )𝑡 = 
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√
3

{
 
 
 
 

 
 
 
 

2

0                                                                                                                      𝑓𝑜𝑟      0 ≤  𝑡 ≤ 𝛼 (1 )𝑖
1

(Γ 𝛽 + )
(

1
𝑡 − 𝛼 (1 ))𝑖

𝛽
                                                                                                 𝑓𝑜𝑟   𝛼 (1 )𝑖 ≤ 𝑡 ≤ 𝛼 (2 )𝑖

1

(Γ 𝛽 + )1
([ 𝑡 − 𝛼 (1 ))𝑖

𝛽
(− 𝑡 − 𝛼 (2 ))𝑖

𝛽
]                                                             𝑓𝑜𝑟    𝛼2(𝑖) ≤ 𝑡 ≤ 𝛼3(𝑖)

1

(Γ 𝛽 + )1
([ 𝑡 − 𝛼 (1 ))𝑖

𝛽
(− 𝑡 − 𝛼 (2 ))𝑖

𝛽
(− 𝑡 − 𝛼 (3 ))𝑖

𝛽
]                               𝑓𝑜𝑟   𝛼3(𝑖) ≤ 𝑡 ≤ 𝛼4(𝑖)    

1

(Γ 𝛽 + )1
([ 𝑡 − 𝛼 (1 ))𝑖

𝛽
(− 𝑡 − 𝛼 (2 ))𝑖

𝛽
(− 𝑡 − 𝛼 (3 ))𝑖

𝛽
(+ 𝑡 − 𝛼 (4 ))𝑖

𝛽
]       𝑓𝑜𝑟 𝛼4(𝑖) ≤ 𝑡 ≤ 1

}
 
 
 
 

 
 
 
 

        

 

 (3.10) 

4 Approximation of solution 

Using the properties of Haar scale 3 wavelets as explained in section 3, any function 𝑥(𝑡) ∈
𝐿2(𝑅) can be represented by the infinite Haar series as 

𝑥(𝑡) =∑𝑎𝑖ℎ𝑖(𝑡)

∞

𝑖=0

=  𝑎1ℎ1(𝑡) + ∑ 𝑎𝑖𝜓
1(3𝑗𝑡 − 𝑘) + ∑ 𝑎𝑖𝜓

2(3𝑗𝑡 − 𝑘)

𝑜𝑑𝑑 𝑖>1𝑒𝑣𝑒𝑛 𝑖

 (4.1) 

Here 𝑎𝑖′𝑠 are the wavelet coefficients and their values are to be determined by the proposed 

method. But for the computational purpose, one has to consider a finite number of terms. By 

considering the first 3𝑝 terms to approximate the function   𝑢(𝑡) we get  

𝑥(𝑡) ≈ 𝑢3𝑝 = ∑ 𝑎𝑖ℎ𝑖(𝑡)
3𝑝
𝑖=0   where  𝑝 = 3𝑗 , 𝑗 = 0,1,2, …   (4.2) 

5 Method of Solution based on Haar scale 3 wavelets 

Consider the following  Fractional DE(differential equation)  

𝛼𝐷2𝑥(𝑡) + 𝛽𝐷α1𝑥(𝑡) + 𝛾𝐷α2𝑥(𝑡) + 𝛿𝑥(𝑡) = 𝑔(𝑡)             (5.1) 

with initial conditions 𝑥(0) = 𝛿2 , 𝑥
′(0) = 𝛿3  , where 𝛼 , 𝛽, 𝛾, 𝛿  are the arbitrary constants 

and 1 < α1 < 2 ,0 < α2 < 1 

Now the solution x(t) for the above equation can be obtained using the following steps α2 

Step1: Approximate 𝐷2𝑥(𝑡) (derivative of biggest order) using the Haar scale 3 wavelet 

bases as 

𝐷2𝑥(𝑡) =∑𝑎𝑖ℎ𝑖(𝑡)

3𝑝

𝑖=0

= 𝑎1ℎ1(𝑡) + ∑ 𝑎𝑖𝜓
1(3𝑗𝑡 − 𝑘) + ∑ 𝑎𝑖𝜓

2(3𝑗𝑡 − 𝑘)

𝑜𝑑𝑑 𝑖>1𝑒𝑣𝑒𝑛 𝑖

 (5.2) 

where 𝑎𝑖
′𝑠 for i=0,1, 2…,3p are the nondyadic wavelet coefficients  

Step 2: By integrating the equation (5.2) within the limits 0 to t, we get 

𝑥′(𝑡) = ∑ 𝑎𝑖𝑞1,𝑖(𝑡) +
3𝑝
𝑖=0 𝑦′(0) = ∑ 𝑎𝑖𝑞1,𝑖(𝑡) +

3𝑝
𝑖=0 𝛿3       (5.3) 

Again, integrating the equation (5.3) within the limits 0 to t, we get 

𝑥(𝑡) = ∑ 𝑎𝑖𝑞2,𝑖(𝑡) +
3𝑝
𝑖=0 𝛿3𝑡 + 𝑦(0) = ∑ 𝑎𝑖𝑞2,𝑖(𝑡) +

3𝑝
𝑖=0 𝛿3𝑡 + 𝛿2         (5.4) 

Step 3: Differentiate the equation (5.4) using Caputo definition of fractional derivatives we 

get 

𝐷α1𝑥(𝑡) =∑𝑎𝑖𝑞2−α1,𝑖(𝑡) +

3𝑝

𝑖=0

𝛿3   
1

Γ(2 − α1)
   (𝑡)1−α1    (5.5) 

𝐷α2𝑥(𝑡) = ∑ 𝑎𝑖𝑞2−α2,𝑖(𝑡) +
3𝑝
𝑖=0 𝛿3   

1

Γ(2−α2)
   (𝑡)1−α2                                     (5.6) 

 



European Journal of Molecular & Clinical Medicine 
                                                                                        ISSN 2515-8260                 Volume 07, Issue 07, 2020 
 

3632 

 

Step 4: Using equations (5.2)-(5.6),Equation (5.1) becomes  

𝛼∑𝑎𝑖ℎ𝑖(𝑡)

3𝑝

𝑖=0

+ 𝛽 [∑𝑎𝑖𝑞2−α1,𝑖(𝑡) +

3𝑝

𝑖=0

𝛿3   
1

Γ(2 − α1)
   (𝑡)1−α1   ]

+ 𝛾 [∑𝑎𝑖𝑞2−α2,𝑖(𝑡) +

3𝑝

𝑖=0

𝛿3   
1

Γ(2 − α2)
   (𝑡)1−α2  ]

+ 𝛿[∑𝑎𝑖𝑞2,𝑖(𝑡) +

3𝑝

𝑖=0

𝛿3𝑡 + 𝛿2 ] = 𝑔(𝑡) 

(5.7) 

After simplification, we get 

∑𝑎𝑖[𝛼ℎ𝑖(𝑡) + 𝛽𝑞2−α1,𝑖(𝑡) + 𝛾 𝑞2−α2,𝑖(𝑡) +  𝛿𝑞2,𝑖(𝑡)]

3𝑝

𝑖=0

= 𝑔(𝑡) − [𝛽𝛿3   
1

Γ(2 − α1)
   (𝑡)1−α1 + 𝛾𝛿3   

1

Γ(2 − α2)
+ 𝛿(𝛿3𝑡 + 𝛿2) ] 

(5.8) 

 

Step 4: After Discretizing the equation (5.8) using the collocation points we get the following 

matrix system 

𝑎𝐻 = 𝐹                                   (5.9) 

 

Then using the Thomas algorithm, we obtained the wavelet coefficients 𝑎𝑖′𝑠 . Then by 

substituting the values of wavelet coefficients 𝑎𝑖′𝑠 in equation (5.4), we get the Haar scale 3  

wavelet-based solution of Fractional differential  equations with the given initial conditions. 

Similarly, by using the above steps we can generate the solution for boundary conditions. 

6 Convergence analysis 

Mittal and Pandit [24]  has proved that if  𝑥(𝑡) 𝜖𝐿2(𝑅)  such that  |𝑥𝑚(𝑡)| ≤ 𝑀, ∀ 𝑡𝜖(0,1)  
where  M is any real constant and x(t) is approximated by Non-dyadic(Scale 3) Haar wavelet 

family as given below:  

𝑥3𝑝(𝑡) =∑𝑎𝑖ℎ𝑖(𝑡)

3𝑝

𝑖=0

 (6.1) 

Then the error bound for the solution  𝑥(𝑡) using 𝐿2-norm is calculated as  

‖𝑥(𝑡) − 𝑥3𝑝(𝑡)‖ ≤  (
2

3
)
2(𝑚−𝛼) 8 𝑀2 

(Γ(𝑚 − 𝛼 + 1))
2 (
3−2(𝑗+1)(𝑚−𝛼+1)

1 − 3−2(𝑚−𝛼)+1
) (6.2) 

which ensures the convergence of approximated solution with the increase in value of j. 

Moreover, for exact values of 𝑚,𝛼 and M, then the maximum value of error bound can also 

be calculated. 

7 Error Analysis by Numerical Experiments 

To describe the appropriateness of the proposed technique for the Fractional differential 

equations of fractional order, solutions of five different problems obtained by the proposed 

computational technique have been analysed. Also, the efficiency of the present scheme is 

tested by calculating the error with the help of following formula 

Absolute error =|𝑥𝑒𝑥𝑎𝑐𝑡(𝑡𝑙) − 𝑥𝑛𝑢𝑚(𝑡𝑙)|          (7.1) 

where  𝑡𝑙’s are the collocation points. 
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Experiment No. 1:  𝐷2𝑥 + 𝐷
3

2𝑥 + 𝑥 = 𝑡2 + 4√
𝑡

𝜋
+ 2  under the boundary constraints   

𝑥(0) = 0, 𝑥(1) = 1                                                      

(7.2) 

Analytic solution of the problem is 𝑥(𝑡) = 𝑡2 

After applying the method of solution discussed in section 5 the following solution is 

proposed  

𝑥(𝑡) = ∑ 𝑎𝑖[𝑞2,𝑖(𝑡) − 𝑡𝑞2,𝑖(1)] + 𝑡
3𝑝
𝑖=1                              (7.3) 

𝑎𝑖′𝑠 are the wavelets coefficients which will be obtained by the following procedure and 

𝑞𝑗,𝑖′𝑠  are the wavelets integrals which have been already calculated in section 3.After 

applying the proposed scheme on Equation (7.2), it reduced to the following system  

∑ 𝑎𝑖 [√𝜋𝑡 (ℎ𝑖(𝑡) + 𝑞1
2
,𝑖
(𝑡) + 𝑞2,𝑖(𝑡)) − (√𝜋𝑡

3

2 + 1) 𝑞2,𝑖(1)]
3𝑝
𝑖=0 = 4𝑡 + 1 +

√𝜋 [𝑡
5

2 − 𝑡
3

2 + 2𝑡
1

2]         

(7.4) 

After discretizing the equation(7.4) using the collocation points we get the following matrix 

system                                         𝑎𝐻 = 𝐹                                

After solving the above matrix, we fatch the values of  𝑎𝑖′𝑠.which will be used to find out the 

solution. Results achieved by the proposed technique are conferred by the graphs and tables 

for the better visibility of accuracy. Figure 7.1 and Table 7.1 demonstrate the clearly visible 

agreement in the exact and approximated solutions. In  Table 7.2 results attained by the 

proposed algorithm are compared with other method existing in the recent literature and 

found it outperform over others methods like VIM[7], HAM[8], Reproducing Kernel 

Analysis  (RKA)[17] ,which demonstrates the superiority and reliability of the method. 

Figure 7.2 is depicting the high level of accuracy (which is of order 1017) obtained at the 

different collocation points. 

 
Figure 7.1: Comparison of exact and 

numerical solution of Numerical 

experiment No.1 at J=2 

 
Figure 7.2: Absolute error at the different 

collocation points considered for the 

solution of experiment No.1 

 

Numerical Experiment No. 2: 𝐷2𝑥(𝑡) +

0.5 𝐷
1

2𝑥(𝑡) + 𝑥(𝑡) = 3 + 𝑡2 (
1

Γ(2.5)
𝑡−0.5 + 1) w.r.t   

B. C’s  𝑥(0) = 0 , 𝑥(1) = 2                                        

Analytic solution of Equation (7.5) is 𝑥(𝑡) = 𝑡2 + 1. After applying the technique of solution 

discussed in the section 5 the following solution is proposed  

𝑥(𝑡) = ∑ 𝑎𝑖[𝑞2,𝑖(𝑡) − 𝑡𝑞2,𝑖(1)] + 𝑡
3𝑝
𝑖=1 + 1   (7.6) 

𝑎𝑖′𝑠 are the wavelets coefficients which will be obtained by the following procedure and 

𝑞𝑗,𝑖′𝑠 are the wavelets integrals which has been already calculated in section 3.  

 (7.5) 
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After applying the proposed technique on the equation no.(7.5). It reduced to the following 

system 

∑ 𝑎𝑖 [(ℎ𝑖(𝑡) +
1

2
𝑞3
2
,𝑖
(𝑡) + 𝑞2,𝑖(𝑡)) − (

𝑡
1
2

√𝜋
+ 𝑡)𝑞2,𝑖(1)]

3𝑝
𝑖=0 = 𝑡2 − 𝑡 + 2 +

[
4

3√𝜋
𝑡
3

2 −
1

√𝜋
𝑡
1

2]  

(7.7) 

After discretizing the equation (7.7) using the collocation points we get the matrix system                                                  

𝑎𝐻 = 𝐹 
After solving the above matrix system, we get the vales of  𝑎𝑖′𝑠.which will be used to find out 

the solution. It can be observed from the  

Table 7.1  and Figure 7.3 that the results achived agrees well with analytic solution, which 

demostrate high  efficiency of the proposed tecnique to solve these kinds of problems.Also 

from Table 7.2, we can conclude that proposed technique is a strong solver in terms of better 

accuracy in comparison with the other method [17] . Figure 7.4  is showing the errors at the 

different colocation points. 

Table 7.1: Comparision of results achieved with other methods for Experiment. No.1  

𝒕 
Analy

tic 

solutio

 

Haar Scale 

3 Solution 

Present 

Method(E*) 

 

RKA(E*)[17] 
VIM(E*)[

7] 
HAM(E*

)[8] 

0.1 0.01 0.0100000

000000000

069388939

03907 

6.9388939039072

3e-18 
0 0.5487432

e−4 

2.3265e-

13 

0.2 0.04 0.0400000

000000000

000000000

00000 

0 0 0.6312556

e−3 

1.4385e-

11 

0.3 0.09 0.0900000

000000000

000000000

00000 

0 0 0.2665571

e−2 

6.1890e-

11 

0.4 0.16 0.1600000

000000000

277555756

15628 

2.7755575615628

9e-17 
0 0.7480121

e−2 

2.2736e-

11 

0.5 0.25 0.2500000

000000000

000000000

00000 

0 2.7755575615628

9e-17 

0.1679592

e−1 

1.3680e-

10 

0.6 0.36 0.3600000

000000000

000000000

00000 

0 5.5511151231257

8e-17 

0.3277307

e−1 

3.5678e-

11 

0.7 0.49 0.4900000

000000000

555111512

31257 

5.5511151231257

8e-17 

5.5511151231257

8e-17 

0.5806535

e−1 

2.6188e-

10 

0.8 0.64 0.6400000

000000000

000000000

00000 

0 1.1102230254567

8e-17 

0.9588508

e−1 

4.3416e-

10 

0.9 0.81 0.8100000

000000000

000000000 

E* 

(Absolute 

Error)0000

0 

0 1.1102230254567

8e-17 

0.1500768

448 

1.0816e-

10 
E*(Absolute Error) 
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Figure 7.3: Comparison of exact and 

numerical solution of experiment No.2 at 

J=2 

 
Figure 7.4: Absolute error in the solution of 

experiment No.2 at the collocation points 

Table 7.2: Comparison of results attained with other methods for Experiment. No.2 

𝒕 
Analytic 

solution 
Haar Scale 3 Solution Present Method(E*) RKA(E*)[17] 

0.1 1.01 1.01000000000000000000 0 1.932676241e-

12 0.2 1.04 1.04000000000000000000 0 3.161981788e-

11 0.3 1.09 1.09000000000000000000 0 3.679907490e-

10 0.4 1.16 1.16000000000000000000 0 3.661697390e-

09 0.5 1.25 1.25000000000000000000 0 3.300057339e-

09 0.6 1.36 1.36000000000000000000 0 2.745960126e-

09 0.7 1.49 1.49000000000000022204 2.22044604925031e-

16 

2.096272045e-

10 0.8 1.64 1.64000000000000000000 0 1.404942829e-

11 0.9 1.81 1.81000000000000000000 0 7.004619107e-

12 E* (Absolute Error) 

Numerical Experiment No. 3:Consider the  equation 𝐷2𝑥(𝑡) + 𝐷
1

2𝑥(𝑡) + 𝑥(𝑡) = 2 +

𝑡2 (
2

Γ(2.5)
𝑡−0.5 + 1) − 𝑡 (

1

Γ(1.5)
𝑡−0.5 + 1) subjected to the boundary condition 𝑥(0) =

0 , 𝑥(1) = 0                 

Analytic solution 

of Equation (7.8) 

is  𝑥(𝑡) = 𝑡2 − 𝑡 .After applying the proposed method following solution is obtained  

𝑥(𝑡) = ∑ 𝑎𝑖[𝑞2,𝑖(𝑡) − 𝑡𝑞2,𝑖(1)]
3𝑝
𝑖=1      (7.9) 

 

𝑎𝑖′𝑠 are the wavelets coefficients which will be obtained by the procedure discussed above 

and 𝑞𝑗,𝑖′𝑠 are the wavelets integrals which has been already calculated in section 3. 

 
(7.8) 
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Figure 7.5: Comparison of exact and 

numerical solution of experiment No.3 at 

J=2                                                    

 
Figure 7.6: Absolute error in the solution of 

experiment No.3 at different collocation pts. 

 

Table 7.3: Comparision of  results achived with other methods for Experiment. No.3 

𝒕 
Analyti

c 

solution 

Haar Scale 3 Solution 
Present Method 

(E*) 
RKA(E*)[17] 

0.

1 

-

0.09000 

-

0.0900000000000000000000000000

00 

0 4.178019042e

-12 0.

2 

-

0.16000 

-

0.1600000000000000277555756156

29 

-

2.77555756156289e

-17 

6.892891813e

-11 0.

3 

-

0.21000 

-

0.2100000000000000555111512312

58 

5.55111512312578e

-17 

8.052572498e

-10 0.

4 

-

0.24000 

-

0.2400000000000000555111512312

58 

5.55111512312578e

-17 

8.010652391e

-09 0.

5 

-

0.25000 

-

0.2500000000000000555111512312

58 

5.55111512312578e

-17 

7.193844853e

-09 0.

6 

-

0.24000 

-

0.2400000000000000555111512312

58 

5.55111512312578e

-17 

5.949374826e

-09 0.

7 

-

0.21000 

-

0.2100000000000000555111512312

58 

5.55111512312578e

-17 

4.504783491e

-10 0.

8 

-

0.16000 

-

0.1600000000000000277555756156

29 

2.77555756156289e

-17 

2.989430925e

-11 0.

9 

-

0.09000     

-

0.0900000000000000277555756156

29 

2.77555756156289e

-17 

1.473612898e

-12        E* (Absolute Error) 

 

 

Table 7.3 depicting the performance of the method in contrast with other method existing in 

the recent literature. It validates the high efficiency and performance of the method. Getting 

high accuracy for a small number of grid points makes it strong solver for these kinds of 

mathematical models. Figure 7.5 demonstrates that the results achieved with the proposed 

technique agree well with exact solution and Figure 7.6 explains the errors in the solution at 

the different collocation points. 

Numerical Experiment No. 4: 𝐷2𝑥(𝑡) + 𝐷
3

2𝑥(𝑡) + 𝑥(𝑡) = 𝑡 +
1

√𝜋𝑡
+ 1  subjected to the 

boundary condition 𝑥(0) = 0 ,  𝑥′(1) = 1        

 

Analytic solution of the problem is  𝑥(𝑡) = 𝑡 + 1 

 

By using the method of solution discussed in the section 3, we proposed the following 

solution for the above equations   

 (7.10) 
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𝑥(𝑡) =∑𝑎𝑖𝑞2,𝑖(𝑡)

3𝑝

𝑖=1

+ 𝑡 + 1 (7.11) 

𝑎𝑖′𝑠 are the wavelets coefficients which will be obtained by the procedure discussed above 

and 𝑞𝑗,𝑖′𝑠 are the wavelets integrals which has been already calculated in section 3. It is 

shown in Table 7.4 and  Figure 7.8 that results achived with the proposed tecnique exactly 

mathcing  with exact solution with no error.It is also shown in the Table 7.4 that   the results 

achived with the proposed tecnique are superior than the results obtained by the other  

methods availabe in the existing litrature. Figure 7.7 explains the high level of agreement 

bethween the exact and Haar Scale 3 Solution. 

 
Figure 7.7: Comparison of exact and 

numerical solution of experiment No.4 at J=2 

 
Figure 7.8: Absolute error in the solution of 

experiment No.4 at different collocation pts 

 

Table 7.4: Comparison of results achieved with other methods in the existing literature for 

Experiment. No.4 

𝒕 
Analytic 

solution 

Haar Scale 3 

Solution 

Present 

Method (E*) 
RKA(E*)[17] BCM(E*)[12] 

0.1 1.1 1.1 0 0 9.3742e-16 

0.2 1.2 1.2 0 0 3.9634e-15 

0.3 1.3 1.3 0 0 4.2834e-15 

0.4 1.4 1.4 0 0 3.2975e-15 

 0.5 1.5 1.5 0 0 2.0455e-15 

0.6 1.6 1.6 0 2.220446049E-

16 

1.0277e-15 

0.7 1.7 1.7 0 0 3.4773e-16 

0.8 1.8 1.8 0 0 6.9289e-17 

0.9 1.9 1.9 0 2.220446049E-

16 

2.3947e-16 

E* (Absolute Error) 

 

8 Conclusion 

After looking at the results of five numerical experiments performed with proposed 

technique, we infer that differential equation of fractional order can easily be solved by the 
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proposed scheme with less computational cost and high accuracy. For example, in numerical 

experiment no. 1 level of accuracy obtained is or order 10−17 for only 9 colocation points in 

the first iteration. Moreover, the use of common MATLAB subprograms to solve various 

types of fractions equations, makes it more computer friendly. Very good accuracy is 

obtained for a very small number of collocation points and the results achieved are better than 

or at par with the other methods existing in the recent literature. It makes the proposed 

scheme a strong solver for these kinds of fractional differential equations. Therefore, by 

looking at the performance of the method, we conclude that the given method can be 

extended to solve other set of fractional differential equations. All the calculations have been 

performed using the MATLAB 7. 
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