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Abstract 

In understanding the spread and control of infectious diseases, mathematical modelling 

has become an important instrument.  The epidemic disease  COVID-19  caused by  SARS-

CoV-2  (Severe  Acute  Respiratory Syndrome  Coronavirus  2)  has affected the population 

of almost all the countries. This disease is highly contagious and spreads through one to 

one contact (physical closeness)[5].  It spreads through the air in the form of tiny droplets 

transmitted by the breath, cough, sneezing, or even verbal contact of an infected person 

[19].   Being highly contagious and mortality rate, the number of confirmed cases and 

deaths are alarmingly rising.  By routinely washing hands, keeping unwashed hands away 

from the face, avoiding public areas, and maintaining social distance, the various 

strategies to curb the spread include ensuring adequate hygiene.  As a consequence, 

aggressive measures are required to control the spread of infectious diseases, particularly 

those for which both vaccines and treatments are available.  Besides, combating the 

occurrence of a disease is always easier than treating it.  This paper formulates and solves 

numerically the modified SEIR model with vital dynamics includes an additional 

compartment called Vaccination with an assumption that the vaccination will provide 

lifelong immunity.  This assumption is feasible as the immunity can be extended through 

booster vaccinations in due course.  The basic reproduction number is calculated and the 

stability of the model is discussed using the Lyapunov method.   The importance of the 

various epidemiological parameters related to the  Vaccination compartment model is 

discussed numerically also. 
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1. Introduction 

Mathematical modelling is a valuable method for understanding the mechanism by which 

infectious diseases propagate into a population.  Through such modelling, the potential path 

of an outbreak and steps to contain an epidemic can also be predicted.  In the early 20
th
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century, the SIR model emerged, and major work was done using a compartment model  [13,  

18].   This model defines three major compartments as Susceptible,  Infectious, and 

Recovered and hence also called a SIR model.  Our model introduces one more compartment:  

Vaccination. S(t) is the number of susceptible individuals that interact-with infectious t in 

time, contracts the disease, and transits to the infectious compartment. E(t) is the number of 

individuals exposed to the disease in time. I(t)is the number of infectious individuals in time 

who have been infected and are capable of infecting susceptible individuals. R(t)  is the 

number of recovered individuals in time who were infected and recovered from the disease 

and entered the removed compartment.  The V(t) is the number of individuals vaccinated at 

any time t and acquire life-long immunity (with or without boosters). The individuals who 

don’t show up with any symptoms are kept in compartment A(t).  In this model, the vital 

dynamics are taken into account i.e. the births and deaths are considered.  Using first-order 

non-linear differential equations, this model predicts the nature of Vaccinated compartment 

V[t] with time t. Also, it estimates analytically epidemiological parameters related to the 

Vaccinated compartment and the basic reproductive number [3]. 

 

2. Mathematical Model 

 

Consider the SEIR epidemic disease model, where the total initial population is divided into 

five compartments namely, S(t) susceptible, E(t) exposed, I(t) infected-infectious, V(t)  

vaccinated, whereas t is time variable.  We formulate the problem based on the SIR model 

with vital dynamics and study the effect of Vaccination and epidemiological factors related to 

it. Let N be the total population in the system at time t, S is susceptible to be exposed, and E 

is the actual number of exposed individuals (a compartment in which the disease is latent; 

infected but not infectious).  The infected-infectious I(t) move from the compartment of 

susceptible S to the compartment of exposed E depending on the number of contacts infected 

I individuals, multiplied by the probability of infection β (Fig. 1). The βI/N is the average 

number of contacts with infection per unit time of one susceptible person.  The exposed (E) 

becomes infectious (I) with a rateαand the infectious recover (R) with a rate γ. Recovered 

means an individual who has acquired immunity and may move into the class S (susceptible) 

after a certain time t. In COVID-19, there is no possibility of lifelong immunity after 

recovering from it, despite that the antibodies are developed and during active antibodies[19], 

it remains in the recovered compartment for a restricted period and then flows back to the 

susceptible compartment.  We assume that vaccination will give life-long immunity either in 

one dose or with periodic boosters.  The population which doesn’t receive vaccination after 

recovering shall flow back in the compartment of susceptible S after completing the recovery 

period γ
−1

. The reciprocals α
−1

, average disease incubation period, and μ
−1 

are average natural 

deaths.  Λ and μ describe a model with vital dynamics (endemic model), which has an inflow 

of births into the class S at a rate Λ and outflow of deceased μS. This model is based on the 

assumptions proposed by Hethcote[10]; the population size is constant and large enough so 

that we can consider the population of each compartment as a continuous model.  The birth 

and death rates are equal and the population (fixed) is homogeneously mixed and uniform.  

The governing differential equations are: 
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Where,       ( )   ( )   ( )   ( )   ( )                          (6) 

with initial conditions: 

 ( )     ( )          ( )     ( )    

 
The parameters (non-negative constants) are defined as: 

Λ: Birth rate per unit time. 

μ: Fatality rate per unit time. 

β: Probability of disease transmission per contact  (dimensionless)  times the number of 

contacts per unit time. 

α:  Average rate of progression from exposure to infectious (the reciprocal is the incubation 

period) in per unit time. 

γ:  Average rate of progression of individuals from Infected I(t) (the reciprocal is the recovery 

period) having units of (1/T), with time T. 

If μ is not zero, the model is termed an endemic SIR model[1] and for σ= 0 studied in [18].  

However, the SIR model has no latent stage (no exposed individuals), which is inappropriate 

as a model for diseases like COVID-19.  This model is given in  Kermack–McKendrick's 

theory  [1,13].   Practically, numerous mathematical treatments about SEIR models 

(Susceptible- Exposed – Infected/infectious – Recovered/removed) have been studied, for 

instance, in Hethcote [10], Keeling and Rohani [12], and Diekmann et al.[7], among others. 

The basic idea is to compute the number of susceptible, exposed, infected, vaccinated, and 

recovered individuals based on the number of contacts, disease transmission rate, incubation 
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period, recovery rate, and fatality rate.  Variation of the above said epidemiological factors 

have been studied [4, 6].  Also, the rate of vaccination is θ1, θ2, θ3, θ4 to the individuals 

present in Susceptible, Exposed, Infected, and Recovery compartments.  The vaccine will be 

administered to the recovered individuals so that in addition to their natural immunity they 

can acquire vaccine-induced immunity too. This epidemic disease model predicts a peak of 

susceptible, exposed, infected, and recovered including vaccinated individuals per day as a 

function of time. The vaccination and treatment control using the SIR model has been studied 

in [2]. The μ is defined as the rate of mortality, which includes both natural and due to Covid-

19. The mortality within a year has crossed 1.5 million and more than 66 million have been 

confirmed cases of Covid-19 to date [20]. The equations (1) - (6) are made dimensionless by 

replacing the variables S′ = S/N, E ′= E/N, I′ = I/N, V ′= V/N, R′=R/N then omitting dashes, 

we obtain the dimensionless equations as: 

  

  
       ( ) ( )     ( )     ( )    ( )              ( ) 

 

  

  
    ( ) ( )    ( )     ( )     ( )                       ( ) 

 

  

  
    ( )     ( )     ( )                                                   ( ) 

 

  

  
    ( )     ( )     ( )     ( )                              (  ) 

 

  

  
    ( )     ( )     ( )     ( )     ( )             (  ) 

 

Where,       ( )   ( )   ( )   ( )   ( )                             (12) 

 

2.1 Conditions of Equilibrium 

From Equation (7) to (12), as 

 

  

  
 

  

  
 

  

  
 

  

  
 

  

  
    

 

Therefore, the feasible region for the system is given by (S*, E*, I*, R*, V*) 
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Thus, it sufficient to consider solutions in the region  . The solutions of the initial value 

problem starting in   and defined by (7)-(11) exist and are unique on a maximal interval [8]. 



                                          European Journal of Molecular & Clinical Medicine 

                                                                                 ISSN 2515-8260                 Volume 07, Issue 03, 2020             3038 

3038 
 

Since the solution remains bounded in the positively invariant region  , the maximal interval 

defined is [0, 1).  So, the initial value problem is both well-posed and is positive.  

The above system always has the disease-free equilibrium  
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The characteristic equation of the system of equations using the Jacobian matrix method is: 
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On simplification,    ( (     )  (     )(        ))
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Therefore, Q > 0. Hence roots can’t be complex. Since λ1<0, λ2<0, λ3<0, λ5<0 and we find 

the condition for λ6 <0, as Q ≥ 0 and for the stability of the system, the real part of all Eigen 

values must be negative, Hence, Q < P. We solve the following equations by substituting the 

values of Q and P,  

   
   

(    )(      )(      )
     

is called basic Reproduction number.  The endemic equilibrium will exist in the population 

only if infected individuals I > 0.  If R0>1, then    has another unique positive endemic 

equilibrium P = (S*, E*, I*, R*, V*) On solving, Equation (9) to (15). 

We obtain a quadratic equation in I(t) as : 

 (       )(      )(       )       

And the solutions are obtained by substituting the value of   in terms of R0 
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: 
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Either, I=0 or  

  
(     )  

  (      )(      )
 

Therefore, for R0 > 1 the system will have endemic equilibrium (I > 0). 

The disease-free equilibrium DFE (
 

    
       

   

 (    )
) of (1) - ( 8) is globally 

asymptotically stable in  , if R0 ≤ 1 and is unstable if R0 > 1. As V(t) doesn’t appear in 

equations (7)-(10). So, the feasible region for η= ((S, E, I, R) R
4+

:S+E+I+R≤Λ/(θ1+μ) is 

positively invariant for  (7) - (10). Consider R0 as defined above. So, the disease-free 

equilibrium DFE=  (Λ/(θ1+μ),0,0,0)  exists for all values of parameters.   A unique 

equilibrium exists for (S*,E*,I*,R*). 

The other solution from solving equation (7) to (11) : 

  
 

  (    )
 

  
(     ) 

  (      )
 

   
(     )  

  (      )(      )
 

  
(     )   

  (      )(      )(      )
 

 Therefore for R0 > 1, the solution is endemic as I>0. 

 

Theorem 1: The DFE = (Λ/(θ1+μ), 0, 0, 0)  of (7) - (10) is globally asymptotically stable in η 

if R0 ≤ 1and is unstable if R0 > 1[16].Consider a Lypunaov function  

        (      )   

If R0 ≤ 1, using (8) and (9) and S ≤ Λ / (μ+θ1), we obtain: 

 ̇     ̇    (      )  ̇ 

         ≤ Λ μ (1−1/R0) I α β ≤ 0 

and  L= 0 if and only if  I = 0.  Therefore, by La Salle’s Invariance principle [9], the above 

system η is globally stable. 

Theorem 2: If R0> 1, then the region D − {(S, E, I, R)/I = 0} is a globally asymptotically 

stable region for the endemic equilibrium P*. 
 

The R related terms can be removed as we have assumed that population size is constant. The 

proof is available in Global stability in some SEIR epidemic models [14]. 
 

3. Numerical Analysis of Modified SEIR Model with Vaccination 

Numerical investigation of the SIR model has been done commonly to understand the pattern 

of the solution [15, 18]. We have used Wolfram Mathematica's NDSolve commands to find 

the solution to the above non-linear simultaneous differential equations. Most (approximately 

80%) of those who experience Covid-19 symptoms recover from the disease and do not need 

hospital care, while about 15% become critically ill and need oxygen assistance. Around 5% 

become seriously ill and need intensive care[17]. In more than 30% of cases with COVID-19 
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[11], co-morbidity is present. The vaccinations at different stages will play a vital role both in 

preventing and curing the disease. We will plot the graphs of Susceptible S[t], Exposed E[t], 

Infected I[t], and Recovered R[t] by varying the different parameters related to vaccination. 

We begin by plotting a graph of the equations (7) to (12).  Different cases are discussed 

related to the values of θi (i=1,4). 

Let us define the parameters θ1, θ2, θ3, and θ4 as .01 (100 vaccinated days). We assume that in 

100 days vaccinations are given to the population of the different compartments and R0 = 2.5, 

then α = .3 (Incubation rate), σ = .011 (rate of losing immunity), γ= .13(rate of recovery), 

µ=.000005(rate of death)(Fig.2). 

Case I: The corresponding values of θ1 =.01, .02, .05 and 0.01 are considered in Fig.2 - 5. It is 

observed that the vaccination V(t) is rising steadily and there are significant variations in the 

graphs of S(t). The graph of S(t) indicates that when the rate of vaccination for susceptible 

increases and takes value 0.01, 0.02, 0.05, and 0.1, the susceptible decreases drop down 

significantly and becomes negligible after 10 days. in case of θ1 = 0.1 .The graphs of E(t) and 

I(t) move towards the left side indicating that the Infected and exposed population will get rid 

of infection comparatively early with an increase in θ1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case II: In Fig. 6 - 8, the value for θ2 = .02, .05 and 0.01 is considered. It is observed that the 

vaccination V(t) rises quickly while become steadily after the Exposed E(t) starts decreasing. 

The graph of S(t) indicates that when the rate of vaccination for exposed increases and takes 

value 0.01, 0.02, 0.05, and 0.1, the susceptible decreases drop down significantly and 

becomes negligible after 10 days in case of θ1 = 0.1. The graphs of E(t) and I(t) move 

towards the left side indicating that the infected and exposed population will get rid of 

infection comparatively earlier and also the peak is also flattened which indicates less 

severity of exposure and infection with the increase in θ2. 
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 Case III: Fig. 9 - 11, the plots of S(t), E(t), I(t) and V(t) and value for θ3 = .02, .05 and 0.01. 

It is observed that the vaccination V(t) rises steadily and with time it slows down. There is no 

significant change in the graph of S(t) but the peak of exposed E(t) and infected I(t) is 

flattened which means that the disease is spreading not more and fast with increasing values 

of  θ3 =0.01, 0.02, 0.05 and 0.1. The θ3  is the rate at which infected are being given 

vaccination. The graphs of E(t) and I(t) move towards the left side indicating that infected 

and exposed populations will get rid of infection comparatively earlier and hence recovered 

population. 
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Case IV: Fig. 12 - 14, the plots of S(t), E(t), I(t) and V(t) and value for θ4 = .02, .05 and 0.01. 

It is observed that as in the above graphs the vaccination V(t) rises steadily and with time it 

slows down. There is no significant change in the graph of S(t) and E(t) and I(t) but the peak 

of recovery R(t) is flattened as the values of  θ4=0.01, 0.02, 0.05, and 0.1. The θ4 is the rate at 

which recovered are given vaccination. The graphs of R(t) move towards the left side 

indicating that a recovered population will get rid of infection due to the induced immunity of 

vaccination. 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusion 

The four parameters θ1, θ2, θ3, and  θ4  related to the Vaccination compartment and denote the rate of 

vaccination for Susceptible, Exposed, Infected, and Recovered compartments. It is found that the 

increase in the rate of administering vaccination not only flattens the peak of S(t), E(t), I(t), and R(t) 

but also delays the time of peak. The susceptible population is vaccinated selectively to control the 

spread of the disease quickly and reduce the mortality rate as it has a slow effect if the entire 

population is considered in one go. Those susceptibles who are constantly at the risk of being 

exposed, who are already infected or in the recovering stage(losing immunity), wherever mortality 

rate is higher must be chosen on priority. The recovered population must not be left out for 

vaccination as it directly becomes part of susceptible after losing its natural immunity in a limited 

time (Fig 12-14), making vaccinated related immunity mandatory. 
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