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Annotation: The article formulates a generalized model of an elastic-viscous fluid, in 

particular, from this model one can obtain Newtonian, generalized Newtonian, Maxwellka 

and other models. Basically, the generalized model of a viscoelastic fluid is built on the basis 

of the topological hypothesis of Astarit and Marrucci and the axiomatic principles of Truesdell 

and Knoll. The developed generalized model of a viscoelastic fluid is convenient for solving 

engineering problems and thus is easily implemented for studying the flow of non-Newtonian 

fluids in a flat channel and in a circular cylindrical tube. 
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Most fluids have the property of elasticity, which makes up the mechanical memory. In solids, 

this memory is determined relative to the initial deformation. In fluids, however, there is no 

concept of initial deformation. That is why in liquids it is studied to "remember" the preservation 

of the previous deformation in relation to the state of a moment in time. This in turn greatly 

complicates the construction of the rheological equation from a phenomenological point of view 

in finitely deformable elastic viscous fluids. In general, the concept of "memory" in liquids is 

characterized by the fact that the deformation of the environment creates a relaxation process. 

Therefore, in elastic viscous liquids, their elastic properties are reflected in the nostatial flow 

more than in other liquids. In stationary flow, the elastic property does not affect the flow. In this 

case, the elastic viscous liquids are converted into Newtonian liquids, i.e., viscous liquids [23-

30]. In elastic viscous fluids, depending on the type of fluid, the "hereditary factor" can be 

significantly expressed in these fluids, if the length of the "memory" corresponds to the length of 

the relaxation process, recalls the area and other hydrodynamic characteristics. Basically, the 

"hereditary" factor is determined by the number of Deborah. This number is characterized by the 

ratio of the time of the relaxation process to the time characterizing the main hydrodynamic 

phenomena, ie: De
T


 where   is the relaxation time; T is the time characterizing the 

hydrodynamic phenomena. Typically, this ratio can be from 
210

to 
210 seconds for high-

molecular substances, including colloids, dispersion biological substances (elastic viscous 

liquids) [15-20]. The motion of elastic viscous fluids is fundamentally different from the motion 

of fluids that do not have elastic properties. In the development of the motion of elastic adhesive 
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(polymer) fluids under the influence of a pressure gradient, the longitudinal velocity profile is 

not monotonous like a Newtonian fluid, but rises sharply at the beginning, then decreases after 

reaching a maximum value, oscillates around a steady-state amplitude does. In elastic viscous 

fluids as a result of cessation of impact force, deformation causes a unloading process. For 

example, in a polymer liquid flowing in a pipe, it can be observed that as a result of removing the 

pressure gradient or equalizing it to zero, a reverse flow is formed in the direction opposite to the 

main flow direction of the liquid. In this regard, it is important to study the movement of elastic 

adhesive (polymer) fluids in pipes. To date, rheological models of elastic viscous fluids have 

been proposed by many scientists for different models of fluids of different types [1- 26]. 

However, among the models proposed so far, there is no single universal model that generalizes 

all models [2, 16-20]. Therefore, the theoretical study of convective migration processes of 

elastic viscous fluids is becoming a complex process. Among the proposed models, we can say 

that the model, which generalizes the models in a certain sense, is determined by the following 

nonlinear integral equation [2, 18-21]: 

       1( ), 1
2 2
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 tCt  - Koshi tensor;  tCt 1

- Finger tensor; E - unit tensor. 

The general-view elastic viscous fluid model given above (1) includes many models of polymer 

fluids and other elastic viscous fluids. Basically, the difference between these models is in the 

assignment of functions  ( )
k D

f S t and  ( )
k D

g S t , which are part of the integral equation 

(1). Especially in small deformations 1 kk gf  , in which case the model of elastic viscous 

fluids becomes linear. In numerical accounting, k and k are quantities, in particular 

 
,k k

k k 

 
 

 
   

taken in the form of, where 
 
is the dynamic viscosity coefficient of the Newtonian fluid in the 

initial state;   –  relaxation time,   – a number that characterizes the spectrum of relaxation 

time distribution;
 
    –  Riman zeta function. 

 

It is determined by the expression in the form 

 
1

1

k k
 





 . The fact that the integral equation in the form of an elastic viscous fluid (1) is 

equivalent to the differential equation in this form is given in the research work of Z.P.Shulman 

and B.M.Husid [18-20]: 
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where the high convective product is through this expression 
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the lower convective product is defined by the following expression 
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Yaumann's product is defined as follows 
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  –is introduced as a parameter representing the second normal voltage difference other than 

zero, which is determined by the following formula 2

1
2

 



. Where

2 2

1 11 22 2 22 33
( ) / , ( ) /          

. It should be noted that the upper convective 

product, the lower convective product, and the Yaumann product are obtained in the arbitrary 

coordinate system, which are transformed into ordinary products in the orthogonal system 

Cartesian and cylindrical coordinate systems. 

Three types of rheological models of this type are widely used in practice for numerical 

calculations in specific cases: 

1. Meyster (M) model  1, 1 / 2 ;
k k k D

f g c S  
   

2. Berd-Carro (BK) model  2 21 1 , 1;
k k D k

f S g  
 

3.McDonald-Baird-Carro(MBK) model 
 
 

3/2
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for all three models: 
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 Where 
2 2(2 2 ) 3c     ; in some cases it is taken as 

1 0,2  .  If 
1  , then the 

McDonald-Bird-Carro model corresponds to the Meister model;
 

1,2,...,k  
  

The Meyster model here takes into account the relaxation time effect of the deformation rate. In 

the BK model, the deformation rate is related to the shear model, while in the MBK model, it is a 

generalized model that takes into account changes in relaxation time, as well as the shear model. 

The formulas for determining the coefficient of dynamic viscosity in a stationary shear are 

determined in the following form with respect to the Weisenberg number: 
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    (3) 

Where & –is the shear deformation velocity or velocity gradient; 

   – Newtonian coefficient of adhesion depending on the rate of deformation. 

At a small value of the shear rate, i.e.
 

1 & , when 1, 1
k k

f g 
 
is sought, the 

model under consideration is the same as the spectrum of relaxation time. When 0We , the 

coefficient of adhesion of the three states in formula (3) above is equal to ( )
( )

k
k


 

 
& . 

However, it is not possible to derive a viscous plastic fluid model from this model in a special 

way, because in the hydrostatic (quiescent) state the maxwell fluid cannot maintain the 

noisotropic stress state indefinitely. That is, with a change in voltage, of course, fluid motion or 

deformation occurs. Therefore, the nonstationary state of plastic fluids cannot be expressed by a 

generalized elastic adhesive model. The above model can be applied to the fluid flow when the 

velocity gradient 
10,1сек & is present. However, plasticity properties can occur in non-

Newtonian fluids when 
10,1сек &
 accept small values. The creation of a generalized model of 

such liquids is carried out by conducting separate scientific research. We can cite this in our next 

research work. Specifically from the model proposed above, it is possible to derive the 

Newtonian model for the viscous fluid and the Maxwell models for the viscous elastic fluid. 

If 0k  , then the equation corresponding to the Newtonian model is derived from the system 

of equations (2). In fact, being lim( 0)k k kp    , equation (2) becomes a Newtonian 

equation in one-dimensional space. That is 
u

T
y







, which is the Newtonian mod.  By 
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performing the same steps, it is possible to form an equation corresponding to the Maxwell 

model when   is attempted (2) from the system of equations 

1 1, 1
k k

f g   & and when k
k

k

p



 is satisfied. In conclusion, it can be said that 

the system of equations in the form (2) is a generalized model of elastic viscous fluids in a 

certain sense. 
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