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1.Introduction: 

 

 In sect feed upon grain in granaries results in quantitative and qualitative losses are loss in 

protein .feeding insects destroy the germ and endosperm thus decreasing the qualitative 

values of the grain. In general qualitative losses are loss in protein, insect fragment and 

excrement contamination, change in non-reducing  sugar  and loss in germinative value [1-6]. 

To estimate these losses and specify the factors responsible various experiments were 

conducted and data collected and found that insect population is major factor [7-9] . 

Conducted the various experiments on kernel infestation percent and protein loss in stored 

grain However the increase and decrease in percent protein after insect damage variates. He 

found that protein loss depends upon the insect population and insect population depends 

upon the various environmental factors. Here we study the change in the insect population in 

a randomly fluctuating environment on a successfull colonized population[2, 10-12]. Let the 

population size is large than the critical size. The view of above assumption the relative 

change in the size of the population are small. 

2.Formulation of the Model and Discussion: Let the population size be x  which is 

continuous variable in the absence of fluctuating environment , the population is assumed to 

grow according to equations: 

𝑑𝑥

𝑑𝑡
=

𝑟𝑥 [1 − (
𝑥

𝑅
)]

𝑛

𝑛
, 𝑟 > 0 

Here we will discuss the case when 𝑛 = 1 and leave the case when 𝑛 ≠ 1.The fluctuating 

environment may affect  the growth in several different ways ,some of which we discuss 

below[3, 13] 

2.1 Changes in net growth rate: 

The fluctuating environment may introduce a stochastic form of r may be given by the 

equation  

𝛾 = 𝑟 + 𝜎𝐹(𝑡)(2) 

Where 𝐹(𝑡) is some noise .Since environmental changes are due to many factors ,and are fast 

compared to time scale of population growth[4, 12-14] .Here 𝜎 is a constant and < 𝑟 >= 𝑟  

.The stochastic differential equation describing the growth  of the population then becomes: 
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𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝑅
) + 𝜎𝑥 (1 −

𝑥

𝑅
) 𝐹(𝑡) (3) 

On comparing to equation ( 3 ) with the FokkaPllankequation : 
𝜕𝑃

𝜕𝑡
= −

𝜕

𝜕𝑥
[𝑎(𝑥)𝑃 +

1

2

𝜕2

𝜕𝑥2 𝑏(𝑥)𝑃] (4) 

We can write  

𝑎(𝑥) = (1 −
𝑥

𝑅
) (𝑟 +

𝜎2

2
) (1 −

2𝑥

𝑅
)   (5) 

𝑏(𝑥) = 𝜎2𝑥2 (1 −
𝑥

𝑅
)

2

 

The boundaries  𝑥 = 0, 𝑥 = 𝐾   are singular, approx. 𝑥 = 0, 𝑎(𝑥) ≈ (𝑟 +
𝜎2

2
) 𝑥𝑎𝑛𝑑𝑏(𝑥) =

𝜎2𝑥2 
and by the classification of singular boundaries, the boundary x=0  is an inaccessible natural 

boundary and never be reached . 

Similarly, the boundary at x=k   is a natural boundary and cannot reached in a finite time 

.This process describes a population which is far from extinction and which fluctuates about 

some average value (<k) due to fluctuations in the net growth rate[5]. The state probability 

density function given by equation 

𝑃 (
𝑥

𝑦
, ∞) =

𝐶

𝑏(𝑥)
𝑒

2 ∫ [
𝑎(𝜁)

𝑏(𝜁)
]𝑑𝜁

𝑥
0                         (6) 

Where C   is determined by the condition  ∫ 𝑃(𝑥/𝑦, ∞)𝑑𝑥 = 1 

Using equation (5) in equation  (6 )   ,We arrive  at   

𝑃(𝑥, ∞) = 𝐶𝑥 (
2𝑟

𝜎2 − 1) (1 −
𝑥

𝑅
) . (

2𝑟

𝜎2 + 1)      (7) 

Where  C  is the normalization constant. In  equation  (8)  quantities   (
2𝑟

𝜎2 − 1) 𝑎𝑛𝑑. (
2𝑟

𝜎2 + 1) 

are replaced  by (
2𝑟

𝜎2 − 2) 𝑎𝑛𝑑. (
2𝑟

𝜎2 + 2)respectively  .If (
2𝑟

𝜎2) < 1 the density function (7) is 

U shaped indicating the tendency of the population to be either near zero or near R. 

If  (
2𝑟

𝜎2) > 1  then  the density function (7) is monotonically increasing and graph is of J 

shaped, indicating accumulation of the population near R[6].The minimum of the U-shaped 

distribution is given by 

𝑎(𝑥) =
1

2

𝑑𝑏

𝑑𝑥
𝑖. 𝑒𝑥 = (1 −

2𝑟

𝜎2
)

𝑅

2
 

To drive the time dependent probability density function, we introduce the variable  

𝑍 =
1

𝜎
[
𝑙𝑜𝑔

𝑥

1−𝑥

𝑅
] 

𝑑𝑧 = [𝜎𝑥 (
1−𝑥

𝑅
)] 𝑑𝑥                                                                                     (8) 

Equation  (4)  becomes  
𝑑𝑧

𝑑𝑡
= (

𝑟

𝜎
) + 𝐹(𝑡)                                                (9) 

Which is the stochastic differential equation for an unrestricted weiner process; hence the 

Fokker Plank  equation satisfied by the probability density function of  is   𝑧, 𝑔 (
𝑧

𝑍0
, 𝑡) 

𝜕𝑔

𝜕𝑡
= −

𝜕

𝜕𝑧
(

𝑟

𝜎
) 𝑔 +

1

2

𝜕2𝑔

𝜕𝑧2
(10) 

With the boundary conditions    𝑙𝑖𝑚
𝑧→±∞

𝑔 (
𝑧

𝑍0
, 𝑡) = 0   (11) 

Corresponding to the inaccessible boundaries   𝑥 = 0(𝑧 = −∞)𝑎𝑛𝑑𝑥 = 𝑅(𝑧 = +∞)  also 

𝑔 (
𝑧

𝑍0
, 𝑡) =

1

√2𝛱𝑡
𝑒

[−
1

2𝑡
(

𝑧−𝑧0.𝑟𝑡

𝜎2 )]
(12) 

Using equation (10)  into (13)  we get  
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𝑃 (
𝑥

𝑦
, 𝑡) =

1

𝜎√2𝛱𝑡𝑦2𝑥(1−
𝑥

𝑅
)

𝑒𝑥𝑝 [−
1

2𝑡
(

1

𝜎
𝑙𝑜𝑔

𝑥

𝑦
−

1

𝜎
𝑙𝑜𝑔

1−𝑥/𝑅

1−𝑦/𝑅
−

𝑟𝑡2

𝜎
)]              (13) 

Which is the density function  determining the behavior of the population using above 

probability function various moments of x  can be calculated by numerical integration .When  

𝑅 > −∞ i.e  either  the population is for from saturation or the supply of food in unlimited 

the integration can be evaluated analytically[7] .for this the equation (9)  gives  

𝑥 = 𝑒𝜎𝑧                                                                                                (14)𝑎𝑛𝑑 < 𝑥 >=

∫ 𝑥𝑃(𝑥/𝑦, 𝑡)
𝑅

0
𝑑𝑥 

= ∫ 𝑒𝜎𝑧

+∞

−∞

𝑔 (
𝑧

𝑍0
, 𝑡) 𝑑𝑧 

= 𝑒𝑥𝑝 (
𝜎2𝑡

2
) 𝑒𝑥𝑝 {𝜎 (𝑍0 +

𝑟𝑡

𝜎
)} 

= 𝑦𝑒𝑟𝑡 𝑒𝑥𝑝 (
𝜎2𝑡

2
)                                                                                  (15) 

As compared to   𝑥 = 𝑦𝑒𝑟𝑡   (16) 

 

For the deterministic  case in the absence of random fluctuations . 

Now we have  

𝑉𝑎𝑟(𝑥) =< 𝑥2 > −< 𝑥 >2= 𝑦2𝑒2𝑟𝑡[𝑒𝑥𝑝(𝜎2𝑡) − 1] 
=< 𝑥 >2 [𝑒𝑥𝑝(𝜎2𝑡) − 1]                                                                (17) 

As compared to zero variance for the deterministic case. The coefficient of variation is given 

by 
[𝑉𝑎𝑟(𝑥)]1/2

<𝑥>
= [𝑒𝑥𝑝(𝜎2𝑡) − 1]1/2                                                          (18) 

As  t increases   ,the coefficient of variation is increasing and already for moderate times the 

average cannot describe the growth of the population. 

2.2 Change in the death rate:If the number of Zygotes (a cell formed by the union of two 

germ cells) produced is large compared to the adult population, and is therefore relatively less 

subject to random fluctuations[8] .then random variation will occur mostly in the death of 

adults .We now drive a continuous model approximating this situation. 

Let the deterministic birth rate be  𝜆𝑥  when the  population  size is x .Let 𝜇𝛥𝑡  be the 

probability for a given individual to die in time 𝛥𝑡, (independent of the age of the 

individual).If 𝑥(𝑡) is the number of individuals at time t , the number of individuals at  time 
(𝑡 + 𝛥𝑡) is a random variable which takes the value.  

𝑥(𝑡 + 𝛥𝑡) = 𝑥(𝑡) + 𝜆𝑥𝛥𝑡−𝑖(1) 

With probability 
𝑥(𝑡)

𝑖
𝜇𝑖(𝛥𝑡)𝑖(1 − 𝜇𝛥𝑡)𝑥−𝑖 (2)  

Up to first order in  𝛥𝑡  the number   𝑖is  Poisson distributed since  

< 𝑖 >= 𝜇𝑥𝛥𝑡(3) 

< 𝑖2 >= 𝜇𝑥𝛥𝑡(1 − 𝜇𝛥𝑡) + (𝜇𝑥𝛥𝑡)2 (4) 

Thus from equations (3) ,(4),(1)  we get    

< 𝑥(𝑡 + 𝛥𝑡) − 𝑥(𝑡) >=< 𝛥𝑥(𝑡) >= (𝜆𝑥 − 𝜇𝑥)𝛥𝑡(5) 

< [𝛥𝑥(𝑡)]2 >= 𝜆𝑥(𝛥𝑡) + 2𝜆𝑥𝑥𝜇(𝛥𝑡)2 + 𝑥𝜇𝛥𝑡(1 − 𝜇𝛥𝑡) + (𝑥𝜇𝛥𝑡)2(6) 

Therefore  

lim
∆𝑡>0

1

∆𝑡
< ∆𝑥(𝑡) >= 𝜆𝑥 − 𝜇𝑥                                                                                               (7) 

lim
∆𝑡>0

1

∆𝑡
< ∆𝑥(𝑡) >2= 𝜇𝑥                                                                                             (8) 

 

If   𝜆𝑥 is chosen to be  of the same form as 𝜆(𝑛) of model  
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𝜆(𝑛) = 𝜆 [1 − (
𝑛

𝑅
) 𝛼]  with 𝛼 = 1   (9) 

Using equation  (7)  and  (8) the Fokker Plank  equation (1.4) for the continuous model is 

given by  
𝜕𝑃

𝜕𝑡
= −

𝜕

𝜕𝑛
[𝑎(𝑥)𝑃 +

1

2

𝜕2

𝜕𝑥2 𝑏(𝑥)𝑃]

                                                (10) 

With  𝑎(𝑥) = 𝑟𝑥 (1 −
𝑥

𝑅
) , = 𝜆 − 𝜇 , 𝑅 = 𝐾 (1 −

𝜇

𝜆
) (11) 

 𝑏(𝑥) = 𝜇𝑥(12) 

 

Here we may remark that if we had assumed the probability for a given individual to die in 

time 𝛥𝑡 to be not constant (𝜇𝛥𝑡) but of the form [1 + (
𝑥

𝑘
) 𝛥𝑡], R in equation  (11) would 

have been relard to K  in the same fashion in model (9) ,but 𝑏(𝑥)would have become 

𝜇𝑥(1 + (𝑥/𝐾)𝑘). 

Thus in deriving equation (12) ,we have incorporated the reduction in fertility due to the 

limitation of food, but neglected the increase in the probability of death. 

 

Determination of Steady State  Distribution:To determine the steady state distribution , we 

suppose that the variable x is confirmed to 𝑥 ≥ 0 , with boundary condition 𝑥 = 0 being 

singular [𝑏(0) = 0]. 𝑁𝑒𝑎𝑟  𝑥 = 0 , 𝑏(𝑥) = 𝜇𝑥 𝑎𝑛𝑑  𝑎(𝑥) ≈  𝑟𝑥 

And that the boundary condition is an exit boundary i.e whatever reaches the boundary 𝑛 = 0 

is trapped there forever , corresponding to the extinction of the population [9]. 

For large values of 𝑥(𝑛 > 𝑅)  , 𝑎(𝑥) = (
𝑟

𝑅
) 𝑥2   and 𝑥 =  ∞ is an entrance boundary.Thus 

eventually is bound to occur and the steady state probability density function is zero for all 

𝑥 > 0 . 

To determine the value of 𝑃 (
𝑥

𝑦
  , 𝑡) we transform the Fokker- Plank equation (10) by using 

some transformation        𝑑𝑧 =
𝑑𝑥

√𝜇𝑥
 

𝑧 = 2 (
𝑥

𝜇
)

1/2

 (13) 

𝑃(𝑥/𝑦 , 𝑡) =
𝑔(

𝑧

𝑧0
 ,𝑡)

√𝜇𝑥
                                                  (14) 

In the light of equations (12) , (13) , (14) we arrive at  , 
𝜕𝑔

𝜕𝑡
= −

1

2

𝜕

𝜕𝑧
(𝑟𝑧 −

𝑟𝑧3𝜇

4𝑅
 −

1

𝑧
)𝑔 +

1

2

𝜕2𝑔

𝜕𝑧2
(15) 

Now on solving the equation by using simple transformation we get 

𝜁 = 𝑧 (
𝑟𝜇

4𝑅
)

1/4

 , 𝛼 = 2 (
𝑟𝑅

𝜇
)

1/2

  , 𝐽 =
1

4
 𝑡 (

𝑟𝜇

𝑅
)

1/2

(16)  

So equation  (16) reduces to    
𝜕𝑔

𝜕𝑡
=

𝜕

𝜕𝜁
[(

1

𝜁
− 𝛼𝜁 + 𝜁3)𝑔]  +

1

2

𝜕2𝑔

𝜕𝜁2
(17) 

If we replace 1/𝜁  𝑏𝑦 −  1/𝜁  then above equation becomes similar to the equation which has 

been studied in the theory of noise in the laser [4] . 
Approximate solutions to equation (10) can be derived for tow regimes: 

1.The Malthusion regime when the initial size y is small (𝑦 < 𝑅 , or equivalently R − − −
− − −−> ∞)  
2.The regime in which yy ≈ R   for the Maelthus regime a(x) ≈ rx so that 

𝑃(𝑥/𝑦, 𝑡) =
2𝑟

𝜇
𝑒𝑥𝑝 [

2𝑟𝑥+𝑦𝑒𝑟𝑡

𝜇𝑒𝑟𝑡−1
] 𝐼1 [

4𝑟

𝜇

√𝑥𝑦

𝑒𝑟𝑡/2−𝑒−𝑟𝑡/2
]                                (18) 

According to the density equation , the Ith moment of 𝑥(𝑡) 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 
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〈𝑥𝑒(𝑡)〉 = ∫ 𝑥𝑒𝑃(𝑥/𝑦, 𝑡)𝑑𝑥 = 𝑦𝑒𝑟𝑡 [
𝜇(𝑒𝑟𝑡−)

2𝑟
]

𝑒−1
∞

0
𝑒𝑥𝑝 [−

2𝑟

𝜇

𝑦

(1−𝑒−𝑟𝑡)
] Γ(𝐼 + 1)𝐹 [𝐼 +

1: 2; 
2𝑟𝑦

𝜇(1−𝑒−𝑟𝑡](19) 

In particular buy using the standard formula 𝐹(𝑎; 𝑎; 𝑧) = 𝑒𝑧   (20) 

𝐹(𝑎 + 1; 𝑎; 𝑧) = (𝑎 + 𝑧/𝑎)𝐹(𝑎; 𝑎; 𝑧)( 21) 

We obtain 〈𝑥(𝑡)〉 = 𝑦𝑒𝑟𝑡   (22) 

〈𝑥2(𝑡)〉 − 〈𝑥(𝑡)〉2 =
𝜇

𝑟
〈𝑥(𝑡)〉(𝑒𝑟𝑡−)                                                                     (23) 

The average value given by equations (24) is identical to the Malthusian deterministic 

behavior  

𝑏(𝑥)  = 0 . This is expected  value since a(x) is linear in x .T be  Probability of population 

growing without limit is  𝑇(
∞

𝑦
) =  

∫ Π(𝜂)𝑑𝜂
𝑦

0

∫ Π(𝜂)𝑑𝜂
∞

0

  (24) 

where  Π(𝜂) =  𝑒𝑥𝑝(−2 ∫
𝑎(𝑦)

𝑏(𝑦)

𝜂

0
 𝑑𝑦)   (25) 

substituting for a(y) and b(y) from equations (10) with 𝑅 = ∞  , 𝑊𝑒 𝑔𝑒𝑡  

𝑇 (
∞

𝑦
) = 1 − 𝑒−2𝑟𝑦/𝜇                                                                        (26) 

Thus for r >0 , the population will keep growing with probability1 − 𝑒−2𝑟𝑦/𝜇   and will 

become extinct with probability 1 − 𝑒−2𝑟𝑦/𝜇  , 𝑟 > 0 , 𝑡    the fate of the population is 

extinction. So the probability of population having any size greater than zero.at infinite time 

is zero[10] .In the Malthusian regime ,the validity of the approximation is limited to short 

times and the limit  t approaching to infinity have no meaning in this context. 

In the regime  y ≈ R ; 
x−y

R
  ≪ 1 and we can take         a(x) ≈ r[R − x] , r > 0     (27) 

Let us define the parameter by  η =
2rR

μ
 

For η > 1 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦  𝑥 = 0 𝑖𝑠 𝑎𝑛 𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑤ℎ𝑖𝑙𝑒 𝑓𝑜𝑟 0 < 𝜂 < 1 ,  it is a 

regular boundary which is reflecting. 

For all η > 0 ,  
x = ∞ is a natural in accessible boundary. The steady s tate probability density exists  
and from review of equations (6) ,(12) ,(28)is given by  

P(x/y. ∞) = cxη−1exp {−η (
x

R
)}  where c I a normalization constant and is given by  

c =
(

r

R
)

η

Γ(η)
(28) 

The most probable steady -state size of the population is   

𝑥0 = 𝑅 −
𝜇

2𝑟
 = 𝑅 (1 −

1

𝜂
)                                                                          (29) 

Which is positive and below R  for𝜂 > 1. 𝐴𝑠 𝜂 increase , this size tends to 𝑅. The moment 

of the population size at steady state  is  

〈𝑥𝑒〉 = (
𝑅

𝜂
)

𝑒 Γ(1+𝜂)

Γ(𝜂)
  , 〈𝑥〉 = 𝑅 > 𝑥0                                                    (30) 

The time dependent probability density is  

𝑃(𝑥/𝑦, 𝑡) =
2𝑟

𝜇
(

𝑥

𝑦
)

(𝑛−1)/2 𝑒𝜂𝑟𝑡/2

𝑒𝑟𝑡/2−𝑒−𝑟𝑡/2  𝑒𝑥𝑝 [−
2𝑟𝑥+𝑦𝑒−𝑟𝑡

𝜇(1−𝑒−𝑟𝑡)
] 𝐼𝑛−1 [

4𝑟

𝜇

(𝑥𝑦)1/2

(𝑒𝑟𝑡/2−𝑒−𝑟𝑡/2)
]        (31) 

From equation  (30) and (33) ,we conclude that for all t >0  the probability of having a large 

population (𝑥 ≫ 𝑅)is very small for all  𝜂 > 0 , Γ𝐼𝑣(𝑍) ≈
𝑒𝑧

(2Π𝑧)1/2   for z ----> ∞  While the 

probability of having population of small size is low when 𝜂 > 1 and very high for 𝜂 <
1>.Therefor the case 𝜂 > 1 describes  a population which fluctuates around as average far 



 

 European Journal of Molecular & Clinical Medicine  

                                                                                     ISSN 2515-8260 Volume 07, Issue 07, 2020 

3842 
 

from zero,and only in this case the approximation leading equation (28) a good 

approximation to the original process (11) using equation (21) the lth moment is given by  

〈𝑥𝑙〉 = (
𝜇

2𝑟
)

𝑙

𝑒𝑥𝑝 [−
2𝑟𝑦

𝜇(𝑒𝑟𝑡−1)

Γ(𝑙+𝑛)

Γ(η)
𝐹 (𝑙 + 𝜂;  𝜂;

2𝑟𝑦

𝜇(𝑒𝑟𝑡−1)
)]                                              (32) 

For l = 1,2 using the equations (22) ,(23)  we get from the above equation  

〈𝑥〉 = 𝑅(1 − 𝑒−𝑟𝑡) + 𝑦𝑒−𝑟𝑡 = 𝑅 − (𝑅 − 𝑦)𝑒−𝑟𝑡                                                           (33) 

As expected, the average given by this equation indicated the deterministic behavior is 

obtained by solving the deterministic equation 
𝑑𝑥

𝑑𝑡
=  𝑟(𝑅 − 𝑥) 

〈𝑥2〉 − 〈𝑥〉2 =
𝜇

2𝑟
[〈𝑥〉 + 𝑦𝑒−𝑟𝑡](1 − 𝑒−𝑟𝑡)                                                     (34) 

In this variance we get the comparison to the zero value in the deterministic approach 

3.Conclusion: 

We conclude from this model that present mathematical model lays emphasis on the 

protein loss depends upon the insect population and insect population depends upon the 

various environmental factors. We  also  study the change in the insect population in a 

randomly fluctuating environment on a success full colonized population .we discuss the 

change in net growth rate by stochastic models and changes in the death rate using and the  

model approximating the  situationdescribes  a population which fluctuates around as 

average far from zero. 
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