
European Journal of Molecular & Clinical Medicine 

 ISSN 2515-8260 Volume 9, Issue 7, Summer 2022 

7282 

 

Review Paper 

Alzheimer’s Disease: Role of Amyloid-β Peptide in the  

Pathogenesis of Neurodisorder 

Jitendra Gupta
*1

,Reena Gupta
1
, Prashant Sharma

1
 

*1
Institute of Pharmaceutical Research, GLA University, Mathura-281406, U.P., India 

Correspondence Email ID: smartjitu79@gmail.com 

Correspondence Author & E-mail: 

Dr. Jitendra Gupta 

Associate Professor 

Institute of Pharmaceutical Research, GLA University, Mathura-281406, U.P., India;
 

Email ID
:

smartjitu79@gmail.com 

 

Abstract:  

Alzheimer's disease (AD) is a neurodegenerative disease distinguished by memory impairment 

and dementia. Amyloid beta (Aβ), a peptide, that recreates an influential role in neuronal damage 

by proliferation in the brain (plaque) and cerebral amyloid angiopathy (CAA).It is also caused by 

neurodegeneration due to the loss of acetylcholine). Aβ is produced via consecutive Amyloid-

protein precursor (APP) divisions by the β and γ secretase, both found in lipid rafts. The 
modulation of these components is a critical element in Aβ generation during AD development. 
Aβ derived from Amyloid precursor protein (APP) is misfolded, and deposits as a plaque in the 
brain, thought to be a characteristic of AD. Aβ deposition in the brain originates from the brain 

itself. However, circulating Aβ can also cross the blood-brain barrier through the influence of 

both, contributing to AD-type pathologies. Aβ aggregation and clearance become an operational 
analysis area for healing and controlling AD. Therefore, this feature article intends to provide 

details of the aggregation mechanism and physiological role of Aβ peptide. 

Keywords: Alzheimer's disease (AD), Amyloid beta, neurodegeneration, Amyloid-protein 
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1. Introduction 

Alzheimer's disease (AD) is a neurodegenerative disorder affecting brainthat resultsmemory 

impairment. Age is a significant risk factor for AD 
[1]

. AD is characterized by intense 

accumulation of Aβ peptide in the brain (extracellular plaque)(Figure 1). It also seems to be 

present in brain vessels, called cerebral amyloid angiopathy (CAA) 
[2]

. Alzheimer's and other 

forms of dementia are growing among older people worldwide. It is estimated that in 2020 

approximately 70% elderly population of developing countries, with an average of 14.2% in 

India 
[3]

. As a result, the number of Alzheimer's patients, as well as those with hybrid types of 

dementia, will skyrocket during the subsequent decade. Around 80 million, sufferers will be 

there globally till year 2050 
[4-8]

. 
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Figure 1: Neurodegeneration of neuron and development of Alzheimer’s disease. 

2. Aβ formation and lipid raft 
The primary pathology of AD is beta-amyloid plaques. The Aβ protein and amyloid precursor 

protein (APP) causes illness and neurodeneragtion
[9]

. The integral membrane protein APP's 

external and intracellular C-terminal domains are significant. Three distinct APP isoforms have 

been known having sizes (695, 770, and 751 kDa) respectively. Specific enzymes, secretase, 

transform these APP isoforms into various-sized peptides and proteins 
[10]

. 

Most APP is found in non-lipid rafts, with a small percentage in lipid rafts (LR)
[11]

. The 

LRis referred to a separate membrane domain. LR is empowered by high cholesterol levels
[12]

. 

The cholesterol-rich lipid raft domain appears to be involved in producing Aβ. Aβ, a 
hydrophobic peptide, composed of amino acids (units 40-43). Further, it is produced from the 

transmembrane- APP precursor. In addition, the peptide accumulates and results in neuronal 

toxicity. Moreover, APP precursor undergoes proteolytic cleavage.Furthermore, APP is first 

digested by the secretase at the beginning of this amyloidogenic route.This causes β-C-terminal 

fragment (β-CTF) to breakdown by γ-secretase, forming Aβ. Theamyloid precursor proteinas a 

digested protein referredas α-secretase. APP is then cleaving, and stops the formation of Aβ [13]
. 

In recent years, the three secretases have been thoroughly defined 
[14,15].Further, due to Aβ-

degrading peptidases, the peptide gets broken and removed from Aβ[16-18]
. 

3. Enzymatic activities in the formation of Aβ  

β-Secretase (β-site APP cleaving enzyme, BACE1 membrane protease) and γ-secretase (γ-site 

APP cleaving enzyme,BACE1 membrane protease) cleave APP sequentially in the 

amyloidogenicpathway, resulting in the production of Aβ. Further, the non-amyloidogenic path, 

caused α secretase to cleave within an Aβ sequence. Thus it prevents the Aβ formation
[19]

. 

3.1. β- Secretase 

3.1.1. BACE1 

It a transmembrane enzyme belongs to (aspartyl protease). It is located primarily on brain 

neurons. It cleaves the APP at the Aβ region's N-terminus. BACE1 processing of APP is most 

likely done in endosomes, which contain a low PH environment and are required for proteolytic 

action 
[20].

 A minor proportion of BACE1 overexpressed in the lipid draft region. Any deviation 

in the integrity of the lipid raft by the depletion of cholesterol inhibits the β 
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cleavage.Furthermore, the BACE1 (transmembrane enzyme), shift to non-raft fraction from the 

raft fraction
[21]

. 

3.2. α- secretase 

ADAM10 is a component of the ADAM (a disintegrin and metalloproteinase). Pro-protein 

convertase, a protease involved in the active shedding of type 1 transmembrane protein, cleaves 

off ADAM10's enzymatic activity
[22].

 Although ADAM10 is extensively localized on non-lipid 

raft membranes thus, cleavage by α secretase is done at those regions. The actuation of α 
secretase and its division takes placedue toinhibition of cholesterol. The cholesterol synthesis is 

inhibited by zaragozic acid present in neuroblastoma cells and statins (HMG-COA reductase).In 

addition, the α secretase cleavingoccurs in plasma membrane and depends on cholesterol 

formation
[23]

.
 

3.3. γ-secretase  

γ secretase (having elevated molecular mass) comprises complex presenilin1 or presenilin2, 

nicastrin. Presenilinhas a membrane-bound structure. It consists of nine (transmembrane 

domains)thatundergoesendoproteolysis. Theendoproteolysis occurs between (transmembrane 

domains 7 and 8) respectively. Further, it helps to generate stable C and N-terminal fragments 
[24].

 The secretase substrate receptor is nicastrin, a type 1 transmembrane protein. Various family 

AD-related mutations in the presenilin1 and two genes have been shown to alter the 

amyloidogenic pathway, producing a significant quantity of Aβ42[25]
. Several experiments also 

show that γ secretase is also associated with lipid draft. Oxidative stress appears to have a role in 
the etiology of AD. BACE1 and γ-secretase activity are affected by oxidative stress

 [26]
.
 

 

4. Pathophysiology of Alzheimer’s diseases as a consequence of Aβ plaque formation 

AD is a neurodegeneration disease that leads to the formation of Aβ plaque, and its consequences 
showed in Figures 1 and 2

[27,28]
. 
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Figure 2: Pathophysiology of Alzheimer’s diseases. [APP (amyloid protein precursor) is found 

in the plasma membrane and platelet granules. Secreted APP and C83 fragments are produced 

when APP is processed by α-secretase (non-amyloidogenic pathway). Secreted APPα and C99 
components are produced when APPβ is processed by β-secretase (amyloidogenic path). Further, 

cleavage of such fragments by γ secretase leads to the biogenesis of beta-amyloid peptides. It 

mainly produces 40-43 amino acid peptides. γ additional extracting in the company of secretase 

has smaller AICD and p3 fragments.] 

4.1. Aβ formation with active involvement of platelets  

Platelets, essential components of blood cells, also contain APP, which seems to be inserted in 

the plasma membrane as a granule 
[27,28]

. Total APP residing in blood plasma contributes to 

around 7mg/ml (70pM)
[29]. The bulk of peripheral Aβ (90%) is secreted into the bloodstream by 

platelets, with A1-40 peptide being the most common
[30]

. Platelets contain all three secretases 

isoforms and can cleave APP and produce Aβ [31]
. CAA occurs and results in Aβ accumulation in 

the vessel. Furthermore, the various vascular hazards cause brain hyper-perfusion. In addition, 

results in formation of toxic molecules thatenters the brain from blood
[32]

 .Blood components, 

particularly platelets, are thought to have a role in the production of CAA because they actively 

assist in artery injury repair and also contain a substantial quantity of APP, which generates Aβ 
40 

[33,34]
.
 

4.2. Aβ functions 

A few research conducted over the last several decades indicate that in addition to its 

involvement in neuron toxicity, cadmium is actively engaged in concentration-dependent 

nervous system regulation
[35]. Aβ actively engage in neurogenesis, andresults in neurons 

development and differentiation. Further,the Aβ40 involves in neurogenesis and forms 
neutrotrophins (nerve growth factor) 

[36]
. In addition, the synaptic plasticity results in boosting 

and diminishing of synapses in relation with neurotransmitter 
[37]

.This involve in learning 

process and memory formation; it also enhances long term potentiation (LTP) neuronal 

transmission
 [38]

.Hippocampus an important region in brain mainly involve in memory formation, 

as a result of the injection of a pico-molar dose of A, memory formation is 

improved
[39]

.Antioxidant activity; metals such as copper, zinc, and iron may participate in redox 

reactions in biochemical and create reactive oxygen species (ROS). When present in low 

concentrations, Aβ works as a scavenger for ROS [40]. 

4.3. Aβ catabolism 

After the formation of Aβ the remaining proteins are have to be cleared through various pathway, 
Aβ can be degraded enzymatically by peptidase or it can also be cleared by cerebral vessels via 

special drainage system. Aβ clearance also mediated by microglial phagocytosis [16]
.The thiol-

zinc metallopeptidase IDE (insulin-degrading enzyme) is engaged mostly in hydrolysis of 

several peptides,including Aβ. In neuroblastoma cells, it is largely cytosolic, although it is also 

linked to the plasma membrane lipid raft fraction
[41]

. The bonding between IDE and lipid raft are 

mediated by brain cholesterol level 
[42]

.
 

ECE (Endothelil-converting enzyme, ECE1 & ECE2). They are the member of M13 zinc 

binding metalloprotease family having type II membrane structure. In addition, ECE also 
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contributes in Aβ catabolism [43]
.ECE1 regulates both extracellular as well as intracellular 

peptide pool whereas ECE2 regulates only intracellular peptide pool which is a marker of 

endosomal-lysosomal pathway 
[44]

.BACE2 which are localized in intracellular compartment also 

actively involved in Aβ degradation [45]
. 

4.4. Aβ aggregation and neuronal toxicity 

Under certain conditions, Aβ an unfolded protein tends to clump together. It further creates a 

heterogeneous combination of soluble fibrils, protofibrils, and oligomers. The various 

experiments showed that soluble oligomer is key pathogenic structure responsible for AD. Aβ 
oligomer binds with neurons causing neurotoxicity and synapse deformations. Recent research 

suggests that lipid rafts serve as a pathogenic signalling platform for Aβ receptors such 
glutamase, nerve growth factor, and insulin receptors 

[46].
 The binding of Aβ oligomer to these 

receptors causes abnormal receptor localization. Furthermore, it also has a negative impact on 

their physiological long-term synaptic potentiation. In addition, the LTP act as 

electrophysiological predictor. It helps in acquisition and remembering. The formation of lipid 

rafts is essential for the propagation and amplification of A oligomer-mediated neurotoxicity 

responsible for Alzheimer's disease
[47]

.
 

Accumulation to Aβ peptide to great extent leads to interfere in various biochemical 
reactions on accounts of redox mediated ROS and metals thus hypothesized to create an 

environment of oxidative stress 
[48]

.Copper ions that are redox active accumulate in plaque and 

form the Cu-Aβ complex, which catalyzes the generation of ROS
[49]

.Synaptic loss is more 

closely linked to cognitive impairment in Alzheimer's disease than the number of Aβ plaques. 

Synaptic transmission disturbances arise long before the establishment of the signature a 

deposits
[50]

. 

4.5. Aβ clearance 

Human brain should maintain a balance between Aβ synthesis and elimination in order to sustain 
adequate Aβ levels. The three secretases, and Aβ-degrading peptidases, are primary therapeutic 

targets for AD. Furthermore, inhibiting or modulating γ- and β- secretases, activating α-secretase 

and Aβ-degrading peptidases are used as therapeutic treatments for AD.Aβ clearance by 
extracellular chaperones: Albumin, antichymotrypsin (ACT), and complement protein binds to 

Aβ that is present in cerebral spinal fluid (CSF) and plasma
[16,51,52]

. 

4.5.1. Pinocytosis 

Fluid phase pinocytosis with extensive production and internalization of pinosomes can rapidly 

remove soluble Aβ via microglia. However, Aβ (1-42) can cause self-uptake and pinocytosis
[53]

. 

4.5.2. Phagocytosis 

Microglia are found here. Astrocytes may phagocytose fibrillary Aβ and endocytose monomeric 
and oligomeric Aβ via actin regulation[54]

.Receptor mediated endocytosis: Through a variety of 

receptors, oligomeric and fibrilic Aβ are normally ingested by receptor mediated 
endocytosis.Furthermore, the Scavenger receptors (SR) such as types A (SR-A), B1 (SR-B1), 

CD36, and CD40 can adhere to oligomeric, fibrillar Aβ and easily penetrates into the cell 
[55]

.
 

5. Conclusion 

The majority of APP is found in nonlipid rafts, with lipid rafts accounting for only a small 

percentage. In lipid raft fractions, BACE1 is only partly localized.Furthermore, BACE1 raft 
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association has little effect on APP-cleavage or Aβ production. Alzheimer's patients have an 

identical type Aβ aggregate throughout the brain, whereas in vitro aggregates have variations. 

This demonstrates that Aβ aggregate is a highly sophisticated procedure with a mechanism that 

varies from what has been found in vitro. Besides its function in neurogenesis at higher 

concentration it tends to damage neuron and also reduce synapse plasticity which further cause 

the loss of neurotransmitter generally acetylcholine and neurodegeneration occur. Aβ 
malfunction as a plaque in brain and also in vessel in forms of cerebral amyloidangiopathy which 

retard the LTP and reduces the neuronal transmission so that fictional loss of memory can be 

observe in Alzheimer’s diseases, dementia an associated part of AD may also be accounts for 

overproduction and deposition of Aβthrough neural cells. 
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