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Abstract: The opportunistic Gram-negative anaerobic bacteria at the tooth-supporting 

system cause human periodontitis which is a persistent inflammatory disease. The 

anaerobic bacteria that reside there interact with the host's inflammatory responses to 

create a low-oxygen or hypoxic environment within the gingivitis-affected sulcus or 

periodontal pocket. To help tissues adapt to fluctuations in oxygen availability caused 

by pathology or natural occurrences, an oxygen-sensing mechanism within each cell 

and within each tissue is required, as well as its proper management. In this review 

article, the biological significance of hypoxia  with regard to periodontal/oral cellular 

growth, epithelial barrier function, periodontal inflammation, and immunology has 

been described briefly.  
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Introduction: The term "periodontitis" refers to an inflammatory process that is 

triggered by the plaque biofilm which results in lack of periodontal adherence to the 

root surface and adjacent alveolar bone, eventually leading to tooth loss.[1] Although 
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certain, mostly gram negative anaerobic or facultative bacteria are thought to be the 

main cause of periodontal tissue damage in the subgingival biofilm, it is thought that 

most of it is brought on by an improper host reaction to those microorganisms and 

their byproducts.[1,2] 

Hemoglobin, which is usually 97% saturated with oxygen, is where oxygen is 

primarily bound in our bodies. Our haemoglobin concentration is 15 g per 100 ml, 

therefore 100 ml of blood transports roughly 20 ml of oxygen since one gram of 

haemoglobin unites with 1.34 ml of oxygen. In this study, the involvement of reactive 

oxygen species and antioxidant defence mechanisms in the pathology of periodontitis 

is discussed with the goal of finding particular therapeutic targets for upcoming host-

modulating therapies.In addition to being essential in all illnesses whose aetiology is 

linked to decreased vascularization, the utilisation of oxygen by cells rises in some 

morbid circumstances, such as infections.[2-4] 

Various biological functions are favoured by an increase in oxygen availability to 

hypoxic tissues, which can be summed up as follows: 

 

 Increase in ischemic tissue repair processes: High oxygen delivery rates boost 

collagen production, allowing for proper hydroxylation of this protein. Because 

collagen is incorrectly generated at lower tissue tensions than normal, ulcers and 

wounds do not heal; 

 Increase in the osteogenic stimulus: In the case of fractures and osteonecrotic 

lesions, oxygen delivered in high volumes increases the processes of 

mineralization and synthesis of bone tissue.  

 Antibacterial action: Oxygen delivered in high volumes has a double bactericidal 

action, direct and indirect.[5-6] 

 

Hypoxia in the periodontal environment 

Oxygen (O2) is a chemical that is required for life. Humans and other 

mammals rely on oxygen for energy production, oxidative phosphorylation, and 

electron transport. Numerous physiological or pathological conditions are linked to 

variations in tissue oxygen requirements, therefore the tissues in question must be 

able to acclimate to various O2 conditions, such as hypoxia. Mammalian cells have 

developed to be able to monitor and carefully control cellular O2 availability or 

homeostasis in order to live [7].  It is common for cells to experience hypoxia, or 
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lesser than normal concentration of oxygen. This can significantly impact biological 

processes such as cell growth, apoptosis, pH regulation and energy metabolism, 

proliferation and survival, , cell migration, matrix and organelle production.[8] 

Vascular endothelial growth factor are secreted by stem cells from the apical 

papilla under hypoxia. They improve the blood vessel network in the case of oral 

cellular development and regeneration. They have a role for hypoxia in the process of 

pulp revascularization and pulp replacements.[9-10]. 

 

Hypoxia and chronic periodontal inflammation 

For healthy tissue development, appropriate tissue activities, and homeostasis, 

oxygen is crucial. The tissue must demand less oxygen than what would normally be 

needed for it to be considered hypoxic. Moderate hypoxia is defined as medium with 

3-5% . [11] 

Due to the inequity between tissue oxygen supply and utilization, metabolic 

changes under hypoxia frequently occur during the inflammatory phase of 

periodontitis [12]. To keep cells in a state of equilibrium, intracellular hypoxia 

inducible factor  buildup encourages the transcription of a variety of genes.It is a 

dimeric protein complex and is  crucial to the body's reaction to hypoxia, low oxygen 

levels. Hypoxia inducible factor is one of the key genes in the homeostatic mechanism, 

which can boost vascularization in hypoxic regions like tumours and localised 

ischemia. [13 

In order to increase the blood flow to places like an inflammatory 

periodontium that need it, hypoxia causes the production of several angiogenic factors 

[14]. These include angioproteins 1 and 2, platelet-derived growth factor  and vascular 

endothelial growth factor .[15] The platelet-derived growth factor receptor, 

cyclooxygenase-2, and nitric oxide synthase are related genes that create perfusion 

regulation.[16] Nitric oxide synthase governs the activities of vascular smooth muscle 

cells. It also responds to variations in the cellular hypoxia inducible factor  level. 

Additionally, by switching the energy metabolism from aerobic respiration 

toglycolysis, hypoxia inducible factor  activation encourages a metabolic transition to 

lower oxygen use. Pyruvate dehydrogenase kinase is also up-regulated in response to 

hypoxia inducible factor activation, which decreases the incorporation of pyruvate 

into the citric acid cycle.[17-20] 
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Hypoxia causes defensive cellular responses or a local defence in a chronic 

inflammatory condition. However, the pathophysiology of inflammation and, 

consequently, the aetiology of illness are influenced by these hypoxic cell 

interactions.[21] A comparable situation exists within the human periodontium when 

a person has chronic periodontitis. Periodontitis, which is caused by a number of 

Gram-negative anaerobic pathogens such Aggregatibacter actinomycetemcomitans, 

Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, and others, is 

characterised by chronic inflammation of the tissues that support teeth.[22] Although 

oxygen consumption is enhanced and blood perfusion is encouraged, the real local 

microcirculation may be decreased in areas where a prolonged inflammatory reaction 

may be present.[23-25] 

In fact, local hypoxia in periodontitis promotes the survival of anaerobic 

Gram-negative bacteria and further reduces the oxygen tension in the area. Increased 

HIF-1 protein has been linked to tissue hypoxia in periodontal disease and may be 

identified in tissue samples with periodontitis using Western blot and anti-HIF-1 

immunostaining. [26]In the myeloid cell lineage of HIF-1-/- (deprived) animals, nitric 

oxide and tumour necrosis factor-alpha (TNF-) production were inhibited, which 

decreased their ability to fight bacteria.[27-29] Therefore, it is crucial and required for 

the efficient eradication of infections that immune cells be able to adjust to a reduced 

oxygen supply in order to maintain their monitoring capabilities in all tissue 

conditions. 

Matrix metalloproteinases (MMPs) and proinflammatory cytokines, 

respectively, function as mediators of inflammation or contribute to the breakdown of 

extracellular matrix. In an effort to assess the level of severity of periodontitis and 

tracking the effectiveness of periodontal treatment, researchers frequently look into 

the levels of these biological markers in the periodontium [30-33]. A hypoxic 

environment during periodontal disease may boost the expression of proinflammatory 

cytokines and MMPs from host cells, according to recent studies [34]. The idea was 

that after being exposed to the aforementioned Gram-negative bacterial surface 

component, hypoxia promoted interleukin-1, and interleukin-6 (IL-6) expressions  

which in turn activated the nuclear factor kappa B (NF-B) pathway in human 

peridontal ligament cells. [34]      

Periodontal epithelial cells may create matrix metalloproteinases in response 

to bacterial-induced activation of pathogen activated molecular patterns (PAMPs) 
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which  leads to collagen degradation. Both the later tissue rebuilding that occurs after 

inflammation has subsided and the extracellular matrix disintegration that facilitates 

local inflammatory reactions are facilitated by these host enzymes [35,36]. The 

generation of nicotine-stimulated MMPs and prostaglandin E2 from periodontal 

ligament cells may be significantly reduced by inhibiting HIF-1 activity by chetomin. 

It is a chaetomium metabolite that prevents tumour cells from adapting to hypoxia, or 

by silencing HIF-1 gene expression. These findings raise the idea that HIF-1 could 

serve as a target in the periodontal tissue deterioration brought on by smoking and 

tooth plaque [37-40]. 

Regarding the healing of oral wounds, some investigations found that HIF-1 

might increase or speed up the biological process in general under hypoxia [41-43]. 

For instance, the HIF-1 stabiliser and hydroxylase inhibitor dimethyloxalylglycine 

improved the healing of wounds in the rat palatal mucosa when used in a hypoxic 

environment, and this enzyme has been shown to promote angiogenesis that mimics 

hypoxia [44]. In terms of hard tissue healing, cobalt chloride induced the production 

of angiogenic mediators and genes associated with bone turnover, which aided in vivo 

fracture healing and repair [45]. The research study also shown that conditioned 

media obtained from dental pulp cells under hypoxia could support an angiogenic 

impact and bone healing during distraction osteogenesis [46]. 

Hypoxia and periodontal immunity 

Low oxygen levels are said to modulate energy metabolism and the expression 

of different genes within defence cells, which in turn determine immune function and 

the outcomes of host protection. These hypoxic reactions, or HIF, are claimed to be 

highly associated to innate human responses [47]. The effects of HIF-1 and adenosine 

receptor modulation on T cell activities were indicative of the biological impacts of 

low pO2 [48]. In fact, changes in the adaptive immune response brought on by 

hypoxia had an impact on both lymphocytes and myeloid cells, interfering with or 

affecting innate immunity. After realising that pathological processes such as tumour 

growth, infectious locations, and wounds all entailed extremely low oxygen tension, 

the relevance of hypoxia in pathological processes was widely recognised. 

Oral innate immunity, which has the ability to recognise, squelch, and 

eliminate external intruders as well as to activate future immune responses, serves as 

the first line of defence against periodontopathogens. Granulocytes and monocytes, or 

macrophages, are the two main cells for innate periodontal immunity [49, 50]. When 
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there is acute inflammation, these cells must go into the tissue compartment with low 

pO2 (i.e., the infected area) in order to provide defence and fend off the invasion. To 

block the invasion, the engaged innate defence cells must engage in high energy 

metabolism. Therefore, in order to live, it is essential that periodontal innate immune 

cells adapt to hypoxia and respond appropriately. The oxygen sensor HIF regulates 

these reactions. 

To make up for the restricted oxidative metabolism under hypoxia, defence 

cells largely rely on glycolysis for the synthesis of ATP. The corresponding reaction 

appears to be considerably influenced by immune cell energy metabolism. HIF-1 is an 

essential regulator for the production of glycolytic enzymes, and its absence 

significantly lowers the amount of ATP available in myeloid cells [51-53].  

HIF promotes neovascularization and the recruitment of polymorphonuclear 

neutrophils (PMN) to resist pathogen invasion by reviving blood supply to inflamed 

tissues. When there is hypoxia, the HIF restored perfusion aids in PMN diapedesis 

[54–55]. HIF-1 has been characterised as a safeguard in the control of its functional 

lifetime, which results in a decrease in PMN apoptosis under hypoxia [56–58]. This 

regulation of lifespan required NF-B signalling, which was found to be essential for 

constitutive HIF-1 protein translation. [58-59] 

Although the connection between cellular stress-related transcription factor 

NF-B and hypoxia is not fully known, the two are strongly connected. It has been 

demonstrated that transforming growth factor-B-activating kinase and the inhibitor of 

B kinase (IKK) complex are normally active during traditional or classical NF-B 

activation in response to the stress of hypoxia. Through the activation of NF-B-

inducing kinase hypoxia can also activate the non-canonical NF-B pathway 

independently of HIF-1 [60,61]. The synthesis of HIF-1 by NF-B is known to be 

mediated by ROS, a significant inflammatory regulator in chronic periodontal 

inflammation [62]. 

One crucial component that promotes communication between the innate and 

adaptive immune systems is the class of specialist antigen-presenting cells known as 

dendritic cells. They offer an antigen that stimulates immature cells and helps certain 

adaptive immune responses to infections develop. Hypoxia has been found to have a 

considerable impact on dendritic cell maturation and cytokine release, while the 

mechanism behind these linked differential effects is still up for debate [63]. Studies 

showed that shutting down HIF-1 in dendritic cells inhibited their maturation and 
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significantly decreased their ability to stimulate allogeneic T lymphocytes [64, 65]. 

This is because dendritic cells depend on HIF-controlled glycolysis. On the other side, 

it is claimed that low oxygen tension inhibited the dendritic cells' ability to protect 

against liposaccharides. 

Since lymphocytes are known to play a role in maintaining the homeostasis of 

periodontal tissues, it was assumed that the disruption of lymphocyte activity was 

connected to periodontal pathogenesis. In a mouse model, an HIF-1 deficit was linked 

to aberrant B cell development that resulted in autoimmunity. [66-68]According to a 

recent study, the modulation of T cells by HIF-1 was largely responsible for avoiding 

cardiac damage in diabetic mice [67-69]. We hypothesised that diabetic periodontium 

might elicit a comparable defensive reaction. Hypoxia or HIF-1 regulation in DCs and 

lymphocytes may therefore have a substantial effect on the innate and adaptive 

cellular immunity in periodontal tissues, even though the precise mechanism is still 

unknown. 

 

Conclusion 

Combining all of the information now available, it appears that hypoxia may 

have either positive or negative impacts on periodontal health. At this point, we 

speculate that, like the intestines, the human periodontium exhibits modest levels of 

HIF-1 expression or low-grade hypoxia as a baseline defence or as a surveillance 

"alert" for periodontitis or significant invasion. Periodontal health would be 

maintained by an effective immune response coupled with suitable HIF-1 mediated 

physiologic responses. However, periodontal tissue damage could be caused by 

under-activation with or without corresponding dysregulation of HIF-1 biology in 

tissues and alveolar bone. 
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