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Abstract: Pest management is a matter of great concern nowadays. To achieve the same, a 

three tropic level food chain model is proposed considering plant, pest and natural enemies. 

Two different type of functional responses are taken for mid level and top level predator. 

Threshold value of the impulsive period is calculated for extinction of mid level predator 

using Floquet theory of impulsive differential equations, Lyapnuov functions and 

stroboscopic map. Mid level predator plays the role of pest. Permanence of system is also 

established. Some complex dynamics is also observed at higher value of impulsive period 

greater than threshold value. Further, validation of theoretical findings is done using 

MATLAB. Food chain  Impulsive control strategy  pest management  Permanence  

mixed functional response  

 

 

1 Introduction 

 
Preservation of non-renewable resources and protection of environment for coming 

generations while satisfying human requirements for fodder is the main aim of sustainable 

agriculture. It’s biggest component is pest management. In order to prevent major economic 

and production loss, it is the need of hour to control pest population. Pesticides are widely 

being used to eradicate pests [1,2]. But there are some big issues with use of pesticides. Firstly, 

these are responsible for environmental pollution up to great extent and identified as a health 

hazard to mankind. Secondly, aquatic bodies suffer due to water pollution caused by pesticides. 

Pesticides are harmful to beneficial insects such as pollinators. Further, due to high cost, small 

scale farmers are finding it hard to use chemical pesticides [3]. Moreover, after long term use, 

pests even became resistant to pesticides.  

 Therefore, chemical pesticides must be combined with some other pest control 

techniques to get maximum benefit and minimum loss. This is called Integrated Pest 

Management. Biological control is proved to be boon for te same. It includes identifying 

specific natural enemies of the targeted pest population. These enemies can be predators, 

parasites or some microbial control agents [4]. All these help to suppress growth of pest 

population. Natural enemies either kill the pests or hinder their biological process resulting in 

death of pests. Biological control is used for both open crop field crops and greenhouses. In 

Netherlands and United Kingdom, the parastoid Encarsia Formosa is used on wider scale to 

control tomato pest Trialeurodes Vaporariorum [5].  
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 In this paper, pesticides are applied along impulsive release of natural enemies to 

manage the pest population. It is observed that many of these insect pests do not cause much 

damage in their native habitat. But, the problem becomes serious when they migrate into the 

region where there are no natural enemies. Hence, specified natural enemies can be reared or 

stocked under favorable environmental conditions and then released periodically in targeted 

regions to kill pests [6]. Therefore, in our work threshold value of impulsive period is 

calculated in order to check pest population. Since pesticides and natural enemies are released 

periodically, so this can be well analyzed using impulsive differential equations. There are 

plethora of applications of impulsive differential equations in Ecology and other applied 

sciences [9]. Also pest management can be studied effectively with the help of perturbed 

prey-predator interactions. Great achievements have been made by eminent researchers by 

considering prey as pest and natural enemies as predators.  

 Further, functional response of prey population to predator has an important role in 

predation. This response can be prey dependent (Holling type) or both prey and predator 

dependent (Beddington-DeAngelis type). Liu and Chen [10] analyzed Lotka-Volterra 

predator-prey system with impulsive perturbations using Holloing Type II functional response 

and studied the chaotic behavior of system. Zhang [11] established two pest-one natural enemy 

model, and found threshold value of impulsive period for pest free equilibrium. Similarly, 

valuable results have been obtained in [12, 13, 14, 15] considering food chain and food web 

models for impulsive pest control strategy. Zhang [16] studied the bifurcation analysis of 

prey-predator impulsive pest control model with Holling type IV functional response. He 

found that bifurcation depends on the impulsive release amount of natural enemies. Differnt 

threshold values of impulsive period have been obtained in [10, 18, 19] for permanence of the 

system.  

 Furthermore, Furthermore, good biological understanding of different life stages 

(immature larva, mature adult) of pests and natural enemies must be there for effectiveness of 

biological pest control. Hence, Jatav and Dhar [20-22] considered a stage structured (in natural 

enemies) plant-pest-natural enemy (food chain) model to find the conditions for permanence of 

the system. Again, Bhanu et.al. [23] extended the above work by analyzing stage- structure in 

pests also.  

 Motivated by above, a three tropic level plant-pest-natural enemy food chain model is 

developed using Holling type II and IV functional responses for impulsive pest control 

strategy. Pesticides and natural enemies are released periodically and simultaneously with 

impulsive period  to manage pest population.  

 

2  Mathematical model 

 

 The following predator-prey food chain model is proposed in this paper. Here, prey act 

as plant crop, mid level predator plays the role of pest and top predator is the specified natural 

enemy.   

{
 
 

 
 

𝑑𝑥𝑐

𝑑𝑡
= 𝛼𝑥𝑐 (1 −

𝑥𝑐

𝛽
) −

𝛼𝑐𝑥𝑐𝑦𝑝

1+𝛾1𝑥𝑐
,

𝑑𝑦𝑝

𝑑𝑡
=

𝛼𝑐𝑥𝑐𝑦𝑝

1+𝛾1𝑥𝑐
−
𝛼𝑝𝑧𝑛𝑒𝑦𝑝

1+𝛾2𝑦𝑝
2 − 𝛿1𝑦𝑝 ,

𝑑𝑧𝑛𝑒

𝑑𝑡
=

𝛼𝑝𝑧𝑛𝑒𝑦𝑝

1+𝛾2𝑦𝑝
2 − 𝛿2𝑧𝑛𝑒  , }

 
 

 
 

𝑡 ≠ 𝑛𝜏,   (1) 

 

{
∆𝑦𝑝(𝑡) = (1 − 𝜃1),

∆𝑧𝑛𝑒(𝑡) = 𝜃2,
} 𝑡 = 𝑛𝜏 , 𝑛 ∈ 𝑍+. 
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The above model is formulated under some assumptions as follows  

(𝐴1)The Prey (plant) grows logistically in the absence of predator. 

(A2) Prey response to mid level predator is Holling type II and mid level prey response to top 

predator is Holling type IV. 

(A3) Pesticides do not cause any harm to natural predators. 

(A4) For the integrated pest control, pesticides and natural enemies are released periodically at 

time t = nτ with intensities θ1 ,𝜃2   respectively where τ is the impulsive period.  

 

The different parameters used in (1) are defined as follows  

 1. 𝑥𝑐(𝑡), 𝑦𝑝(𝑡), 𝑧𝑛𝑒(𝑡)be the densities of prey, mid level predator and top predator at time t.  

 2. 𝛼 > 0 is the intrinsic reproduction rate of prey and𝛽 > 0 is the carrying capacity. 

3. 𝛼𝑐 > 0, 𝛼𝑝 > 0 be the discovery rates by Holling and  be the half saturation 

constants.  

 4. 𝛿1, 𝛿2 be the death rates of mid level and top predator.  

 

3  Preliminaries 

 

 Let𝑅+ = [0,∞), 𝑅+
3={x ∈ 𝑅3: 𝑥 ≥ 0}, Ω = 𝑖𝑛𝑡𝑅+

3 . The map defined by the right hand of the 

system (1) is given as 𝑔 = (𝑔1, 𝑔2, 𝑔3)
𝑇 . Let 𝑆0 = {𝑉: 𝑅+ × 𝑅+

3 →

𝑅 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑜𝑛 (𝑛𝜏, (𝑛 + 1)𝜏] × 𝑅+
3  𝑎𝑛𝑑 lim

(𝑡,𝑦)→(𝑛𝜏,𝑥)𝑡>𝑛𝜏
𝑆(𝑡, 𝑥) = 𝑆(𝑛𝜏+, 𝑥)𝑒𝑥𝑖𝑠𝑡𝑠}. 

 

3.1  Definition 

If 𝑆 ∈ 𝑆0, then for (𝑡, 𝑥) ∈ (𝑛𝜏, (𝑛 + 1)𝜏] × 𝑅+
3 , the upper right derivative of 𝑆(𝑡, 𝑥)with 

respect to the impulsive differential system (1) is defined as  

𝐷+(𝑡, 𝑥) = lim
ℎ→0+

𝑠𝑢𝑝
1

ℎ
[𝑆(𝑡 + ℎ, 𝑥 + ℎ(𝑓, 𝑥)) − 𝑆(𝑡, 𝑥)]. (2) 

 

3.2  Definition 

Consider that𝑃(𝑡) = (𝑥𝑐(𝑡), 𝑦𝑝(𝑡), 𝑧𝑛𝑒(𝑡))
𝑇be the solution of (1). It is piece-wise continuous 

function from𝑅+ to𝑅+
3 , because solution changes its behavior only at moments of impulse. 

Therefore, P (𝑡)  is continuous in the interval (𝑛𝜏, (𝑛 + 1)𝜏], 𝑛 ∈ 𝑍+ and lim
𝑡→𝑛𝜏+

(𝑃(𝑡)) =

𝑃(𝑛𝜏+) exists also lim
t→nτ-

(P(t)) = P(nτ) is true in case of IDE.  

The required system (1) is said to be permanent if ∃ 𝑄 ≥ 𝑞 > 0 such that 𝑞 <
𝑥𝑐(𝑡), 𝑦𝑝(𝑡), 𝑧𝑛𝑒(𝑡) < 𝑄 for sufficiently large𝑡 and𝑃(0+) > 0. 

 

Our main aim here is to suppress the pests in a targeted region beneath a tolerable limit 

so that it does not cause major production loss. To achieve the same, we need the following 

lemma.  

 

 Lemma 1 Consider the following impulsive system  

{
𝑑𝜓(𝑡)

𝑑𝑡
= −𝑐𝜓(𝑡), 𝑡 ≠ 𝑛𝜏,

𝜓(𝑡+) = 𝜓(𝑡) + 𝑑, 𝑡 = 𝑛𝜏,   𝑛 ∈ 𝑍+.
  (3) 

 It has periodic solution𝜓̅(𝑡) (globally stable) and for any solution𝜓(𝑡)of (3)  

 

|𝜓(𝑡) − 𝜓̅(𝑡)| → 0 𝑎𝑠 𝑡 → ∞ 𝑤ℎ𝑒𝑟𝑒 𝜓̅(𝑡) =
𝑑 exp (−𝑐(𝑡 − 𝑛𝜏))

1 − exp (−𝑐𝜏)
. 
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4  Boundedness and Global Stability 

 

4.1  Upper bound of all the variables 

 

Here, in this section, firstly, upper bound for all the variables of system(1) are obtained in the 

coming lemma.   

Lemma 2For sufficiently large𝑡,there exists a constant𝐿 > 0 such that𝑥𝑐 ≤ 𝐿, 𝑦𝑝 ≤ 𝐿, 𝑧𝑛𝑒 ≤

𝐿.. That is there is an upper bound for every solution of (1).  

 

Proof .Suppose(𝑥𝑐(𝑡), 𝑦𝑝(𝑡), 𝑧𝑛𝑒(𝑡))  be any solution of (1). 

Let𝑄(𝑡) = 𝑥𝑐(𝑡) + 𝑦𝑝(𝑡) + 𝑧𝑛𝑒(𝑡)then for𝑡 ≠ 𝑛 

𝐷+𝑄(𝑡) + 𝑝𝑄(𝑡) = 𝛼𝑥𝑐 −
𝛼𝑥𝑐

2

𝛽
−
𝛼𝑐𝑥𝑐𝑦𝑝

1 + 𝛾1𝑥𝑐
+
𝛼𝑐𝑥𝑐𝑦𝑝

1 + 𝛾1𝑥𝑐
−
𝛼𝑝𝑧𝑛𝑒𝑦𝑝

1 + 𝛾2𝑦𝑝2
+
𝛼𝑝𝑧𝑛𝑒𝑦𝑝

1 + 𝛾2𝑦𝑝2
 

−𝛿1𝑦𝑝−𝛿2𝑧𝑛𝑒 + 𝑝(𝑥𝑐 + 𝑦𝑐 + 𝑧𝑛𝑒) 

= (𝛼 + 𝑝)𝑥𝑐 −
𝛼𝑥𝑐

2

𝛽
− (𝛿1 − 𝑝)𝑦𝑝 − (𝛿2 − 𝑝)𝑧𝑛𝑒 

This implies 𝐷+𝑄(𝑡) + 𝑝𝑄(𝑡) ≤ (𝛼 + 𝑝)𝑥𝑐 −
𝛼𝑥𝑐

2

𝛽
≤

𝛽

4𝛼
(𝛼 + 𝑝)2 = 𝐿0. 

𝑄(𝑛𝜏+) = 𝑄(𝑛𝜏) + 𝜃2  for 𝑡 = 𝑛𝜏. 

 

Therefore by Theorem 1.4.1 of [7],  

𝑄(𝑡) ≤ 𝑄(0)𝑒𝑥𝑝(∫(−𝑝)𝑑𝑠

𝑡

0

)+ 𝜃2 ∑ 𝑒𝑥𝑝(∫(−𝑝)𝑑𝑠

𝑡

𝑛𝜏

)

0<𝑛𝜏<𝑡

+∫(𝐿0𝑒𝑥𝑝∫(−𝑝𝑑𝜎)

𝑡

𝑠

)

𝑡

0

𝑑𝑠 

≤ 𝑄(0) exp(−𝑝𝑡) + 𝜃2 ∑ exp(−𝑝(𝑡 − 𝑛𝜏)) +
𝐿0
𝜃

0<𝑛𝜏<𝑡

(1 − exp(−𝑝𝑡)) 

          ≤ 𝑄(0) exp(−𝑝𝑡) +
𝐿0
𝑝
(1 − exp(−𝑝𝑡)) +

𝜃2exp (−𝑝(𝑡 − 𝑛𝜏))

1 − exp (−𝑝𝜏)
+

𝜃2exp (𝑝𝑡)

exp(𝑝𝜏) − 1
 

→
𝐿0
𝑝
+
𝜃2 exp(𝑝𝑡)

exp(𝑝𝜏) − 1
  𝑎𝑠  𝑡 → ∞  

This implies 𝑄(𝑡) ≤ 𝐿 where 𝐿 =
𝐿0

𝑝
+

𝜃2 exp(𝑝𝑡)

exp(𝑝𝜏)−1
 . 

Therefore,  𝑄(𝑡) is uniformly bounded. Hence, ∃  the constant  L  such that 𝑥𝑐 ≤ 𝐿, 𝑦𝑝 ≤

𝐿, 𝑧𝑛𝑒 ≤ 𝐿. 

Lemma 3If 𝑉(𝑡)be any solution of system (1) with  V(0+) ≥ 0, then 𝑉(𝑡) ≥ 0 for all  t ≥
0. Also,𝑉(𝑡) > 0 for all𝑡 ≥ 0 if  V(0+) > 0. 

 

After using Chemical pesticides and natural enemies, when pest population becomes 

extinct, then𝑦𝑝 = 0, the impulsive system (1)reduces to  

{
 

 
𝑑𝑥𝑐
𝑑𝑡

= 𝛼𝑥𝑐 (1 −
𝑥𝑐
𝛽
)

𝑑𝑧𝑛𝑒
𝑑𝑡

= −𝛿2𝑧𝑛𝑒 , }
 

 
𝑡 ≠ 𝑛𝜏, 

 

{∆𝑧𝑛𝑒(𝑡) = 𝜃2, }𝑡 = 𝑛𝜏 , 𝑛 ∈ 𝑍+.                                                                                                  
(4) 
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Now, first equation of (4) is simply logistic model. It has two equilibrium points 0 and𝛽. 𝑥𝑐 =
0 is unstable while𝑥𝑐 = 𝛽 is stable. Also, applying Lemma 1 on second and third equation of 

(4), we get globally asymptotically stable periodic solution𝑧𝑛̅𝑒as  

𝑧𝑛̅𝑒 =
𝜃2exp ((−𝛿2(𝑡−𝑛𝜏))

1−exp (−𝛿2𝜏)
      ;    𝑧𝑛̅𝑒(0

+) =
𝜃2

1−exp (−𝛿2𝜏)
 (5) 

 Now, system (1) has two pest extinction equilibrium points (0,0, 𝑧𝑛̅𝑒(𝑡)) and (𝛽, 0, 𝑧𝑛̅𝑒(𝑡) 
 

Theorem 1Let (𝑥𝑐(𝑡), 𝑦𝑝(𝑡), 𝑧𝑛𝑒(𝑡))  be any solution of system (1), then  

1.𝑋̅1 = (0,0, 𝑧𝑛̅𝑒(𝑡))is unstable.  

    2.  There exists a threshold value 𝜏𝑚𝑎𝑥of the impulsive period such that if𝜏 ≤
𝜏𝑚𝑎𝑥 , then the pest eradication solution𝑋̅2 = (𝛽, 0, 𝑧𝑛̅𝑒(𝑡))is locally asymptotically stable and 

if𝜏 > 𝜏𝑚𝑎𝑥 , it is unstable where, 

𝜏𝑚𝑎𝑥 = (
𝜃2𝛼𝑝

𝛿2
− ln (1 − 𝜃1) (

1 + 𝛾1𝛽

𝛼𝑐𝛽 − 𝛿1 − 𝛿1𝛾1𝛽
). 

 

Proof  1.  Here, we use small perturbation method to prove the local stability of the required 

solution. Let𝜁1(𝑡), 𝜁2(𝑡), 𝜁3(𝑡)be the small perturbations in0,0, 𝑧𝑛̅𝑒(𝑡)respectively. Then  

𝑥𝑐(𝑡) = 𝜁1(𝑡), 𝑦𝑝(𝑡) = 𝜁2(𝑡), 𝑧𝑛𝑒(𝑡) = 𝑧𝑛̅𝑒(𝑡) + 𝜁3(𝑡).  
 

Putting these values in system (1) and after linearisation, it reduces to  

{
 
 

 
 

𝑑𝜁1(𝑡)

𝑑𝑡
= 𝛼𝜁1(𝑡),

𝑑𝜁2(𝑡)

𝑑𝑡
= −(𝛼𝑝𝑧𝑛̅𝑒(𝑡) + 𝛿1)𝜁2(𝑡) ,

𝑑𝜁3(𝑡)

𝑑𝑡
= 𝛼𝑝𝜁2(𝑡)𝑧𝑛̅𝑒(𝑡) − 𝛿2𝜁3(𝑡) ,}

 
 

 
 

𝑡 ≠ 𝑛𝜏, 

{

𝜁1(𝑡
+) = 𝜁1(𝑡),

𝜁2(𝑡
+) = (1 − 𝜃1)𝜁2(𝑡),

𝜁3(𝑡
+) = 𝜁3(𝑡),

} 𝑡 ≠ 𝑛𝜏, 𝑛 𝜖 𝑍+.   (6) 

 Then (6)represents system of linear differential equations, which can be written in matrix 

form. Hence for𝑡 = 𝑛𝜏, the coefficient matrix is given as  

 𝐵 = [

𝛼 0 0
0 −(𝛼𝑝𝑧𝑛̅𝑒(𝑡) + 𝛿1) 0

0 𝛼𝑝𝑧𝑛̅𝑒(𝑡) −𝛿2

] 

 and for𝑡 ≠ 𝑛𝜏 

[

𝜁1(𝑛𝜏
+)

𝜁2(𝑛𝜏
+)

3(𝑛𝜏+)

] = [
1 0 0
0 1 − 𝜃1 0
0 0 1

] [

𝜁1(𝑛𝜏)

𝜁2(𝑛𝜏)

𝜁3(𝑛𝜏)
] 

  

 Let𝜙(𝑡)be the fundamental solution of (6), then, 

 
𝑑𝜙(𝑡)

𝑑𝑡
= 𝐵𝜙(𝑡) 

   𝜙(𝜏) = 𝜙(𝑜)𝑒𝑥𝑝(∫ 𝐵𝑑𝑡
𝜏

0
)  (7) 

With𝜙(0) = 𝐼,  the identity matrix. On solving, we have , 



European Journal of Molecular & Clinical Medicine 
ISSN 2515-8260                 Volume 07, Issue 07, 2020 

 

3748 
 

𝜙(𝜏) =

[
 
 
 
 
 
 
 
 
 
 
𝑒𝑥𝑝 (∫𝛼𝑑𝑡

𝜏

0

) 0 0

0 𝑒𝑥𝑝(∫−(𝛼𝑝𝑧𝑛̅𝑒(𝑡) + 𝛿1

𝜏

0

)𝑑𝑡 0

0 𝑒𝑥𝑝(∫(𝛼𝑝𝑧𝑛̅𝑒(𝑡)

𝜏

0

)𝑑𝑡 𝑒𝑥𝑝(∫−

𝜏

0

𝛿2𝑑𝑡) 𝑑𝑡

]
 
 
 
 
 
 
 
 
 
 

 

  

 Now according to Floquet Theory of impulsive differential equations(Theorem 3.1and 3.5 of 

[8]), if absolute values of all the eigen values of Monodromy matrix𝑀 are less than one, then 

the required solution is globally stable where,  

𝑀 = [
1 0 0
0 1 − 𝜃1 0
0 0 1

]  𝜙(𝜏) 

The eigen values of𝑀are  

                                                                 𝜆1 = 𝑒𝑥𝑝(∫𝛼𝑑𝑡

𝜏

0

), 

   𝜆2 = (1 − 𝜃1)𝑒𝑥𝑝(∫−(𝛼𝑝𝑧𝑛̅𝑒(𝑡) + 𝛿1

𝜏

0

)𝑑𝑡, 

                                                                  𝜆3 = 𝑒𝑥𝑝(∫ −
𝜏

0
𝛿2𝑑𝑡)𝑑𝑡                                              

(8) 

Now, it is obvious from (8), that|𝜆1| > 1 (𝑠𝑖𝑛𝑐𝑒 𝛼 > 0). Hence the equilibrium(0,0, 𝑧𝑛̅𝑒(𝑡))is 

unstable.  

2.  Similarly, we can discuss the local stability of second pest extinction equilibrium 

point(𝛽, 0, 𝑧𝑛̅𝑒(𝑡)).  Here  

𝑥𝑐(𝑡) = 𝛽 + 𝜁1(𝑡), 𝑦𝑝(𝑡) = 𝜁2(𝑡), 𝑧𝑛𝑒(𝑡) = 𝑧𝑛̅𝑒(𝑡) + 𝜁3(𝑡).  
 

Proceeding similarly as above, the Monodromy matrix𝑀in this case is  

𝑀 = [
1 0 0
0 1 − 𝜃1 0
0 0 1

]

[
 
 
 
 −𝛼 −

𝛼𝑐𝛽

1 + 𝛾1𝛽
0

0
𝛼𝑐𝛽

1 + 𝛾1𝛽
− (𝛼𝑝𝑧𝑛̅𝑒(𝑡) + 𝛿1) 0

0 𝛼𝑝𝑧𝑛̅𝑒(𝑡) −𝛿2]
 
 
 
 

 

 

The eigen values of 𝑀 are  

                                                                 𝜆1 = −𝛼𝜏 < 1, 

   𝜆2 = (1 − 𝜃1)𝑒𝑥𝑝(∫
𝛼𝑐𝛽

1 + 𝛾1𝛽
− (𝛼𝑝𝑧𝑛̅𝑒(𝑡) + 𝛿1

𝜏

0

)𝑑𝑡, 

                                                                  𝜆3 = −𝛿2𝜏 < 1                                         
(9)                                                     Now, it is obvious from (9), that 

|λ1| ≤ 1,|𝜆3| ≤ 1 and|𝜆2| ≤ 1 if 𝜏 ≤ 𝜏𝑚𝑎𝑥. Hence the required result.  
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4.2  Global Stability 

Theorem 2There is a threshold value  of the impulsive period such that if𝜏 < 𝜏̌ then the 

pest eradication solution(𝛽, 0, 𝑧𝑛̅𝑒(𝑡))is globally asymptotically stable where,  

𝜏̌ = (
𝜃2𝛼𝑝

𝛿2
− ln (1 − 𝜃1) (

1

𝛼𝑐𝛽 − 𝛿1
). 

Proof. Let(𝑥𝑐(𝑡), 𝑦𝑝(𝑡), 𝑧𝑛𝑒(𝑡))  be arbitrary solution of (1). Given that𝜏 < 𝜏̌, so, it is possible 

to find sufficiently small𝜀1̃ > 0 uch that  

∫ (𝛼𝑐
𝜏

0
(𝛽 + 𝜀1̃) − 𝛼𝑝(𝑧𝑛̅𝑒(𝑡) + 𝜀1̃) − 𝛿1)𝑑𝑡 = 𝜌1 < 0     (10) 

 From (1),   
𝑑𝑥𝑐

𝑑𝑡
≤ 𝛼𝑥𝑐 (1 −

𝑥𝑐

𝛽
)                                                             (11)                                                               

 Consider its comparison system  
𝑑𝑢𝑐

𝑑𝑡
= 𝛼𝑢𝑐 (1 −

𝑢𝑐

𝛽
)  (12) 

 Using comparison theorem of ordinary differential equations, 𝑥𝑐 ≤ 𝑢𝑐 → 𝛽 as 𝑡 → ∞. 
Therefore,𝑥𝑐 ≤ 𝛽 + 𝜀1̃ for 𝑡 ≥ 𝜅1𝜏. Again from system (1)  

{

𝑑𝑧𝑛𝑒
𝑑𝑡

≥ −𝛿2𝑧𝑛𝑒 ,   𝑡 ≠ 𝑛𝜏,

∆𝑧𝑛𝑒(𝑡) = 𝜃2,      𝑡 = 𝑛𝜏,   𝑛 ∈ 𝑍+ .
 

  (13) 

 Using comparison analysis technique of impulsive differential equations and applying lemma 

1, solution of (13) satisfies𝑧𝑛𝑒(𝑡) ≥ 𝑧𝑛̅𝑒(𝑡) − 𝜀1̃ ∀ 𝑡 ≥ 𝜅2𝜏. Again from (1)  

{

𝑑𝑦𝑝

𝑑𝑡
≥ (𝛼𝑐(𝛽 + 𝜀1̃)−𝛿1 − 𝛼𝑝(𝑧̃𝑛𝑒 − 𝜀1̃)) ,   𝑡 ≠ 𝑛𝜏,

∆𝑦𝑝(𝑡) = −𝜃1𝑦𝑝(𝑡),      𝑡 = 𝑛𝜏,   𝑛 ∈ 𝑍+ .
 (14)  

Integration of first equation of (14) on (𝜅2𝜏, (𝜅2 + 1)𝜏] gives  

𝑦𝑝(𝜅2 + 1)𝜏 ≤ 𝑦𝑝(𝜅2𝜏)exp (𝜌1)  where 𝜌1is given by (10). (15) 

 After using impulsive factor from (14), we obtain the stroboscopic map  

𝑦𝑝(𝜅2 + 1)𝜏 ≤ (1 − 𝜃1)𝑦𝑝(𝜅2𝜏)exp (𝜌1).  This implies 

𝑦𝑝(𝜅2 + 𝑞)𝜏 ≤ (1 − 𝜃1)
𝑞𝑦𝑝(𝜅2𝜏)exp (𝑞𝜌1) → 0 𝑎𝑠 𝑡 → ∞(𝜌1 < 0 𝑓𝑟𝑜𝑚 (10)).       

 (16) 

 This implies, there exists a positive integer 𝜅3 > 𝜅2and sufficiently small𝜀2̃ > 0such that 

𝑦𝑝(𝑡) < 𝜀2̃for 𝑡 ≥  𝜅3𝜏 and𝜀2̃ <
𝛿2

𝛼𝑝
. Using maximum value of𝑦𝑠(𝑡)in the first equation of 

system (1), we get  
𝑑𝑥𝑐
𝑑𝑡

≥ 𝛼𝑥𝑐 (1 −
𝑥𝑐
𝛽
− 𝛼𝑐𝜀2̃). 

So, lim
𝑡→∞

𝑥𝑐 = 𝛽. This implies𝑥𝑐 → 𝛽 as 𝑡 → ∞.Again from system (1)  

{
𝑑𝑧𝑛𝑒

𝑑𝑡
≤ (𝛼𝑝𝜀2̃ − 𝛿2)𝑧𝑛𝑒 ,   𝑡 ≠ 𝑛𝜏,

∆𝑧𝑛𝑒(𝑡) = 𝜃2,      𝑡 = 𝑛𝜏,   𝑛 ∈ 𝑍+ .
  (17) 

 By using comparison analysis technique of impulsive differential equations and applying 

lemma 1, (17) has periodic solution  

𝑤̅𝑛𝑒 =
𝜃2exp (−(𝛿2−𝛼𝑝𝜀2̃)(𝑡 − 𝑛𝜏))

1 − exp (− (𝛿2 −−𝛼𝑝𝜀2̃)𝜏)
      ;    𝑤̅𝑛𝑒(0

+) =
𝜃2

1 − exp(−(𝛿2 −−𝛼𝑝𝜀2̃) 𝜏)
 

. 

such that 𝑧𝑛𝑒(𝑡) < 𝑤̅𝑛𝑒 − 𝜀3̃ for all 𝑡 ≥  𝜅4𝜏 . As 𝜀1̃, 𝜀2̃, 𝜀3̃ > 0  are sufficiently small, 
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therefore𝑤̅𝑛𝑒 → 𝑧𝑛̅𝑒as𝑡 → ∞. Hence it is established that𝑥𝑐 → 𝛽, 𝑦𝑝 → 0 and𝑧𝑛𝑒 → 𝑧𝑛̅𝑒as𝑡 →

∞. 
 

5  Permanence 

Firstly, condition for the system to be permanent is established as follows   

Theorem 3 The system (1) is permanent if𝜏 > 𝜏̌. 
Proof. Upper bound of all the variables 𝑥𝑐(𝑡), 𝑦𝑝(𝑡), 𝑧𝑛𝑒(𝑡)of the system (1) is already been 

obtained in lemma 2. Also in the above section, it is proved that  

𝑧𝑛𝑒(𝑡) ≥ 𝑧𝑛̅𝑒(𝑡) − 𝜀1̃ = 𝑟1∀ 𝑡 ≥ 𝜅2𝜏 

Also
𝑑𝑥𝑐

𝑑𝑡
≥ 𝛼𝑥𝑐 (1 −

𝑥𝑐

𝛽
− 𝛼𝑐𝐿) . This implies𝑥𝑐 > (1 − 𝛼𝑐𝐿)𝛽 = 𝑟2 .  (18) 

 for sufficiently large 𝑡 . Thus, for permanence of the system(3), there must exists a 

constant𝑟3 <
𝛿2

𝛼𝑝
such that𝑦𝑝(𝑡) ≥ 𝑟3for sufficiently large𝑡. This is done in two steps as follows  

Step I 

To start with, assume that𝑦𝑝(𝑡) ≥ 𝑟3is not true∀ 𝑡. Thus∃ 𝑡̃1such that yp(t) < r 3 ∀ 𝑡 ≥ 𝑡̃1. 

Considering this assumption, from (1), we have  

  

{

𝑑𝑧𝑛𝑒
𝑑𝑡

≤ (𝛼𝑝𝑟3 − 𝛿2)𝑧𝑛𝑒  ,   𝑡 ≠ 𝑛𝜏,

∆𝑧𝑛𝑒(𝑡) = 𝜃2,      𝑡 = 𝑛𝜏,   𝑛 ∈ 𝑍+ .
 

 

 Consider the following impulsive system  

{
𝑑𝑢𝑛𝑒

𝑑𝑡
= (𝛼𝑝𝑟3 − 𝛿2)𝑧𝑛𝑒 ,   𝑡 ≠ 𝑛𝜏,

∆𝑢𝑛𝑒(𝑡) = 𝜃2,      𝑡 = 𝑛𝜏,   𝑛 ∈ 𝑍+ .
    (19) 

 Applying lemma 1, (19) has periodic solution  

𝑢̅𝑛𝑒(𝑡) =
𝜃2 exp (−(𝛿2−𝛼𝑝𝑟3)(𝑡 − 𝑛𝜏))

1 − exp(−(𝛿2 −−𝛼𝑝𝑟3) 𝜏)
 , 𝑡 ∈ (𝑛𝜏, (𝑛 + 1)𝜏] ;   

where, 

𝑢̅𝑛𝑒(0
+) =

𝜃2

1 − exp(−(𝛿2 −−𝛼𝑝𝑟3) 𝜏)
 

which is globally asymptotically stable. Therefore by Theorem 1.4.1 of [7],𝑧𝑛𝑒(𝑡) ≤ 𝑢𝑛𝑒 →
𝑢̅𝑛𝑒 Hence,∃ a positive integer𝜅5such that  

𝑧𝑛𝑒(𝑡) < 𝑢̅𝑛𝑒(𝑡) + 𝜀4̃ = 𝑟1∀ 𝑡 ≥ 𝜅5𝜏 
                                                                                                                                                     

(20) Therefore,𝑥𝑐 > 𝑟2 implies that for𝑡 ≥ 𝜅5𝜏, we have the following subsystem of (1)  

{

𝑑𝑦𝑝

𝑑𝑡
≥ (𝛼𝑐𝑟2−𝛿1 − 𝛼𝑝(𝑢̅𝑛𝑒 + 𝜀4̃))𝑦𝑝 ,   𝑡 ≠ 𝑛𝜏,

∆𝑦𝑝(𝑡) = −𝜃1𝑦𝑝(𝑡),      𝑡 = 𝑛𝜏,   𝑛 ∈ 𝑍+ .
   (21)   

 

 Integration of first equation of (14) on (𝜅5𝜏, (𝜅5 + 1)𝜏] gives the stroboscopic map 

𝑦𝑝(𝜅5 + 1)𝜏 ≥ 𝑦𝑝(𝜅5𝜏)(1 − 𝜃1)exp ( ∫ (𝛼𝑐𝑟2−𝛿1 − 𝛼𝑝(𝑢̃𝑛𝑒 + 𝜀4̃))𝑑𝑡

(𝜅5+1)𝜏

𝜅5

) 

≥ 𝑦𝑝(𝜅5𝜏)(1 − 𝜃1) exp(𝜌2)where 
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𝜌2 = (1 − 𝜃1)exp( ∫ (𝛼𝑐𝑟2−𝛿1 − 𝛼𝑝(𝑢̃𝑛𝑒 + 𝜀4̃))𝑑𝑡

(𝜅5+1)𝜏

𝜅5

). 

Because𝜏 > 𝜏̌, so it is possible to find𝑟2and𝜀4̃ > 0such that𝜌2 > 1.This implies  

𝑦𝑝(𝜅5 + 𝑞)𝜏 ≥ 𝑦𝑝(𝜅2𝜏)exp (𝑞𝜌1) → ∞ 𝑎𝑠 𝑞 → ∞. 

This is in contradiction to our assumption that yp(t) < r 3 ∀ 𝑡 ≥ 𝑡̃1 .. HenceThus∃ 𝑡̃2 > 𝑡̃1 

such that yp(t̃2) ≥ r 3 . 

 

Step II 

There is nothing to prove if𝑦𝑝(𝑡) ≥ 𝑟3∀ 𝑡 ≥ 𝑡̃2 . But if this is not the situation, let 𝑡̃3 =

𝑖𝑛𝑓{𝑡 , 𝑦𝑝(𝑡) < 𝑟3; 𝑡 > 𝑡̃2} . Thus𝑦𝑝(𝑡) ≥ 𝑟3∀ 𝑡 ∈ [𝑡̃2, 𝑡̃3], 𝑡̃3 ∈ (𝑛̌1𝜏, (𝑛̌1 + 1)𝜏 .𝑦𝑝(𝑡̃3) = 𝑟3 

because of continuity of𝑦𝑝(𝑡).  Let𝜏∗ = (𝑛̌2 + 𝑛̌3)𝜏where 𝑛̌2 and 𝑛̌3 satisfies the following 

conditions  

𝑛̌2𝜏 > −(
1

𝛿2 − 𝛼𝑝𝑟3
) 𝑙𝑛 (

𝜀4̃
𝐿 + 𝜃2

) 

(1 − 𝜃1)
(𝑛̌2+𝑛̌3+1) exp(𝑛̌3𝜌3 + 𝜇(𝑛̌2 + 1)𝜏) > 1, 𝜇 = (𝛼𝑐𝑟2 − 𝛼𝑝𝐿 − 𝛿1) < 0 (22) 

 Now, we will prove that∃ 𝑡4 ∈ ((𝑛̌1 + 1)𝜏 , (𝑛̌1 + 1)𝜏 + 𝜏
∗]such that𝑦𝑝(𝑡̃4) ≥ 𝑟3. 

Suppose this is not true, then𝑦𝑝(𝑡̃4) < 𝑟3 ∀ 𝑡4 ∈ ((𝑛̌1 + 1)𝜏 , (𝑛̌1 + 1)𝜏 + 𝜏
∗]. If system (19) 

is considered with 𝑢𝑛𝑒((𝑛̌1 + 1)𝜏
+) =  𝑧𝑛𝑒((𝑛̌1 + 1)𝜏

+)  then using lemma 1 for 𝑡 ∈

((𝑛̌1 + 1)𝜏 , (𝑛̌1 + 1)𝜏 + 𝜏
∗], we have  

𝑢𝑛𝑒(𝑡) = [𝑢𝑛𝑒((𝑛̌1 + 1)𝜏
+) −

𝜃2

1 − exp(−(𝛿2 −−𝛼𝑝𝑟3) 𝜏)
] exp (−(𝛿2 − 𝛼𝑝𝑟3)(𝑡 − (𝑛̌1

+ 1)𝜏)) + 𝑢̅𝑛𝑒(𝑡) 

This implies |𝑢𝑛𝑒(𝑡) − 𝑢̅𝑛𝑒(𝑡)| ≤ (𝐿 + 𝜃2) exp (−(𝛿2 − 𝛼𝑝𝑟3)(𝑡 − (𝑛̌1 + 1)𝜏))  ≤ 𝜀4̃(by(22)

  

which depicts that𝑧𝑛𝑒(𝑡) ≤ 𝑢𝑛𝑒(𝑡) < 𝑢̅𝑛𝑒(𝑡) + 𝜀4̃, ( 𝑛̃1 + 𝑛̌2 + 1)𝜏 ≤ 𝑡 ≤ (𝑛̌1 + 1)𝜏 + 𝜏
∗.  

 Integrating (21)on[(𝑛̌1 + 𝑛̌2 + 1)𝜏, (𝑛̌1 + 𝑛̌2 + 𝑛̌3 + 1)𝜏] we get  

𝑦𝑝(𝑛̌1 + 𝑛̌2 + 𝑛̌3 + 1)𝜏 ≥ 𝑦𝑝(𝑛̌1 + 𝑛̌2 + 1)𝜏(1 − 𝜃1)
𝑛̌3 exp(𝜌3𝑛̌3) ,                          

(23) 

where 𝜌3 = ∫ (𝛼𝑐𝑟2−𝛿1 − 𝛼𝑝(𝑢̃𝑛𝑒 + 𝜀4̃))𝑑𝑡
(𝜅5+1)𝜏

𝜅5
. 

Further, for𝑡 ∈ [𝑡̃3, (𝑛̌1 + 1)𝜏] two possibilities are there  

Case(i) 

If 𝑦𝑝(𝑡) ≤ 𝑟3 ∀ 𝑡 ∈ [𝑡̃3, (𝑛̌1 + 1)𝜏] then from above assumption 𝑦𝑝(𝑡) ≤ 𝑟3 ∀ 𝑡 ∈ [𝑡̃3, (𝑛̌1 +

1)𝜏 + 𝜏∗]. This implies 

 {

dyp

dt
≥ (αcr2-αpL-δ1-αp)yp ,   t ≠ nτ,

∆yp(t) = -θ1yp(t),      t = nτ,   n ∈ Z+ .
 

  (24) 

 On integrating equation (24)in[𝑡̃3, (𝑛̌1 + 𝑛̌2 + 1)𝜏], we obtain the stroboscopic map  

𝑦𝑝(𝑛̌1 + 𝑛̌2 + 1)𝜏 ≥ 𝑦𝑝(𝑡̃3)(1 − 𝜃1)
𝑛̌2+1 exp(−𝜇(𝑛̌2 + 1)𝜏) > 𝑟3 (25) 

 Using (25) in (24) , we have 

𝑦𝑝(𝑛̌1 + 𝑛̌2 + 𝑛̌3 + 1)𝜏 ≥ 𝑦𝑝(𝑡̃3)(1 − 𝜃1)
𝑛̌2+𝑛̌3+1 exp(𝜌3𝑛̌3)exp(−𝜇(𝑛̌2 + 1)𝜏) > 𝑟3 

But this contradicts our assumption. Therefore,𝑦𝑝(𝑡) ≥ 𝑟3  in[𝑡̃3, (𝑛̌1 + 𝑛̌2 + 𝑛̌3 + 1)𝜏] for 

some𝑡 . Let 𝑡̃5 = 𝑖𝑛𝑓{𝑡 , 𝑦𝑝(𝑡) ≥ 𝑟3; 𝑡 > 𝑡̃4}  Due to continuity of𝑦𝑝(𝑡), 𝑦𝑝(𝑡̃5) = 𝑟3 . Now 

integration of equation (24) on the interval [𝑡̃3, 𝑡̃5] gives  
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 𝑦𝑝(𝑡) ≥ 𝑦𝑝(𝑡̃3)(1 − 𝜃1) exp(( 𝜇(𝑡 − 𝑡̃3)) 

                          ≥ 𝑟3(1 − 𝜃1) exp(( 𝜇(𝑡 − 𝑡̃3)) 
                          ≥ 𝑟3(1 − 𝜃1) exp(μ( 𝑛̌2 + 𝑛̌3 + 1)𝜏) = 𝑟3̅ . 

Since𝑦𝑝(𝑡̃5) ≥ 𝑟3̅ so similar process can be continued for𝑡 > 𝑡̃5. Hence𝑦𝑝(𝑡) ≥ 𝑟3̅ ∀ 𝑡 > 𝑡̃2. 

Case(ii) 

If ∃𝑡̃6 ∈ [𝑡̃3, (𝑛̌1 + 1)𝜏]  such that 𝑦𝑝(𝑡̃6) ≥ 𝑟3 , then let 𝑡̃7 = 𝑖𝑛𝑓{𝑡 , 𝑦𝑝(𝑡) ≥ 𝑟3; 𝑡 > 𝑡̃6} 

Therefore,𝑦𝑝(𝑡̃6) = 𝑟3 Again, integration of equation (24) on the interval𝑡̃3, 𝑡̃7gives 

𝑦𝑝(𝑡) ≥ 𝑦𝑝(𝑡̃3)(1 − 𝜃1) exp(( 𝜇(𝑡 − 𝑡̃3)) ≥ 𝑟̅3 

Similar argument can be followed for𝑡 > 𝑡̃7 Hence, it is concluded that𝑦𝑝(𝑡) ≥ 𝑟̅3∀𝑡 > 𝑡̃2. 

Step III 

Let𝑎 = 𝑚𝑖𝑛{𝑟1, 𝑟2, 𝑟3}, Ѳ = {𝑅+
3 : 𝑎 ≤ 𝑥𝑐(𝑡), 𝑦𝑝(𝑡), 𝑧𝑛𝑒(𝑡) ≤ 𝐿}  Thus, from above steps and 

Lemma 2, it is proved that each solution of system (1) will always remain in region Ѳ. 
Therefore, by Definition3.2, system(1) is permanent.  

 

 

6  Numerical Analysis and Discussion 

 

 A prey-predator food chain model with harvesting of middle prey and stocking of top 

predator is constituted and investigated in this paper to tackle with outbreak of pest 

population.Mid level prey is taken as pest and top predator plays the role of natural enemy. Use 

of pesticides is combined with impulsive release of natural enemies for Integrated pest 

management. Firstly, global stability of mid level predator (pest) free solution is established 

and then condition for the permanence of system is derived. For this, threshold value of 

impulsive period is found that depends on releasing amounts of pesticides and natural enemies 

population. The initial values of population densities of prey, mid level and top predator 

are𝑥𝑐(0
+) = 0.5, 𝑦𝑝(0

+) = 0.5, 𝑧𝑛𝑒(0
+) = 1. The values of different parameters that are used 

in system(1) are given in Table 1.  

Table  1: Values of different parameters used in system(1) 

 

Parameter  Representation  Its Value (per week)  

  Reproduction rate of susceptible pest  1.1 

  Carrying capacity  1.1 

 Predation rate by mid level predator (pest)            0.9 

  Rate of predation by top predator (natural enemy)  0.9 

  half saturation constant for Holling II predation 0.1 

  half saturation constant for Holling IV predation  0.2 

  death rate of mid level predator  0.4 

  Death rate of top predator (natural enemy)  0.6 

  impulsive spraying amount of pesticides  0.1 

  impulsive release amount of natural enemies  3 

 

  On calculating, we get𝜏̌ = 7.805and𝜏𝑚𝑎𝑥 = 9.256653. Therefore, by Theorem 1, it 

is obtained that pest eradication solution is locally stable if𝜏 ≤ 9.25663 . Also, theorem 2 is 

verified here that is the pest free solution is globally stable if impulsive period𝜏 ≤ 7.805 (see 

Fig. 1). Hence impulsive perturbations contribute a lot to the dynamics of the system since 

some complex dynamics is there at higher values of impulsive period greater than threshold 
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value.Thus, combination of chemical and natural control is very effective for pest control.  

 

 

7  Conclusion 

  

The war between pests and humans is going on from several decades and time to time, 

different pest control techniques are acquired by mankind. Working on the same path, here we 

investigated a predator-prey three tropic level model for the purpose of integrated pest 

management. It is found that instead of using pesticides alone, combination of chemical control 

along with natural enemies is more efficient in pest control. In Theorem 3, threshold value of 

impulsive period (τ̌)is obtained and it is established that pests can coexist with infected pests 

and natural enemies if𝜏 > 𝜏̌.Also effect of spraying amount of pesticides and natural enemies is 

discussed and found that greater releasing amount or small impulsive period support pest 

eradication.  

 

 

 
Figure  1: Global stability of pest extinction periodic solution(0, 𝑦𝑝(𝑡), 𝑧𝑛𝑒(𝑡))  of system (1) 

at𝜏 < 𝜏̌(= 7.805). 
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Figure  2: Permanance of the system (1) at 𝜏 < 𝜏̌(= 7.805)with𝑥𝑐(0

+) = 0.5, 𝑦𝑝(0
+) =

0.5, 𝑧𝑛𝑒(0
+) = 1, phase portrait of mid level predator and top predator and phase potrait when 

system (1) is permanent. 
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