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Abstract: Pest management is a matter of great concern nowadays. To achieve the same, a
three tropic level food chain model is proposed considering plant, pest and natural enemies.
Two different type of functional responses are taken for mid level and top level predator.
Threshold value of the impulsive period is calculated for extinction of mid level predator
using Floquet theory of impulsive differential equations, Lyapnuov functions and
stroboscopic map. Mid level predator plays the role of pest. Permanence of system is also
established. Some complex dynamics is also observed at higher value of impulsive period
greater than threshold value. Further, validation of theoretical findings is done using
MATLAB. Food chain Impulsive control strategy pest management Permanence
mixed functional response

1 Introduction

Preservation of non-renewable resources and protection of environment for coming
generations while satisfying human requirements for fodder is the main aim of sustainable
agriculture. It’s biggest component is pest management. In order to prevent major economic
and production loss, it is the need of hour to control pest population. Pesticides are widely
being used to eradicate pests [1,2]. But there are some big issues with use of pesticides. Firstly,
these are responsible for environmental pollution up to great extent and identified as a health
hazard to mankind. Secondly, aquatic bodies suffer due to water pollution caused by pesticides.
Pesticides are harmful to beneficial insects such as pollinators. Further, due to high cost, small
scale farmers are finding it hard to use chemical pesticides [3]. Moreover, after long term use,
pests even became resistant to pesticides.

Therefore, chemical pesticides must be combined with some other pest control
techniques to get maximum benefit and minimum loss. This is called Integrated Pest
Management. Biological control is proved to be boon for te same. It includes identifying
specific natural enemies of the targeted pest population. These enemies can be predators,
parasites or some microbial control agents [4]. All these help to suppress growth of pest
population. Natural enemies either kill the pests or hinder their biological process resulting in
death of pests. Biological control is used for both open crop field crops and greenhouses. In
Netherlands and United Kingdom, the parastoid Encarsia Formosa is used on wider scale to
control tomato pest Trialeurodes Vaporariorum [5].
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In this paper, pesticides are applied along impulsive release of natural enemies to
manage the pest population. It is observed that many of these insect pests do not cause much
damage in their native habitat. But, the problem becomes serious when they migrate into the
region where there are no natural enemies. Hence, specified natural enemies can be reared or
stocked under favorable environmental conditions and then released periodically in targeted
regions to kill pests [6]. Therefore, in our work threshold value of impulsive period is
calculated in order to check pest population. Since pesticides and natural enemies are released
periodically, so this can be well analyzed using impulsive differential equations. There are
plethora of applications of impulsive differential equations in Ecology and other applied
sciences [9]. Also pest management can be studied effectively with the help of perturbed
prey-predator interactions. Great achievements have been made by eminent researchers by
considering prey as pest and natural enemies as predators.

Further, functional response of prey population to predator has an important role in
predation. This response can be prey dependent (Holling type) or both prey and predator
dependent (Beddington-DeAngelis type). Liu and Chen [10] analyzed Lotka-Volterra
predator-prey system with impulsive perturbations using Holloing Type Il functional response
and studied the chaotic behavior of system. Zhang [11] established two pest-one natural enemy
model, and found threshold value of impulsive period for pest free equilibrium. Similarly,
valuable results have been obtained in [12, 13, 14, 15] considering food chain and food web
models for impulsive pest control strategy. Zhang [16] studied the bifurcation analysis of
prey-predator impulsive pest control model with Holling type IV functional response. He
found that bifurcation depends on the impulsive release amount of natural enemies. Differnt
threshold values of impulsive period have been obtained in [10, 18, 19] for permanence of the
system.

Furthermore, Furthermore, good biological understanding of different life stages
(immature larva, mature adult) of pests and natural enemies must be there for effectiveness of
biological pest control. Hence, Jatav and Dhar [20-22] considered a stage structured (in natural
enemies) plant-pest-natural enemy (food chain) model to find the conditions for permanence of
the system. Again, Bhanu et.al. [23] extended the above work by analyzing stage- structure in
pests also.

Motivated by above, a three tropic level plant-pest-natural enemy food chain model is
developed using Holling type Il and IV functional responses for impulsive pest control
strategy. Pesticides and natural enemies are released periodically and simultaneously with
impulsive period T to manage pest population.

2 Mathematical model

The following predator-prey food chain model is proposed in this paper. Here, prey act
as plant crop, mid level predator plays the role of pest and top predator is the specified natural
enemy.

dx X AcX Y-
(_C=axc(1__c)_ccp

dt B 1+y1xc’
dyp AcXcYp ApZneYp
o — -5
dt — 1+yixc  1+Y,¥3 1p.pt #n1,
dZne _ ApZnelp
- - é‘ZZne ’

dt 14+v2¥5

{Ayp(t) =(1-0y),

t=nt.nez,.
Azne(t)zez,} nenE Ly
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The above model is formulated under some assumptions as follows:

(A;)The Prey (plant) grows logistically in the absence of predator.

(A,) Prey response to mid level predator is Holling type Il and mid level prey response to top
predator is Holling type IV.

(A3) Pesticides do not cause any harm to natural predators.

(A,) For the integrated pest control, pesticides and natural enemies are released periodically at
time t = nt with intensities 8, 6, respectively where T is the impulsive period.

The different parameters used in (1) are defined as follows
1. xc(t), ¥y (t), zne (t)be the densities of prey, mid level predator and top predator at time t.
2. a > 0 is the intrinsic reproduction rate of prey andf > 0 is the carrying capacity.
3. a. > 0,a;, > 0 be the discovery rates by Holling and ¥; > 0,%; > 0 be the half saturation
constants.
4. §,,6, be the death rates of mid level and top predator.

3 Preliminaries

LetR, = [0,),R3={x € R3:x > 0},Q = intR3. The map defined by the right hand of the
system (1) is given as g=(91,9293)" . Let Sy= {V: R, XR3 >

R is continuous on (nt, (n + 1)7] X R} and S(t,x) = S(n1'+,x)exists}.

lim
(ty)-(nt,x)t>nt
3.1 Definition
If S €S, then for(t,x) € (nt,(n+ 1)t] X R3, the upper right derivative of S(t, x) with
respect to the impulsive differential system (1) is defined as

D*(t,x) = hli%1+ sup%[S(t + h,x + h(f,x)) — S(t,%)]. (2)

3.2 Definition
Consider thatP(t) = (xc(t),yp(t),zne(t))Tbe the solution of (1). It is piece-wise continuous
function fromR™* toR3, because solution changes its behavior only at moments of impulse.
Therefore, P (t) is continuous in the interval (nt, (n + 1)t],n € Z, and tlim+(P(t)) =
>Nt
P(nt*) existsalso lim (P(t)) = P(nTt) istrue in case of IDE.
t

—nt

The required system (1) is said to be permanent if3Q =g > 0 such thatg <
xc(£), yp (t), zne (t) < Q for sufficiently larget andP(0*) > 0.

Our main aim here is to suppress the pests in a targeted region beneath a tolerable limit
so that it does not cause major production loss. To achieve the same, we need the following
lemma.

Lemma 1 Consider the following impulsive system:

{ % = —cP(t), t # nr,

Y(t)=yYt)+d, t=nt, neZ”.
It has periodic solutiony(t) (globally stable) and for any solutiony(t)of (3)

©)

d exp(—c(t — n1))
1—exp(—ct)

[ (&) — ()| » 0as t > oo where P(t) =
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4 Boundedness and Global Stability
4.1 Upper bound of all the variables

Here, in this section, firstly, upper bound for all the variables of system(1) are obtained in the
coming lemma.

Lemma 2For sufficiently larget,there exists a constantL > 0 such thatx, < L,y, < L, zp, <
L.. That is there is an upper bound for every solution of (1).

Proof .Suppose(x.(t), y,(t), zne(t)) be any solution of (1).
LetQ(t) = x.(t) + y,(t) + 2. (O)then fort # n
axz aCny aCny a Zney a Zney
D*Q() +pQ(t) = ax, - —= =T —= Ty T T
P B ldyixe ltvixe 1+4y0¢ 1+v03

_61yp_622ne + p(xc +y + Zne)
2

= (@ +p)x. - % — (81— D)V — (83 = P)zZne

This implies D*Q(t) + pQ(t) < (a + p)x, —
Q(nt*) = Q(nr) + 6, for t =nr.

ax?

B 2 _
5 S4a(a+p) = L.

Therefore by Theorem 1.4.1 of [7],
t

t t t
Q(t) < Q(0)exp f(—p)ds + 0, Z exp f(—p)ds +f Loexpf(—pda) ds
0 N

o<nr<t nt 0

L
< QO exp(—pt) +6, ) exp(—=p(t —nm) +—> (1 = exp(~pt))

o<nt<t

6,exp(—p(t —nt))  Oexp(pt)
1 — exp(—p1) + exp(pt) — 1

as t > o

L
< Q(0) exp(—pt) + ;" (1 — exp(—pt)) +

Lo Baexp(pt)
p exp(pr) —1

C Ly , 6,exp(pt)
< =—t =
This implies Q(t) < L where L > T exppr—1

Therefore, Q(t) is uniformly bounded. Hence,3 the constant L such that x, < L,y, <
L,z < L.

Lemma 3If V(t)be any solution of system (1) with V(0*) > 0, then V(t) = 0 for all t>
0. Also,V(t) > 0 forallt = 0if V(0*) > 0.

After using Chemical pesticides and natural enemies, when pest population becomes
extinct, theny, = 0, the impulsive system (1)reduces to

dx, (1 xc)
=ax - —
‘ ﬁ t # nrt,

{Az,.(t) =0, }t =nt,n€EZ,.

(4)
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Now, first equation of (4) is simply logistic model. It has two equilibrium points 0 andg. x, =
0 is unstable whilex, = g is stable. Also, applying Lemma 1 on second and third equation of
(4), we get globally asymptotically stable periodic solutionz,.as
= _ Baexp((=62(t-n1)) . = +\ 02
Zne = 1—exp(—6,7) P Zne(07) = 1—exp(—63T)
Now, system (1) has two pest extinction equilibrium points (0,0, Z,.(¢)) and (B, 0, Zp. (t)

Theorem 1Let (x.(t),y,(t), z,.(t)) be any solution of system (1), then
1.X; = (0,0, z,,.(t))is unstable.
2. There exists a threshold value t,,,,0f the impulsive period such that ift <
Tmax » then the pest eradication solutionX, = (B, 0, Z,,. (t))is locally asymptotically stable and
Ift > 7,45, 1t 1S unstable where,

0,a 1+y.f
tmax = ( iszp —In(1 - 91) (a B—0, - 61y1ﬁ)'
(o4

Proof 1. Here, we use small perturbation method to prove the local stability of the required
solution. Let; (t), {,(t), {3(t)be the small perturbations in0,0, z,,. (t)respectively. Then

xc(t) ={ ®), Yp ) = ¢ (t)'zne(t) = Z_ne(t) + {3 (®).

Putting these values in system (1) and after linearisation, it reduces to

d
f C;Et) = ag; (1), )
< d{:ift) = —(ApZne(O) + 81) (1), (L # 1T,
d
L(;—t(t) = ap0a () Zne (£) — 6533(¢) )

G =4 @),
LAY =1 -0)0(@), t #nt, ne Z,.
$(tT) = (0),
Then (6)represents system of linear differential equations, which can be written in matrix
form. Hence fort = nt, the coefficient matrix is given as

a 0 0
B = 0 _(apz_ne(t) + 61) 0
0 ApZne (t) —d,

and fort # nt

{o(nt™) 0 1-6, 0f|¢(n7)
3(nt*)| 1O 0 183 (n7)

& (nT)] [1 0 0] ¢, (n1)

Letg (t)be the fundamental solution of (6), then,

dg(t) _
=== Bo(®)

¢ () = p(0)exp(J; Bdt)
With¢(0) = I, the identity matrix. On solving, we have ,
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T
exp fadt 0 0
0
T
¢(r) = 0 exp f—(apz_ne(t) + 6, |dt 0
0
T T
0 exp f(apz_ne(t) dt exp f—(?zdt dt
0 0

Now according to Floquet Theory of impulsive differential equations(Theorem 3.1and 3.5 of
[8]), if absolute values of all the eigen values of Monodromy matrixM are less than one, then
the required solution is globally stable where,

1 0 0
M = [0 1-6, 0] ¢(1)
0 0 1
The eigen values ofMare
T
A =exp jadt ,
0

T
A, = (1—6y)exp f—(apz'ne(t) + 6, |dt,
0

Ay = exp([; — 8,dt)dt
(8)
Now, it is obvious from (8), that|A,| > 1 (since @ > 0). Hence the equilibrium(0,0, Z,,. (t))is
unstable.
2. Similarly, we can discuss the local stability of second pest extinction equilibrium

point(B, 0, Z,. (t)). Here
xc(6) = B + ¢1(0), yp(t) = 03 (t), Zne () = Zpe () + {5(0).

Proceeding similarly as above, the Monodromy matrixMin this case is

[—a S
[1 0 0 1+v1B
M=[0 1-6, 0 Yl @z +6) 0
0 0 1 1 +V1,B ( P ne() 1)
0 apZ_ne(t) _62
The eigen values of M are
/11 =—art < 1,
T
A, = (1—6,)ex J Yb (a7, (0) + 8, |dt
2 1 4 J 1 +Ylﬁ p“ne 1 ,
/13 = _627.- <1
9 Now, it is obvious from (9), that

A1l < 1,]25] <1 and|1,| < 1 if T < 1,4, Hence the required result.
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4.2 Global Stability
Theorem 2There is a threshold value(T) of the impulsive period such that ift < ¥ then the
pest eradication solution(, 0, Z,,. (t))is globally asymptotically stable where,

= (2 -0) (=)
T = —In(1 - .
5, ! acf — 6,

Proof. Let(x.(t), y,(t), zn(t)) be arbitrary solution of (1). Given thatt < 7, so, it is possible
to find sufficiently small&; > 0 uch that

Jo (ac (B + &) = ay(Zne () + &) = 81)dt = p; < 0 (10)
From (1),

d [4 [4

e < ax, (1 - %) (11)
Consider its comparison system

duc _Uc

a0 (1 ,/3) (12)

Using comparison theorem of ordinary differential equations, x, < u, = f ast — co.
Therefore,x, < B + & for t > k. Again from system (1)

dt = ’
Az, (t) =0, t=nt, n€Z,.
(13)
Using comparison analysis technique of impulsive differential equations and applying lemma
1, solution of (13) satisfiesz,,(t) = z,.(t) — & V t = k,7. Again from (1)
d ~ L~ ~
22> (ac(B + £1) =61 — ap(Zne — £)), t #n7,
Ay, (t) = —0,y,(t), t=nt, n€Z,.
Integration of first equation of (14) on (x,t, (k, + 1)7] gives
Yp (i, + 1T < y,(k7)exp(p;) Where pyis given by (10). (15)
After using impulsive factor from (14), we obtain the stroboscopic map
Vo, + DT < (1 = 6,)y,(k 7)exp(py). This implies
Yo iz + Q)T < (1= 01)73, (127)exp(gp;) — 0 as t = 0o(py < 0 from (10)).
(16)
This implies, there exists a positive integer k3 > k,and sufficiently small&, > Osuch that
(1) < &for t = k3T andé, < 2—2. Using maximum value ofy(t)in the first equation of
p

(14)

system (1), we get

dxC xC ~

at = ax, (1 — F — acez>.

So,tlim x. = . This impliesx, —» B as t — co.Again from system (1)

dt
Az, (t) =0, t=nt, n€Z,.
By using comparison analysis technique of impulsive differential equations and applying
lemma 1, (17) has periodic solution
o= 02exp(—(8,—a,&)(t — nt))
e 1 —exp(=(82 — —a,&)7)

dZne .
{ Ine < (ap€y — 62)Zpe, t # 1T, (17)

0,
1-—- exp(—((Sz - —ape”z) T)

’ V_Vne(0+) =

such that z,.(t) < w,, — & for all t > k,t. As &,&,,é& >0 are sufficiently small,
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thereforew,, — Z,.ast — c. Hence it is established thatx, — f,y, — 0 andz,, — Z,.ast —»
oo,

5 Permanence
Firstly, condition for the system to be permanent is established as follows
Theorem 3 The system (1) is permanent ift > 7.
Proof. Upper bound of all the variables x.(t), y,(t), z,. (t)of the system (1) is already been
obtained in lemma 2. Also in the above section, it is proved that
Zpe(t) = Zpo(t) — & =1Vt = KT

Also™ > arx, (1 - e a L) . This impliesx, > (1 — a L) =7;. (18)

for sufficiently larget. Thus, for permanence of the system(3), there must exists a

constantr; < 2—Zsuch thaty, (t) = rsfor sufficiently larget. This is done in two steps as follows
p

Step |

To start with, assume thaty, (t) = r3is not truev t. Thus3 £;such that y,(t) <rzVt > t;.

Considering this assumption, from (1), we have

dZpe

dt
Az, (t) =0, t=nt, n€Z,.

< (aprs — 63)Zpe , t # 1T,

Consider the following impulsive system

dupe __ _
{ —¢ = (apTs = 62)Zne, t #T, (19)
Au,.(t) =6, t=nt, n€Z,.
Applying lemma 1, (19) has periodic solution
6, exp (—(62—apr3)(t — nr))
Upe(t) = ,t € (nT,(n+ D)1];
1- exp(—(62 - —apr3) T)
where,
0,
Une(07) =
ne(07) 1- exp(—(62 — —apr3) 1')
which is globally asymptotically stable. Therefore by Theorem 1.4.1 of [7],2,,.(t) < Uy, =
U, Hence,3 a positive integerxssuch that
Zne(t) < Upe(t) + E, =1Vt = KsT
(20) Therefore,x,. > r, implies that fort > k57, we have the following subsystem of (1)
d _ ~
% = (acr;—6; — ap(Une + 4))yp, t # 11, (21)

Ay,(t) = —0,y,(t), t=mnt, n€Z,.

Integration of first equation of (14) on (xst, (ks + 1)7] gives the stroboscopic map
(K5+1)T

yp(KS + 1)T 2 yp(KST)(l - Hl)exp f (acr2_61 - ap(ﬁne + 54))dt
Ks

> yp(KST)(l — 60,) exp(p,)where

3750



European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 07, Issue 07, 2020
(ks+1)T
p2 = (1 —6;)exp f (acry =61 — ap (line + &))dt |
Ks

Becausetr > 7, so it is possible to findr,andé, > Osuch thatp, > 1.This implies

Yp(Ks +q)T = yp(k2T)exp(qp,) = o as q = .
This is in contradiction to our assumption that y,(t) <r;Vt >f,.. HenceThus3 i, > t;
such that y,(t;) > rj.

Step 11
There is nothing to prove ify,(t) =3Vt > t,. But if this is not the situation, let; =

inf{t, y,(t) <r3;t > &}, Thusy,(t) =Vt € [£,, 8], 8 € Gt (0 + 1T .y, (Es) =13
because of continuity ofy,(t). Lett* = (71, + 7i3)T where7i, and1i; satisfies the following

(1 — 0,) @D exp(tip5 + u(i, + D7) > 1,u = (acr, —apl — 6;) < 0 (22)
Now, we will prove that3 ¢, € ((%, + 1)z, (%, + 1)T + t*[such thaty, (£,) = .
Suppose this is not true, theny, (£,) < 13 ¥ t, € (%, + 1)7, (g + D7 + 7). If system (19)
is considered with w,e((7; + 1)t+) = 2,.((Giy + 1)t+) then using lemma 1 fort €
((ﬁl +D7,(, + Dt + T*], we have

Une(t) = [une((ﬁl + 1)T+) - 1

+1)7)) + T (£)
This implies [une (t) — tne (D] < (L + 6) exp(—(82 — aprs)(t — (1 + D7) < &,(by(22)

6,
— exp(—(62 — —apr3) T)

l exp(—(8; — apr3) (¢t — (7,

which depicts thatz,,, (t) < Upe(t) < Upe(t) + &4, (M +, + DT <t <@ + DTt + 1"
Integrating (21)on[(71; + 7, + 1)7, (11; + 7, + 713 + 1)7] we get
V(g + 11 + 713 + D7 = 3, (114 + 171, + DT(1 — 61)™ exp(psits) ,
(23)
(ks+1)7T ~ ~
where p; = fks (acr—61 — ay(liye + €,))dt.
Further, fort € [t5, (71, + 1)7] two possibilities are there
Case(i)
If y,(t) <3Vt € [E5, (71 + D)t] then from above assumptiony,(t) <3Vt € [t;, (7 +
1)t + t*]. This implies
dyp
dt
Ay, (t) =-01y,(t), t=nt, n€Z,.

= (acry-opL-84-ap)y,, t#n7,

(24)
On integrating equation (24)in[Z5, (71, + 71, + 1)7], we obtain the stroboscopic map
(g + 11, + DT 2 (t)(1 — 6,)  exp(—u (i, + D7) > 13 (25)
Using (25) in (24) , we have
V(g + 11, + 713 + D7 = yp(tS)(l — 6,)"2* ¥ exp(p3iiz)exp(—u (i, + 1) > 713
But this contradicts our assumption. Therefore, y,(t) = r3 in[ts, (31, + 71, + 7i3 + D] for
somet. Letfs = inf{t, y,(t) =13t >} Due to continuity ofy,(t),y,(fs) = r;. Now
integration of equation (24) on the interval [£5, 5] gives
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Yo (£) =y, (£3) (1 — 0;) exp((u(t — E5))
> 13(1— 6;) exp((u(t — £3))
=2 1r3(1 —6y) exp(p(iiy + 1z + D7) =173 .

Sincey, (t5) = 73 so similar process can be continued fort > t5. Hencey, (t) > 3 V t > ,.
Case(ii)
If 3 €[5, (7, + 1)7] such thaty,(Es) =75, then letE, = inf{t, y,(6) = ryt > &}
Therefore,y, (ts) = 3 Again, integration of equation (24) on the intervalzs, t,gives

Yp(t) = yp(E5)(1 — ) exp((u(t —t3)) = 75
Similar argument can be followed fort > £, Hence, it is concluded thaty, (t) > 73Vt > t,.
Step I
Leta = min{ry, 15,73}, 0 = {R3:a < x.(1), ¥, (t), 2 (t) < L} Thus, from above steps and
Lemma 2, it is proved that each solution of system (1) will always remain in region ©.
Therefore, by Definition3.2, system(1) is permanent.

6 Numerical Analysis and Discussion

A prey-predator food chain model with harvesting of middle prey and stocking of top
predator is constituted and investigated in this paper to tackle with outbreak of pest
population.Mid level prey is taken as pest and top predator plays the role of natural enemy. Use
of pesticides is combined with impulsive release of natural enemies for Integrated pest
management. Firstly, global stability of mid level predator (pest) free solution is established
and then condition for the permanence of system is derived. For this, threshold value of
impulsive period is found that depends on releasing amounts of pesticides and natural enemies
population. The initial values of population densities of prey, mid level and top predator
arex.(0%) = 0.5,y,(0%) = 0.5,2,,(0%) = 1. The values of different parameters that are used
in system(1) are given in Table 1.

Table 1: Values of different parameters used in system(1)

Parameter Representation Its Value (per week)

a Reproduction rate of susceptible pest 1.1

B Carrying capacity 1.1

a, Predation rate by mid level predator (pest) 0.9
a, Rate of predation by top predator (natural enemy) 0.9

Y1 half saturation constant for Holling 1l predation 0.1

¥s half saturation constant for Holling 1V predation 0.2

g, death rate of mid level predator 0.4

J, Death rate of top predator (natural enemy) 0.6

8, impulsive spraying amount of pesticides 0.1

8, impulsive release amount of natural enemies 3

On calculating, we gett = 7.805andt,,,4, = 9.256653. Therefore, by Theorem 1, it
is obtained that pest eradication solution is locally stable ift < 9.25663 . Also, theorem 2 is
verified here that is the pest free solution is globally stable if impulsive periodr < 7.805 (see
Fig. 1). Hence impulsive perturbations contribute a lot to the dynamics of the system since
some complex dynamics is there at higher values of impulsive period greater than threshold
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value.Thus, combination of chemical and natural control is very effective for pest control.

7 Conclusion

The war between pests and humans is going on from several decades and time to time,
different pest control techniques are acquired by mankind. Working on the same path, here we
investigated a predator-prey three tropic level model for the purpose of integrated pest
management. It is found that instead of using pesticides alone, combination of chemical control
along with natural enemies is more efficient in pest control. In Theorem 3, threshold value of
impulsive period (¥)is obtained and it is established that pests can coexist with infected pests
and natural enemies ift > 7.Also effect of spraying amount of pesticides and natural enemies is
discussed and found that greater releasing amount or small impulsive period support pest
eradication.
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Figure 1: Global stability of pest extinction periodic solution(0, y,,(t), z,.(t)) of system (1)
att < ¥(= 7.805).
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Figure 2: Permanance of the system (1) atr < #(= 7.805) withx.(0*) = 0.5,,(0%) =
0.5,2,.(0%) = 1, phase portrait of mid level predator and top predator and phase potrait when
system (1) is permanent.
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