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Abstract- 

Manually determining concepts present in a group of questions is a challenging and time-

consuming process. However, the process is an essential step while modeling a virtual learning 

environment since a mapping between concepts and questions using mastery level assessment 

and recommendation engines is required. In this article, we investigated unsupervised semantic 

models (known as topic modeling techniques) to assist computer science teachers in this task and 

propose a method to transform Computer Science 1 teacher-provided code solutions into 

representative text documents, including the code structure information. By applying 

nonnegative matrix factorization and latent Dirichlet allocation techniques, we extract the 

underlying relationship between questions and validate the results using an external dataset. We 

consider the interpretability of the learned concepts using 14 university professors' data, and the 

results confirm six semantically coherent clusters using the current dataset. Moreover, the six 

topics comprise the main concepts present in the test dataset, achieving 0.75 in the normalized 

pointwise mutual information metric. The metric correlates with human ratings, making the 

proposed method useful and providing semantics for large amounts of unannotated code. 

 

1.INTRODUCTION 

Measuring Students knowledge requires an 

understanding of which educational 

concepts are needed to answer each 

question. Recently, open online courses and 

intel- ligent tutoring systems are widely 

adopted learning environ- ments. Their 

popularity increases the demand for tools to 

map questions to concepts correctly since 

students' mastery level assessment and next 

steps recommendation depend on these 

mappings. 

However, manually identifying the concepts 

required to answer the questions can be time 

consuming and difficult increasing the need 

for tools to assist teachers in the tasks 

Desmarais [1] suggested that even partial 

automation of the process can be highly 

desirable. Besides decreasing the man ual 

labeling required from the experts, the 

process automation also results in a more 

objective and replicable mapping Applying 

supervised machine learning-based solutions 

is no entirely appropriate because it requires 

a considerable amoun of labeled data. Also, 

a question can relate to multiple con cepts, 

increasing the complexity of the labeling 

task. The tra ditional unsupervised learning 

methods, such as K-means and hierarchical 

clustering, are also not suitable for this tas 

because it is hard to determine each cluster's 

features. 

This article proposes unsupervised semantic 

methods known as topic modeling 

techniques [2]-[5], as more inter pretable 

methods for experts, to be applied in 

introductor computer science problems. 

Specifically, we propose model ing code 

snippets as text documents and use topic 

modelin techniques to extract and improve 



 

1505 
 

the semantic relationship between them. 

providing technology to support concept 

iden tification experts. 

Our key research questions are summarized 

as follows. 

1) How can semantic relationships be 

extracted and struc tured from code? 

2) How can humans read, interpret, and use 

the extracte relationships? 

The main contributions of this article 

include the following 

1) a tokenization structure to transform raw 

code snippet into a document-term matrix: 

2) a code-clustering method to optimize 

positively corre lated metrics for human 

interpretability: 

3) experts validation, illustrating how the 

propose method can support questions 

exercise labeling usin each topic's terms. 

The proposed code-clustering pipeline 

builds a document- term matrix with a code 

tokenizer by comparing various meth- ods, 

including clustering algorithms. We 

compare nonnegative matrix factorization 

(NMF) [2], latent Dirichlet allocation (LDA) 

[3], and K-means [6], as a baseline. The 

models were evaluated with the UMass and 

UCI coherence metrics [7]-[10] using the 

top-5 and top-10 terms. According to the 

metrics scores, we selected the two best-

ranked models using Fagin's algorithm [11]. 

The LDA-based clustering approach 

provides the most interpretable results from 

these models. Fourteen pro- fessors 

manually contextualize the LDA-based 

clustering in the Computer Science I (CS1) 

domain, demonstrating how the proposed 

method could be used to facilitate the 

clusters' interpretability. 

The next section begins by reviewing the 

manual, super- vised, and unsupervised 

concept identification approaches. Code-

clustering techniques inside the educational 

data mining (EDM) and software 

engineering contexts are reviewed together 

with existing LDA proposals to handle short 

texts. We describe a proposed method to 

cluster code in Section III. The main 

challenges facing the CSI context are the 

answers' small size and document-term 

matrix sparsity. Our proposed code 

tokenizer overcame these problems using 

code structure information to augment the 

corpus. The results are shown in Section IV, 

where the best two clustering schemes are 

ana- lyzed based on the coherence 

evaluation metrics. This section also 

demonstrates how professors can get an 

overview of the required concepts from 

these results. Finally, Section V con- cludes 

this article with future work directions. 

The existing methods to identify concepts 

from a set of CS1 exercises involve manual 

work and input from experts [12], [13]. For 

example, Sheard et al. [12] characterized 

introduc- tory programming examination 

questions according to their concept areas, 

question style, and required skills. 

Participants manually classified the 

questions and the determined topics covered 

alongside the necessary skill levels to solve 

them. Nonetheless, applying a successful 

approach in a different set of exercises 

requires a new manual labeling stage, which 

may not be achievable. 

One strategy to overcome this issue and 

minimize the domain experts' workload is to 

apply supervised learning. Pre- vious 

research in question classifications used 
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supervised learning to classify questions 

according to the level of diffi- culty [14], 

Bloom's taxonomy [15], answer type [16], 

and sub- ject [17]. In Godea et al. [16], the 

features are derived from the questions, 

using part-of-speech tags, word embeddings, 

inter- class correlations, and manual 

annotation. Supraja et al. [15] used a grid 

search to analyze different combinations of 

weight schemes and methods to find the best 

set of parameters to build a supervised 

model to classify questions given Bloom's 

Taxonomy. Its main cost is the manual 

annotation of all labels. which is impractical 

when applying to large datasets. Unsu- 

pervised learning can group similar items 

without a predefined label, but it is harder to 

ascertain the results since there is no 

objective goal to analyze, and evaluating the 

clustering out- comes becomes a subjective 

task. Unsupervised learning tech- niques 

have been used to address EDM problems 

[18]-[22]. For example, Trivedi et al. [23] 

used spectral clustering with linear 

regression to predict student performance. In 

the ques- tions' classification context, an 

unsupervised approach using K-means, as a 

clustering algorithm [24], was proposed to 

group similar learning objects (such as 

handouts, exercises, comple- mentary 

readings, and suggested activities). Still, K-

means does not provide a list of features that 

best characterize each cluster, making the 

expert infer them manually by reading a 

Although the LDA in Blei et al. [3] is a 

common tech- nique in topic modeling, it 

does not perform well in short texts (code in 

this context) because the traditional way of 

extracting terms does not provide enough 

textual words to characterize a specific topic 

[33], [34]. It is necessary to decrease the 

latent document-topic or word-topic spaces, 

making them more specific for each context. 

Hsiao et al. [35], [36] proposed a topic-facet 

LDA model using sen- tence LDA (SLDA) 

with a facet representing a more spe- cific 

topic and all words from a sentence 

belonging to the same facet. Zhao et al. [37] 

decreased the latent space by creating a 

common word distribution with 

denominated background words, which are 

the same for every topic. Steyers et al. [38] 

and Rosen-Zvi et al. [39] adopted a similar 

strategy. In their method, the generative 

process to create a document decreases the 

space by choosing an author and then 

choosing a topic. Li et al. [40] used a dis- 

tribution over tags to restrict the latent topic 

space before inferring the documents' topic 

distribution. Another approach to overcome 

the lack of textual words 

which is similar to the method we adopted in 

this article. In our proposed tokenizer, we 

increase the vocabulary size (total terms) 

from 287 to 2388 and the average of terms 

per document from 23 to 137. We maintain a 

95% sparsity. which agrees with the sparsity 

of the long-text documents from Syed and 

Spruit [42] and Zhao et al. [37], i.e., suc- 

cessfully clustered using topic modeling 

techniques. 

III. METHODS 

The methodology is categorized into the 

following three main tasks. 

1) Generate a database by crawling different 

Python web tutorials. 

2) Run code-clustering experiments to group 

exercises into topics. 

3) Ask experts to contextualize the clusters 

into CS1 concepts. 
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Task 1 prepares the data to investigate the 

research ques- tions. Task 2 explores ways 

of extracting semantic relation- ships from 

code [research question 1 (RQI)] by 

proposing a code tokenizer and comparing 

various data transformation methods and 

topic modeling algorithms. In task 3, we ask 

pro- fessors to read and interpret task 2, 

giving support for RQ2. All the scripts used 

in this study analyses were achieved using 

Python and open-source Python libraries. 

A. Dataset 

The objective of the experiment is to find 

semantically related CS1 code solutions 

written in Python. We chose four 

introductory online tutorials: 1) Practice 

Python [43]: 2) Python School [44]: 3) 

Python Programming Exercises [45]: and 4) 

W3Resource [46] that provide both solutions 

and exer- cise statements. Since the sources 

do not have label topics or follow a course 

curriculum with structured syllabus topics, 

we work in an unsupervised environment. 

We crawled 54 exer- cises for the training 

set. The code snippets are functions with an 

average of nine lines/code. 

 

For the test dataset, we collected solutions 

from another set of exercises given to us by 

the CSI professors at the Federal University 

of Rio de Janeiro (UFRJ). There are 65 

different problems with their respective 

solutions in the dataset. As the training set, 

the code snippets are functions with an 

average of seven lines/codes. 

B. Code-Clustering Pipeline 

The code-clustering pipeline takes as input 

Python code snippets, which are 

semistructured text documents. By using 

topic modeling techniques, the pipeline 

outputs an underlying structure within the 

semistructured corpus. It contains the topics 

present in the code snippets and the most 

relevant words that characterize them. This 

article is based on the assumption that code 

snippets with similar CSI concepts share 

identical terms. Therefore, based on this 

assumption, the extracted topic underlying 

structure can be interpreted as CS1 concepts 

or groups of CS1 concepts present in the 

code snippets. 

The code-clustering pipeline starts by 

transforming the orig- inal data to the proper 

format expected by the topic modeling 

methods. We augmented the data and 

constructed a matrix D (the document-term 

matrix) where each element D₁ , contains 

the weight of term w, in the document d. 

Then,  

using topic modeling, we calculated the 

relevance of each topic t for each document 

d, and the relevance of each term w, for each 

topic t. Finally, we applied a grid search and 
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topic coherence to choose the best models 

and evaluate the external corpus results. In 

the topic filter and selection phase, we also 

proc- essed the resulting topics by merging 

similar or removing topics with few 

documents. These results are presented in 

Section IV, while Fig. 1 illustrates the code-

clustering pipe- line. External evaluation is 

not depicted in this overview. 

1) Data Transformation: In this application, 

the CS1 code solutions written in Python are 

considered documents. The document-term 

matrix creation process starts by splitting 

each code snippet into words. The first 

proposed tokenizer includes only split word 

tokens. Henceforth, this tokenizer will be 

referred to as the standard tokenizer. As 

stated in the related work section, the LDA 

usually does not perform well on short texts 

and augmenting the corpus by adding the 

text's structure on semisupervised 

documents demonstrated improved results. 

We propose a new tokenizer to augment the 

standard tokenizer with extra features and 

refer to it as the augmented tokenizer. The 

augmented tokenizer parses the code and 

makes special annotations by adding extra 

features if the token is a number, an array 

(or a list), a dictionary, a string, a logical (or 

arithme- tic) operator, a class method, or 

indentation. The word itself is added to the 

document-term matrix if the token is a 

reserved word. Besides adding single tokens, 

this tokenizer also consid- ers bigrams and 

trigrams. Although the document-term 

matrix does not consider the terms' order, 

this can be enforced by adding n-grams as a 

matrix feature. For example, the code 

snippet in Fig. 2(a) is first transformed to its 

augmented version [see Fig. 2(b)]. Then, 

every single word, including the bigrams 

and the trigrams, are added as tokens to the 

document-term matrix. Table I presents 

some examples of the document-term matrix 

terms, and in total, the document is 

tokenized into 75 terms. 

 

 
After the document-term matrix creation, we 

applied some transformations to enhance the 

document representation and decrease the 

matrix sparsity. First, we removed tokens 

with document frequency below a fixed 

threshold to perform fea- ture selection. This 

threshold was determined using a hyper- 

parameter grid search ranging from 5% to 

50% with a 5% step. Second, we decided 

how to count a token frequency: either the 

token is counted once per document (binary 
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appear- ance) or every time it appears. 

Finally, some tokens may be more important 

than others. For example, the term frequency 

by inverse document frequency (TF-IDF) 

[47], [48] recalcu- lates the tokens' weights 

by balancing the following two factors. 

1) A term that occurs in many documents 

should not be as important as a more 

exclusive term, since it does not characterize 

documents well. 

2) A term that appears in a small number of 

documents may only be particular to those 

documents and not enough to distinguish a 

topic. 

Yan et al. [49] proposed another way of 

recalculating the terms' weights. Their 

method (called NCut) comes from the 

normalized cut problem on term affinity 

graphs. This weight- ing scheme modifies 

terms' counts based on terms cooccur- rence 

and not on document frequency. Their 

experiments show NMF's performance 

increase on short-text clustering using the 

NCut weighting scheme. 

2) Topic Extraction: As stated earlier, after 

document processing, a document-term 

matrix D is generated. The matrix rows 

represent points in an R" feature space, 

where n is the total number of terms, and 

each term corresponds to a dimension. It 

becomes a classical clustering problem 

where we expect similar documents to be in 

surrounding regions in space. So, clustering 

algorithms like K-means, hierarchical 

clustering, and nearest neighbors are 

applicable here. How- ever, for topic 

modeling tasks, algorithms like the NMF 

[2], [50] and the LDA [3] are effective since 

they interpret terms' counts as a set of visible 

variables generated from a set of hid- den 

variables (topics) [51], [52]. Accordingly, 

the documents can be modeled as a 

distribution of topics and topics as a dis- 

tribution of terms. We used the following 

two topic modeling techniques. 

1) Nonnegative Matrix Factorization 

(NMF): A matrix factorization technique 

with a particular property of only allowing 

nonnegative values in its entries, which is 

well-suited for human interpretability [2]. 

 

2) Latent Dirichlet Allocation (LDA): A 

generative proba- bilistic model that 

describes how to create documents in a 

collection. Once you have a dataset, a group 

of already written documents, we find the 

distributions that create these documents. 

The LDA algorithm tries to backtrack this 

probabilistic model to find a set of topics 

that are likely to have generated the dataset 

[4]. To generate a document, we sample 

from two distribu- tions using the following 

iterative process. 

a) We sample a topic for the given document 

(a docu- ment is a distribution of topics). 

b) We sample a term from the topic sampled 

in step a) (a topic is a distribution of terms). 

3) Topic Filter and External Evaluation: 

Given several document-term matrix 

creation options and two different topic 

modeling methods, we need to find the best 

set of hyperpara- meters. There are strategies 

in the literature to find a near-optimal set of 

models' hyperparameters, such as manual 

search, grid search, and random search [53]. 

Although random search dem- onstrates 

promising results in general machine 

learning tasks [53], Chuang et al. [54] and 

Wang and Blei [55] results were competitive 

using grid search in topic modeling tasks. 
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We chose to use a grid-search approach. 

There was a prior manual stage to define the 

regions in which grid search would act. 

Since the dataset is not large and the number 

of hyperparameters to try is not extensive, it 

is efficient to run an exhaustive search 

combining hyperparameters. In total, there 

are 1680 possible combinations: ten 

minimum document frequencies (ranging 

from 5% to 50% with 5% step increment), 

two binary appear- ance options, three token 

weights (counts) transformation possibilities 

(none, TF-IDF, and NCut), two clustering 

methods (LDA and NMF), and 14 number 

of clusters (i.e., 10 x 2 x 3 x 2x 14 = 1680). 

The grid search was set to search between 2 

and 15 clusters (the upper bound is based on 

the number of concepts from Table II in 

Section III-C). 

To determine whether topics are well 

defined, we can use topic coherence and 

pointwise mutual information (PMI) met- 

rics, which correlated well with human 

interpretability [8], [9], [56]. As explained in 

Section III-B2 (topic extraction), when using 

NMF or LDA, each topic is mapped to a list 

of top-N words that best define the topic. 

Topic coherence calcu- lates the ratio 

between the cooccurrence of these top-N 

words and their total occurrence. The 

assumption is that the words that best 

characterize a topic often appear together if 

a topic is well defined. This article applied 

two types of topic coherence metrics: UCI 

[7] and UMass [8]. The UCI metric based on 

PMI is calculated using an external 

validation source. The PMI can be 

substituted using normalized PMI (NPMI) to 

bet- ter correlate with humans' ratings [9]. 

The UMass metric uses the conditional 

probability of one word occurring given that 

one other high-ranked word occurred and 

can be measured using the modeled corpus, 

without depending on an external reference 

corpus. We used the UMass coherence to 

choose the best models since it is an internal 

validation metric (it only evaluates the 

clustered data). To assess the models, we 

used an external dataset with the UCI NPMI 

metric. 

 
Defining P(w) as the probability of the term 

w, occurring and P(wi, w,) as the probability 

of terms w, and w, cooccur- ring, we 

calculated the coherence for a single topic t 

using (1)-(3). In this article, the topic 

coherence for a single topic was calculated 

using top-5 and top-10 terms. After 

calculating each topic's coherence in a single 

hyperparameter combina- tion, this 

combination's coherence was reported as the 

median of all topic coherence 

 
where W = (w, ...) are the top-N terms for 

calculat- ing the coherence. An value of 0.01 

was used to avoid taking a zero logarithm. 

We performed hard assignment to cluster 

documents by topic by assigning each 

document to the topic with the most 
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relevance (weight) in the document-topic 

matrix. The hard assignment was achieved 

with minimal loss of information when a 

topic strongly characterized a document. In 

addition to assigning documents to topic 

clusters, the set of features/terms that best 

characterize each cluster/topic were 

extracted for fur- ther analysis. 

C. Topics Contextualization 

To relate concepts and topics, we first 

defined the most commonly seen concepts in 

CS1 exercises. The following four 

references were used to create a list of 

concepts com- monly used in CS1 courses. 

1) Computer Science Curricula 2013 [57]: A 

document jointly built by the Association of 

Computer Machinery and the IEEE 

Computer Society. The document recom- 

mends curricular guidelines for computer 

science edu- cation, which we used as the 

main concept list. We used the papers in 

items 2)-4) to improve it. 

2) Exploring Programming Assessment 

Instruments: A classification scheme for 

examination questions [12]: creates a 

classification scheme characterizing exam. 

questions by their concept areas, question 

style, and skills a student needs to solve 

them. We used the list of the proposed 

concepts as a second source to enhance the 

main list. 

Then, to interpret the meaning of the topics, 

we asked 14 pro- fessors to perform three 

tasks. The professors (with 2-20 years of 

teaching experience) teach CSI or other 

programming- related subjects. 

1) Theme Identification: We present some 

code snippets belonging to the topic and 

found essential tokens for each topic. The 

professors were asked to label each topic 

with free-text descriptions. We tokenized the 

descriptions and counted the terms. We also 

created the topic titles based on the terms 

that appeared more fre- quently in the 

descriptions. 

 
IV. RESULTS AND DISCUSSION 

We run each hyperparameter combination 

from the 1680 possibilities ten times and 

calculated their average coherence and 

standard deviation. Next, the two best-

ranked results are analyzed. They were 

calculated using Fagin's algorithm [11] for 

top-5 and top-10 terms UMass coherence. 

Table III shows the set of hyperparameters 

for each experiment. 

 

A. Experiment 1 

After the document-term matrix 

factorization, we hard assigned each 

document to the topic with the highest rele- 

vance (highest weight in the document-topic 

distribution). Table IV shows the number of 
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documents assigned per topic. After 

assigning each document to its related topic 

in this experiment, the documents are only 

assigned to four of the seven topics. Fig. 3 

shows the documents projected to two 

dimensions using principal component 

analysis (PCA). 

Using a minimum document frequency of 

35% kept only 23 valid terms. Fig. 4 shows 

the essential terms per topic where the terms 

that are exclusively important for a single 

topic (a term is vital if it is above the 75th 

percentile of all weights) are denoted in 

green. In this plot, topics 3 and 4 share 

almost all terms. By adjusting the document-

term matrix values using the NCut 

vectorizer, the factorization split topics 3 

and 4 using the conditional if term. Topic 4 

is exclusive for code snippets that are solved 

using conditional statements, whereas topic 

3 comprises the opposite. 
 

Fig. 5 shows the topic distribution per 

document. As explained in Section III-B2 

(topic extraction), distribution over topics 

describes a document. Darker cells imply 

that the topic characterizes a document 

better. As stated before, if a topic strongly 

characterizes a document, then we can hard 

assign it to a single topic. However, Fig. 5 

shows that most documents assigned to 

topics 1 and 2 (top part of the plot) spread 

throughout the topics. It suggests we have to 

combine the most important terms for each 

topic to interpret these code snippets. 

Analyzing the code snippets from topic 1, 

they combine for- loops with conditional 

statements. Topic 2 is a mixture con- taining 

the code snippets that do not belong to any 

other topic. 
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Fig. 6, using the LDAVis tool [65], 

calculates the topics' distance and projects 

them to 2-D using principal coordinate 

analysis. Topics 3 and 4 are located close to 

each other, and they correspond to 45% of 

the terms and 83% of the docu- ments. Fig. 6 

also validates that these topics are not that 

differ- ent when their crucial terms are 

analyzed. Still, the conditional statements 

that characterize topic 4 are enough to 

produce a linearly separable 2-D data 

projection, except for a few out- liers, as 

shown in Fig. 3. 

B. Experiment 2 

Table V shows the number of assigned 

documents per topic with hyperparameters 

combination producing a more uniform 

grouping scheme than the previous one. 
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Although we initially set 12 clusters, two of 

them (topics 9 and 11) are empty after 

assigning each document to the topic with 

the highest relevance (weight). Topics 6, 8, 

10, and 12 have the largest number of 

documents. Fig. 7 shows the topic per docu- 

ment distribution where the topics better 

characterize each document. 

Fig. 8 shows the intertopic map. The main 

topics 6, 8, 10. and 12 correspond to 85% of 

the documents and 77.4% of the terms and 

we do not observe any main topic overlap in 

this plot. The next subsections analyze these 

main topics in detail. Topics 2 and 4 will 

also be analyzed since they occupy a dif- 

ferent space on the map. This step belongs to 

the topic filter and selection phase from the 

code-clustering pipeline depicted in Fig. 1. 

After hard assigning the documents to the 

clusters (removing topics 9 and 11), merging 

topics 2 and 4, and removing topics with a 

few documents (less than three docu- ments 

per topic: topics 1, 3, 5, and 7), it resulted in 

five con- ceptual clusters (six from the 

original topics in total) to be analyzed in 

detail. 

1) Topic 8 is strongly characterized by 

conditional state- ments, logical operators, 

and Boolean values. 
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(including topics 2 and 4) valid topics to 

understand if the topics are representative of 

the possible concepts present in an unseen 

code. We assigned each code to the topic 

with the highest weight as we did for the 

training set. Table VII shows the number of 

assigned documents per topic. Except for 

two documents, all the others belong to one 

of the six valid topics. It confirms that the 

different topics (the ones considered invalid) 

detect specific code traits and not their 

general con- cepts. It is important to notice 

that topic modeling is a soft clustering 
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technique: a document has a probability of 

belong- ing to each topic and can be 

associated with more than one. So, a 

document can be related to the main topic 

with its speci- ficity related to minor ones. 

C. Coherence Evaluation 

Both experiments were analyzed using the 

UCI coherence metric with NPMI [9], as 

described in Section III-B3 (topic filter and 

external evaluation), to validate how well 

the proposed meth- odology performs in an 

external dataset. Although AST trees have 

been used to cluster code, they do not 

provide an intuitive way to analyze the 

important features besides reading it. We 

compare our results with a K-means 

clustering method using the proposed 

augmented tokenizer and logistic regression 

to extract the important features per cluster 

as a baseline. We also com- pared our best 

results using the standard tokenizer instead 

of our proposed tokenizer. We used k= 5 for 

K-means since there were five main 

conceptual clusters found in the LDA. We 

ran each method 100 times and averaged 

their UCI coherence metric. Statistical 

difference was measured using the Mann-

Whitney U test [66], and all the results were 

statistically significant with p< 0.001. Table 

VIII reports the mean and standard deviation 

for each experiment. In the UCI coherence 

with NPMI metric. the values are bounded 

between 1 and -1, where 1 means that the 

top words only occur together, 0 means that 

they are distributed as expected under 

independence, and -1 means that they only 

occur separately. The UCI coherence for the 

standard tokenizer using the top-10 terms 

could not be measured because there were 

no important top-10 term pairwise 

combinations in this setting that appeared in 

at least one document. The NMF experiment 

with the augmented tokenizer considering 

the top-10 terms dem- onstrated the best 

UCI occurrence metric, followed by the 

LDA experiment, which had the best 

performance considering the top-5 terms. 

D. Discussion About Experiments 1 and 2 

 
We found both experiments to have their 

main concepts in a few clusters (two main 

clusters in Experiment 1 and six main 

clusters in Experiment 2). The remaining 

clusters are associ- ated with code 

specificity. In the case of Experiment 1, 

using NCut and a high document frequency 

threshold, the topic modeling from 

Experiment 1 focused on finding structures 

with high volume and cooccurrence rates, 

resulting in separa- tion of the if/else 

structure from the rest. The conditional 

struc- ture was first separated from a 

hierarchical perspective, and the remaining 

structures were all grouped in a cluster. In 

Experiment 2, the conditional topic (topic 8) 

is also the fur- thest from the other topics. 

As shown in the hierarchical clus- tering of 

Fig. 9, this topic is the last one to be 

aggregated (or the first one to be separated). 

The common code snippets between the 

conditional clusters in each experiment also 

vali- date this result. From the 14 code 

snippets associated with the conditional 

topic (topic 8) in Experiment 2, 11 of them 
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(79%) belong to the conditional topic in 

Experiment 1 (topic 4). Therefore, 

Experiment 2 demonstrates more granularity 

than Experiment L. 

E. Topics Contextualization 

1) Concept Identification: Each professor 

was asked to associate up to three concepts 

(from the 15 available in Table II) to each 

presented code. Four professors ana lyzed 

each code. In 37 of the 54 code snippets, 

there was at least one concept in common 

between all four professors. In 53 of the 54 

code snippets, at least one concept was 

common between three out of the four pro- 

fessors (75%). Therefore, we decided to use 

the 75% threshold of the agreement to relate 

the exercises' con- cepts. The concepts in 

each topic were aggregated to provide an 

overview of the main concepts needed to 

solve the cluster's problems, as summarized 

in Table IX.  

 
2) Intruder Identification: Four code snippets 

were pre- 

a) The "conditional structure" topic 

performed well, with the intruder code being 

identified 79% of the time, meaning that 

identifying a code snippet from a different 

cluster can be done 4 out of 5 times. 

b) The intruder code inside the "math loops 

topic was identified 2 out of 3 times (64%), 

being confused with "list loops" the last 

third of the time. These topics work on the 

same main concept, as seen in the concept 

identification task. 

V. CONCLUSION 

Based on the evaluation metric, our 

proposed method found semantically related 

code-clustering schemes suitable for human 

interpretability with minimal supervision, 

giving sup port for RQI. The method is 

expected to provide semantics for large 

amounts of unannotated code. 

Although code clustering in the CSI context 

has been widely applied using the AST 

trees, the advantages of working with topic 

modeling are the terms per topic results that 

may help experts better assess each cluster's 

contents. The method- ology has also been 

shown to overcome the small-sized code 

snippets challenge by extending the 

tokenizer to augment the corpus with the 

code structure. The standard tokenizer could 

not create semantically related topics, but 

adding structural information, as features: 

indents and data types, and enforcing the 

order using n-grams enriched the code 

representation and found topics suitable for 

human interpretability. For example, 

augmenting the corpus with structural 

information as indents/ blocks (in Python, 

indents indicate how deep a block of code is; 

other languages like C++ and Java could 

count the number of "" and "") help to 

separate single loops from nested loops. 

Combining trigrams (to enforce order) with 

structural information can distinguish subtle 



 

1518 
 

differences in precondition and 

postcondition loops. Notice that 

postcondition loops do not exist in Python, 

so we could not verify this specific 

assumption. In our dataset, we expect 

trigram tokens to be enough to capture these 

varieties because a typical CS1 solu- tion 

does not have more than three or four nested 

structures. Still, it may limit our model in 

identifying large nested struc- tures on more 

complex code. Also, even though there is a 

recursion concept in the concepts list, there 

was no exercise using this technique in our 

dataset to verify how it would be clustered. 
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