

1504

MODELLING TO CLASSIFY SAMPLE PROBLEM SETS FOR

FIRST-YEAR COMPUTER SCIENCE COURSES
Ms D S CH S HARINI, Associate Professor, kschsharini1225@gmail.com, Rishi UBR Women's

College, Kukatpally, Hyderabad 500085

Abstract-

Manually determining concepts present in a group of questions is a challenging and time-

consuming process. However, the process is an essential step while modeling a virtual learning

environment since a mapping between concepts and questions using mastery level assessment

and recommendation engines is required. In this article, we investigated unsupervised semantic

models (known as topic modeling techniques) to assist computer science teachers in this task and

propose a method to transform Computer Science 1 teacher-provided code solutions into

representative text documents, including the code structure information. By applying

nonnegative matrix factorization and latent Dirichlet allocation techniques, we extract the

underlying relationship between questions and validate the results using an external dataset. We

consider the interpretability of the learned concepts using 14 university professors' data, and the

results confirm six semantically coherent clusters using the current dataset. Moreover, the six

topics comprise the main concepts present in the test dataset, achieving 0.75 in the normalized

pointwise mutual information metric. The metric correlates with human ratings, making the

proposed method useful and providing semantics for large amounts of unannotated code.

1.INTRODUCTION

Measuring Students knowledge requires an

understanding of which educational

concepts are needed to answer each

question. Recently, open online courses and

intel- ligent tutoring systems are widely

adopted learning environ- ments. Their

popularity increases the demand for tools to

map questions to concepts correctly since

students' mastery level assessment and next

steps recommendation depend on these

mappings.

However, manually identifying the concepts

required to answer the questions can be time

consuming and difficult increasing the need

for tools to assist teachers in the tasks

Desmarais [1] suggested that even partial

automation of the process can be highly

desirable. Besides decreasing the man ual

labeling required from the experts, the

process automation also results in a more

objective and replicable mapping Applying

supervised machine learning-based solutions

is no entirely appropriate because it requires

a considerable amoun of labeled data. Also,

a question can relate to multiple con cepts,

increasing the complexity of the labeling

task. The tra ditional unsupervised learning

methods, such as K-means and hierarchical

clustering, are also not suitable for this tas

because it is hard to determine each cluster's

features.

This article proposes unsupervised semantic

methods known as topic modeling

techniques [2]-[5], as more inter pretable

methods for experts, to be applied in

introductor computer science problems.

Specifically, we propose model ing code

snippets as text documents and use topic

modelin techniques to extract and improve

1505

the semantic relationship between them.

providing technology to support concept

iden tification experts.

Our key research questions are summarized

as follows.

1) How can semantic relationships be

extracted and struc tured from code?

2) How can humans read, interpret, and use

the extracte relationships?

The main contributions of this article

include the following

1) a tokenization structure to transform raw

code snippet into a document-term matrix:

2) a code-clustering method to optimize

positively corre lated metrics for human

interpretability:

3) experts validation, illustrating how the

propose method can support questions

exercise labeling usin each topic's terms.

The proposed code-clustering pipeline

builds a document- term matrix with a code

tokenizer by comparing various meth- ods,

including clustering algorithms. We

compare nonnegative matrix factorization

(NMF) [2], latent Dirichlet allocation (LDA)

[3], and K-means [6], as a baseline. The

models were evaluated with the UMass and

UCI coherence metrics [7]-[10] using the

top-5 and top-10 terms. According to the

metrics scores, we selected the two best-

ranked models using Fagin's algorithm [11].

The LDA-based clustering approach

provides the most interpretable results from

these models. Fourteen pro- fessors

manually contextualize the LDA-based

clustering in the Computer Science I (CS1)

domain, demonstrating how the proposed

method could be used to facilitate the

clusters' interpretability.

The next section begins by reviewing the

manual, super- vised, and unsupervised

concept identification approaches. Code-

clustering techniques inside the educational

data mining (EDM) and software

engineering contexts are reviewed together

with existing LDA proposals to handle short

texts. We describe a proposed method to

cluster code in Section III. The main

challenges facing the CSI context are the

answers' small size and document-term

matrix sparsity. Our proposed code

tokenizer overcame these problems using

code structure information to augment the

corpus. The results are shown in Section IV,

where the best two clustering schemes are

ana- lyzed based on the coherence

evaluation metrics. This section also

demonstrates how professors can get an

overview of the required concepts from

these results. Finally, Section V con- cludes

this article with future work directions.

The existing methods to identify concepts

from a set of CS1 exercises involve manual

work and input from experts [12], [13]. For

example, Sheard et al. [12] characterized

introduc- tory programming examination

questions according to their concept areas,

question style, and required skills.

Participants manually classified the

questions and the determined topics covered

alongside the necessary skill levels to solve

them. Nonetheless, applying a successful

approach in a different set of exercises

requires a new manual labeling stage, which

may not be achievable.

One strategy to overcome this issue and

minimize the domain experts' workload is to

apply supervised learning. Pre- vious

research in question classifications used

1506

supervised learning to classify questions

according to the level of diffi- culty [14],

Bloom's taxonomy [15], answer type [16],

and sub- ject [17]. In Godea et al. [16], the

features are derived from the questions,

using part-of-speech tags, word embeddings,

inter- class correlations, and manual

annotation. Supraja et al. [15] used a grid

search to analyze different combinations of

weight schemes and methods to find the best

set of parameters to build a supervised

model to classify questions given Bloom's

Taxonomy. Its main cost is the manual

annotation of all labels. which is impractical

when applying to large datasets. Unsu-

pervised learning can group similar items

without a predefined label, but it is harder to

ascertain the results since there is no

objective goal to analyze, and evaluating the

clustering out- comes becomes a subjective

task. Unsupervised learning tech- niques

have been used to address EDM problems

[18]-[22]. For example, Trivedi et al. [23]

used spectral clustering with linear

regression to predict student performance. In

the ques- tions' classification context, an

unsupervised approach using K-means, as a

clustering algorithm [24], was proposed to

group similar learning objects (such as

handouts, exercises, comple- mentary

readings, and suggested activities). Still, K-

means does not provide a list of features that

best characterize each cluster, making the

expert infer them manually by reading a

Although the LDA in Blei et al. [3] is a

common tech- nique in topic modeling, it

does not perform well in short texts (code in

this context) because the traditional way of

extracting terms does not provide enough

textual words to characterize a specific topic

[33], [34]. It is necessary to decrease the

latent document-topic or word-topic spaces,

making them more specific for each context.

Hsiao et al. [35], [36] proposed a topic-facet

LDA model using sen- tence LDA (SLDA)

with a facet representing a more spe- cific

topic and all words from a sentence

belonging to the same facet. Zhao et al. [37]

decreased the latent space by creating a

common word distribution with

denominated background words, which are

the same for every topic. Steyers et al. [38]

and Rosen-Zvi et al. [39] adopted a similar

strategy. In their method, the generative

process to create a document decreases the

space by choosing an author and then

choosing a topic. Li et al. [40] used a dis-

tribution over tags to restrict the latent topic

space before inferring the documents' topic

distribution. Another approach to overcome

the lack of textual words

which is similar to the method we adopted in

this article. In our proposed tokenizer, we

increase the vocabulary size (total terms)

from 287 to 2388 and the average of terms

per document from 23 to 137. We maintain a

95% sparsity. which agrees with the sparsity

of the long-text documents from Syed and

Spruit [42] and Zhao et al. [37], i.e., suc-

cessfully clustered using topic modeling

techniques.

III. METHODS

The methodology is categorized into the

following three main tasks.

1) Generate a database by crawling different

Python web tutorials.

2) Run code-clustering experiments to group

exercises into topics.

3) Ask experts to contextualize the clusters

into CS1 concepts.

1507

Task 1 prepares the data to investigate the

research ques- tions. Task 2 explores ways

of extracting semantic relation- ships from

code [research question 1 (RQI)] by

proposing a code tokenizer and comparing

various data transformation methods and

topic modeling algorithms. In task 3, we ask

pro- fessors to read and interpret task 2,

giving support for RQ2. All the scripts used

in this study analyses were achieved using

Python and open-source Python libraries.

A. Dataset

The objective of the experiment is to find

semantically related CS1 code solutions

written in Python. We chose four

introductory online tutorials: 1) Practice

Python [43]: 2) Python School [44]: 3)

Python Programming Exercises [45]: and 4)

W3Resource [46] that provide both solutions

and exer- cise statements. Since the sources

do not have label topics or follow a course

curriculum with structured syllabus topics,

we work in an unsupervised environment.

We crawled 54 exer- cises for the training

set. The code snippets are functions with an

average of nine lines/code.

For the test dataset, we collected solutions

from another set of exercises given to us by

the CSI professors at the Federal University

of Rio de Janeiro (UFRJ). There are 65

different problems with their respective

solutions in the dataset. As the training set,

the code snippets are functions with an

average of seven lines/codes.

B. Code-Clustering Pipeline

The code-clustering pipeline takes as input

Python code snippets, which are

semistructured text documents. By using

topic modeling techniques, the pipeline

outputs an underlying structure within the

semistructured corpus. It contains the topics

present in the code snippets and the most

relevant words that characterize them. This

article is based on the assumption that code

snippets with similar CSI concepts share

identical terms. Therefore, based on this

assumption, the extracted topic underlying

structure can be interpreted as CS1 concepts

or groups of CS1 concepts present in the

code snippets.

The code-clustering pipeline starts by

transforming the orig- inal data to the proper

format expected by the topic modeling

methods. We augmented the data and

constructed a matrix D (the document-term

matrix) where each element D₁ , contains

the weight of term w, in the document d.

Then,

using topic modeling, we calculated the

relevance of each topic t for each document

d, and the relevance of each term w, for each

topic t. Finally, we applied a grid search and

1508

topic coherence to choose the best models

and evaluate the external corpus results. In

the topic filter and selection phase, we also

proc- essed the resulting topics by merging

similar or removing topics with few

documents. These results are presented in

Section IV, while Fig. 1 illustrates the code-

clustering pipe- line. External evaluation is

not depicted in this overview.

1) Data Transformation: In this application,

the CS1 code solutions written in Python are

considered documents. The document-term

matrix creation process starts by splitting

each code snippet into words. The first

proposed tokenizer includes only split word

tokens. Henceforth, this tokenizer will be

referred to as the standard tokenizer. As

stated in the related work section, the LDA

usually does not perform well on short texts

and augmenting the corpus by adding the

text's structure on semisupervised

documents demonstrated improved results.

We propose a new tokenizer to augment the

standard tokenizer with extra features and

refer to it as the augmented tokenizer. The

augmented tokenizer parses the code and

makes special annotations by adding extra

features if the token is a number, an array

(or a list), a dictionary, a string, a logical (or

arithme- tic) operator, a class method, or

indentation. The word itself is added to the

document-term matrix if the token is a

reserved word. Besides adding single tokens,

this tokenizer also consid- ers bigrams and

trigrams. Although the document-term

matrix does not consider the terms' order,

this can be enforced by adding n-grams as a

matrix feature. For example, the code

snippet in Fig. 2(a) is first transformed to its

augmented version [see Fig. 2(b)]. Then,

every single word, including the bigrams

and the trigrams, are added as tokens to the

document-term matrix. Table I presents

some examples of the document-term matrix

terms, and in total, the document is

tokenized into 75 terms.

After the document-term matrix creation, we

applied some transformations to enhance the

document representation and decrease the

matrix sparsity. First, we removed tokens

with document frequency below a fixed

threshold to perform fea- ture selection. This

threshold was determined using a hyper-

parameter grid search ranging from 5% to

50% with a 5% step. Second, we decided

how to count a token frequency: either the

token is counted once per document (binary

1509

appear- ance) or every time it appears.

Finally, some tokens may be more important

than others. For example, the term frequency

by inverse document frequency (TF-IDF)

[47], [48] recalcu- lates the tokens' weights

by balancing the following two factors.

1) A term that occurs in many documents

should not be as important as a more

exclusive term, since it does not characterize

documents well.

2) A term that appears in a small number of

documents may only be particular to those

documents and not enough to distinguish a

topic.

Yan et al. [49] proposed another way of

recalculating the terms' weights. Their

method (called NCut) comes from the

normalized cut problem on term affinity

graphs. This weight- ing scheme modifies

terms' counts based on terms cooccur- rence

and not on document frequency. Their

experiments show NMF's performance

increase on short-text clustering using the

NCut weighting scheme.

2) Topic Extraction: As stated earlier, after

document processing, a document-term

matrix D is generated. The matrix rows

represent points in an R" feature space,

where n is the total number of terms, and

each term corresponds to a dimension. It

becomes a classical clustering problem

where we expect similar documents to be in

surrounding regions in space. So, clustering

algorithms like K-means, hierarchical

clustering, and nearest neighbors are

applicable here. How- ever, for topic

modeling tasks, algorithms like the NMF

[2], [50] and the LDA [3] are effective since

they interpret terms' counts as a set of visible

variables generated from a set of hid- den

variables (topics) [51], [52]. Accordingly,

the documents can be modeled as a

distribution of topics and topics as a dis-

tribution of terms. We used the following

two topic modeling techniques.

1) Nonnegative Matrix Factorization

(NMF): A matrix factorization technique

with a particular property of only allowing

nonnegative values in its entries, which is

well-suited for human interpretability [2].

2) Latent Dirichlet Allocation (LDA): A

generative proba- bilistic model that

describes how to create documents in a

collection. Once you have a dataset, a group

of already written documents, we find the

distributions that create these documents.

The LDA algorithm tries to backtrack this

probabilistic model to find a set of topics

that are likely to have generated the dataset

[4]. To generate a document, we sample

from two distribu- tions using the following

iterative process.

a) We sample a topic for the given document

(a docu- ment is a distribution of topics).

b) We sample a term from the topic sampled

in step a) (a topic is a distribution of terms).

3) Topic Filter and External Evaluation:

Given several document-term matrix

creation options and two different topic

modeling methods, we need to find the best

set of hyperpara- meters. There are strategies

in the literature to find a near-optimal set of

models' hyperparameters, such as manual

search, grid search, and random search [53].

Although random search dem- onstrates

promising results in general machine

learning tasks [53], Chuang et al. [54] and

Wang and Blei [55] results were competitive

using grid search in topic modeling tasks.

1510

We chose to use a grid-search approach.

There was a prior manual stage to define the

regions in which grid search would act.

Since the dataset is not large and the number

of hyperparameters to try is not extensive, it

is efficient to run an exhaustive search

combining hyperparameters. In total, there

are 1680 possible combinations: ten

minimum document frequencies (ranging

from 5% to 50% with 5% step increment),

two binary appear- ance options, three token

weights (counts) transformation possibilities

(none, TF-IDF, and NCut), two clustering

methods (LDA and NMF), and 14 number

of clusters (i.e., 10 x 2 x 3 x 2x 14 = 1680).

The grid search was set to search between 2

and 15 clusters (the upper bound is based on

the number of concepts from Table II in

Section III-C).

To determine whether topics are well

defined, we can use topic coherence and

pointwise mutual information (PMI) met-

rics, which correlated well with human

interpretability [8], [9], [56]. As explained in

Section III-B2 (topic extraction), when using

NMF or LDA, each topic is mapped to a list

of top-N words that best define the topic.

Topic coherence calcu- lates the ratio

between the cooccurrence of these top-N

words and their total occurrence. The

assumption is that the words that best

characterize a topic often appear together if

a topic is well defined. This article applied

two types of topic coherence metrics: UCI

[7] and UMass [8]. The UCI metric based on

PMI is calculated using an external

validation source. The PMI can be

substituted using normalized PMI (NPMI) to

bet- ter correlate with humans' ratings [9].

The UMass metric uses the conditional

probability of one word occurring given that

one other high-ranked word occurred and

can be measured using the modeled corpus,

without depending on an external reference

corpus. We used the UMass coherence to

choose the best models since it is an internal

validation metric (it only evaluates the

clustered data). To assess the models, we

used an external dataset with the UCI NPMI

metric.

Defining P(w) as the probability of the term

w, occurring and P(wi, w,) as the probability

of terms w, and w, cooccur- ring, we

calculated the coherence for a single topic t

using (1)-(3). In this article, the topic

coherence for a single topic was calculated

using top-5 and top-10 terms. After

calculating each topic's coherence in a single

hyperparameter combina- tion, this

combination's coherence was reported as the

median of all topic coherence

where W = (w, ...) are the top-N terms for

calculat- ing the coherence. An value of 0.01

was used to avoid taking a zero logarithm.

We performed hard assignment to cluster

documents by topic by assigning each

document to the topic with the most

1511

relevance (weight) in the document-topic

matrix. The hard assignment was achieved

with minimal loss of information when a

topic strongly characterized a document. In

addition to assigning documents to topic

clusters, the set of features/terms that best

characterize each cluster/topic were

extracted for fur- ther analysis.

C. Topics Contextualization

To relate concepts and topics, we first

defined the most commonly seen concepts in

CS1 exercises. The following four

references were used to create a list of

concepts com- monly used in CS1 courses.

1) Computer Science Curricula 2013 [57]: A

document jointly built by the Association of

Computer Machinery and the IEEE

Computer Society. The document recom-

mends curricular guidelines for computer

science edu- cation, which we used as the

main concept list. We used the papers in

items 2)-4) to improve it.

2) Exploring Programming Assessment

Instruments: A classification scheme for

examination questions [12]: creates a

classification scheme characterizing exam.

questions by their concept areas, question

style, and skills a student needs to solve

them. We used the list of the proposed

concepts as a second source to enhance the

main list.

Then, to interpret the meaning of the topics,

we asked 14 pro- fessors to perform three

tasks. The professors (with 2-20 years of

teaching experience) teach CSI or other

programming- related subjects.

1) Theme Identification: We present some

code snippets belonging to the topic and

found essential tokens for each topic. The

professors were asked to label each topic

with free-text descriptions. We tokenized the

descriptions and counted the terms. We also

created the topic titles based on the terms

that appeared more fre- quently in the

descriptions.

IV. RESULTS AND DISCUSSION

We run each hyperparameter combination

from the 1680 possibilities ten times and

calculated their average coherence and

standard deviation. Next, the two best-

ranked results are analyzed. They were

calculated using Fagin's algorithm [11] for

top-5 and top-10 terms UMass coherence.

Table III shows the set of hyperparameters

for each experiment.

A. Experiment 1

After the document-term matrix

factorization, we hard assigned each

document to the topic with the highest rele-

vance (highest weight in the document-topic

distribution). Table IV shows the number of

1512

documents assigned per topic. After

assigning each document to its related topic

in this experiment, the documents are only

assigned to four of the seven topics. Fig. 3

shows the documents projected to two

dimensions using principal component

analysis (PCA).

Using a minimum document frequency of

35% kept only 23 valid terms. Fig. 4 shows

the essential terms per topic where the terms

that are exclusively important for a single

topic (a term is vital if it is above the 75th

percentile of all weights) are denoted in

green. In this plot, topics 3 and 4 share

almost all terms. By adjusting the document-

term matrix values using the NCut

vectorizer, the factorization split topics 3

and 4 using the conditional if term. Topic 4

is exclusive for code snippets that are solved

using conditional statements, whereas topic

3 comprises the opposite.

Fig. 5 shows the topic distribution per

document. As explained in Section III-B2

(topic extraction), distribution over topics

describes a document. Darker cells imply

that the topic characterizes a document

better. As stated before, if a topic strongly

characterizes a document, then we can hard

assign it to a single topic. However, Fig. 5

shows that most documents assigned to

topics 1 and 2 (top part of the plot) spread

throughout the topics. It suggests we have to

combine the most important terms for each

topic to interpret these code snippets.

Analyzing the code snippets from topic 1,

they combine for- loops with conditional

statements. Topic 2 is a mixture con- taining

the code snippets that do not belong to any

other topic.

1513

Fig. 6, using the LDAVis tool [65],

calculates the topics' distance and projects

them to 2-D using principal coordinate

analysis. Topics 3 and 4 are located close to

each other, and they correspond to 45% of

the terms and 83% of the docu- ments. Fig. 6

also validates that these topics are not that

differ- ent when their crucial terms are

analyzed. Still, the conditional statements

that characterize topic 4 are enough to

produce a linearly separable 2-D data

projection, except for a few out- liers, as

shown in Fig. 3.

B. Experiment 2

Table V shows the number of assigned

documents per topic with hyperparameters

combination producing a more uniform

grouping scheme than the previous one.

1514

Although we initially set 12 clusters, two of

them (topics 9 and 11) are empty after

assigning each document to the topic with

the highest relevance (weight). Topics 6, 8,

10, and 12 have the largest number of

documents. Fig. 7 shows the topic per docu-

ment distribution where the topics better

characterize each document.

Fig. 8 shows the intertopic map. The main

topics 6, 8, 10. and 12 correspond to 85% of

the documents and 77.4% of the terms and

we do not observe any main topic overlap in

this plot. The next subsections analyze these

main topics in detail. Topics 2 and 4 will

also be analyzed since they occupy a dif-

ferent space on the map. This step belongs to

the topic filter and selection phase from the

code-clustering pipeline depicted in Fig. 1.

After hard assigning the documents to the

clusters (removing topics 9 and 11), merging

topics 2 and 4, and removing topics with a

few documents (less than three docu- ments

per topic: topics 1, 3, 5, and 7), it resulted in

five con- ceptual clusters (six from the

original topics in total) to be analyzed in

detail.

1) Topic 8 is strongly characterized by

conditional state- ments, logical operators,

and Boolean values.

1515

(including topics 2 and 4) valid topics to

understand if the topics are representative of

the possible concepts present in an unseen

code. We assigned each code to the topic

with the highest weight as we did for the

training set. Table VII shows the number of

assigned documents per topic. Except for

two documents, all the others belong to one

of the six valid topics. It confirms that the

different topics (the ones considered invalid)

detect specific code traits and not their

general con- cepts. It is important to notice

that topic modeling is a soft clustering

1516

technique: a document has a probability of

belong- ing to each topic and can be

associated with more than one. So, a

document can be related to the main topic

with its speci- ficity related to minor ones.

C. Coherence Evaluation

Both experiments were analyzed using the

UCI coherence metric with NPMI [9], as

described in Section III-B3 (topic filter and

external evaluation), to validate how well

the proposed meth- odology performs in an

external dataset. Although AST trees have

been used to cluster code, they do not

provide an intuitive way to analyze the

important features besides reading it. We

compare our results with a K-means

clustering method using the proposed

augmented tokenizer and logistic regression

to extract the important features per cluster

as a baseline. We also com- pared our best

results using the standard tokenizer instead

of our proposed tokenizer. We used k= 5 for

K-means since there were five main

conceptual clusters found in the LDA. We

ran each method 100 times and averaged

their UCI coherence metric. Statistical

difference was measured using the Mann-

Whitney U test [66], and all the results were

statistically significant with p< 0.001. Table

VIII reports the mean and standard deviation

for each experiment. In the UCI coherence

with NPMI metric. the values are bounded

between 1 and -1, where 1 means that the

top words only occur together, 0 means that

they are distributed as expected under

independence, and -1 means that they only

occur separately. The UCI coherence for the

standard tokenizer using the top-10 terms

could not be measured because there were

no important top-10 term pairwise

combinations in this setting that appeared in

at least one document. The NMF experiment

with the augmented tokenizer considering

the top-10 terms dem- onstrated the best

UCI occurrence metric, followed by the

LDA experiment, which had the best

performance considering the top-5 terms.

D. Discussion About Experiments 1 and 2

We found both experiments to have their

main concepts in a few clusters (two main

clusters in Experiment 1 and six main

clusters in Experiment 2). The remaining

clusters are associ- ated with code

specificity. In the case of Experiment 1,

using NCut and a high document frequency

threshold, the topic modeling from

Experiment 1 focused on finding structures

with high volume and cooccurrence rates,

resulting in separa- tion of the if/else

structure from the rest. The conditional

struc- ture was first separated from a

hierarchical perspective, and the remaining

structures were all grouped in a cluster. In

Experiment 2, the conditional topic (topic 8)

is also the fur- thest from the other topics.

As shown in the hierarchical clus- tering of

Fig. 9, this topic is the last one to be

aggregated (or the first one to be separated).

The common code snippets between the

conditional clusters in each experiment also

vali- date this result. From the 14 code

snippets associated with the conditional

topic (topic 8) in Experiment 2, 11 of them

1517

(79%) belong to the conditional topic in

Experiment 1 (topic 4). Therefore,

Experiment 2 demonstrates more granularity

than Experiment L.

E. Topics Contextualization

1) Concept Identification: Each professor

was asked to associate up to three concepts

(from the 15 available in Table II) to each

presented code. Four professors ana lyzed

each code. In 37 of the 54 code snippets,

there was at least one concept in common

between all four professors. In 53 of the 54

code snippets, at least one concept was

common between three out of the four pro-

fessors (75%). Therefore, we decided to use

the 75% threshold of the agreement to relate

the exercises' con- cepts. The concepts in

each topic were aggregated to provide an

overview of the main concepts needed to

solve the cluster's problems, as summarized

in Table IX.

2) Intruder Identification: Four code snippets

were pre-

a) The "conditional structure" topic

performed well, with the intruder code being

identified 79% of the time, meaning that

identifying a code snippet from a different

cluster can be done 4 out of 5 times.

b) The intruder code inside the "math loops

topic was identified 2 out of 3 times (64%),

being confused with "list loops" the last

third of the time. These topics work on the

same main concept, as seen in the concept

identification task.

V. CONCLUSION

Based on the evaluation metric, our

proposed method found semantically related

code-clustering schemes suitable for human

interpretability with minimal supervision,

giving sup port for RQI. The method is

expected to provide semantics for large

amounts of unannotated code.

Although code clustering in the CSI context

has been widely applied using the AST

trees, the advantages of working with topic

modeling are the terms per topic results that

may help experts better assess each cluster's

contents. The method- ology has also been

shown to overcome the small-sized code

snippets challenge by extending the

tokenizer to augment the corpus with the

code structure. The standard tokenizer could

not create semantically related topics, but

adding structural information, as features:

indents and data types, and enforcing the

order using n-grams enriched the code

representation and found topics suitable for

human interpretability. For example,

augmenting the corpus with structural

information as indents/ blocks (in Python,

indents indicate how deep a block of code is;

other languages like C++ and Java could

count the number of "" and "") help to

separate single loops from nested loops.

Combining trigrams (to enforce order) with

structural information can distinguish subtle

1518

differences in precondition and

postcondition loops. Notice that

postcondition loops do not exist in Python,

so we could not verify this specific

assumption. In our dataset, we expect

trigram tokens to be enough to capture these

varieties because a typical CS1 solu- tion

does not have more than three or four nested

structures. Still, it may limit our model in

identifying large nested struc- tures on more

complex code. Also, even though there is a

recursion concept in the concepts list, there

was no exercise using this technique in our

dataset to verify how it would be clustered.

ACKNOWLEDGMENT

The authors would like to thank all the

professors who contributed to the research

by providing CS1 problems and respective

solu- tions or evaluating the results.

REFERENCES

[1] M. C. Desmarais, "Mapping question

items to skills with non-negative matrix

factorization," SIGKDD Explorations

Newslett., vol. 13, no. 2, pp. 30-36. May

2012, doi: 10.1145/2207243.2207248 [2] D.

D. Lee and H. S. Seung. "Learning the parts

of objects by non-negative matrix

factorization." Nature, vol. 401, pp. 788-

791. Oct 1999. doi: 10.1038/44565, [3] D.

M. Blei. A. Y. Ng, and M. 1. Jordan. "Latent

Dirichlet allocation," J Mach Learn. Res.,

vol. 3, pp. 993-1022. Jun. 2003.

[4] M. Steyvers and T. Griffiths,

"Probabilistic topic models." in Handbook

of Latent Semantic Analysis. 1st ed., T.

Landauer, S. D. McNamara, and

W. Kintsch, Eds. New York, NY, USA

Psychology Press, 2007, ch. 21.

pp. 427-448, doi: 10-4324/9780203936309

[5] T. Hofmann. "Probabilistic latent

semantic analysis" in Proc. 15th Conf

Uncertainty Arti. Intell., 1999, pp. 280-206.

[6] S. Lloyd. Least squares quantization in

PCM. IEEE Trans. lot. The- ory, vol. 28, no.

2, pp. 129-137. Mar. 1982.

[7] D. Newman, J. H. Lau, K. Grieser, and

T. Baldwin, Automatic evalua

tion of topic coherence in Proc. Ann Conf

North Ainer. Chapter

