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Abstract

In this paper we presented closure , interior & neighbourhood of a generalized maximal
closed in a topological space. g-ma -closure (Clg-ma(M)) of M ,where MY in a topological
space(Y,n) is the intersection of all g-ma closed containing M , Simarily g-ma -interior (intg.
mi(M))of M is the union of all g-m; open contained in M. Let NC Y in a topological space
(Y,n;) is g-ms- neighborhood of a pointye Y if 7a g-m; open set E 5ye ECSN. Let Ng.ma be
collection of all g-m, neighborhoods. A point yeY is g-ma limit point of a subset L of
(Y,m)if and only if [E-{y}] N L# ¢ for each g-m; open E containing y.
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1. INTRODUCTION

Study of g-closed sets was done by N.Levine and Dunham [1] [2]. Maximal open & Minimal
open sets were studied and introduced by F.Nakaoka and N.Oda [5] [4] [3]. S.S. Benchalli
,Suwarnlatha N. Banasode and G. P. Siddapur [6] introduced and characterized generalized
minimal closed sets. Further generalized minimal closed was introduced in bitopological
spaces by Suwarnlatha N. Banasode & Mandakini Desurkar [7]. The concept of generalized
Maximal Closed set[10] was introduced and characterized by Suwarnlatha N. Banasode and
Mandakini Desurkar.

2. Preliminaries
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In the sequel (Y, n) represents a nonempty topological space on which no separation axioms
are assumed unless otherwise explicitly stated.

The compliment, closure and the interior of A ,where A C Y in a topological space (Y, n) is
denoted by A°, cl (A) and int (A) respectively. Here int"(A) denotes the interior of generalized
open set A and cl”(A) denotes the closure of generalized closed set A.

Definition:

Any open (resp closed) E, where is E is a proper subset of (Y, n) is maximal open [5]
(resp. maximal closed) set if it contains either E or X.

Any open (resp. closed) E, where is E is a proper subset of (Y, n) is minimal open [5] if it
is contained in E, is either E or ¢.

Definition:

A subset E is generalized closed [2](in brief g-closed) if cl (E) <V when E <V and V is
an open .

A subset E is generalized open [2]( in brief g-open ) set if and only if E° is a generalized
closed.

A subset E is o-closed [8] if ¢l (E) < Vwhen Ec V & V is a semi open .

An w-open if & only if E®is a w-closed .

A generalized minimal [6] closed (in brief g-m; closed ) set if cl (E) < V whenever ECV
and V is a minimal open .

A o -closed [9] if cl(int (cl (E))) < E.

A generalized maximal closed set [10 ], if cl (M) < V whenever M < V and U is a
maximal open.

For a subset B of (Y, n), cI* (B) is the intersection of all the g-closed sets [2] containing B.

3. g-m,- Closure and g-m,- Interior

In this section we introduce and characterize generalized maximal (g-m,) closure and
generalized maximal (g-m,) interior .

Definition 111.1: For Mc Y in (Y,n), g-ma. -closure of a subset M of Y is intersection of all
g-ma closed containing M and represented as Clg-ma(M).

Example 111.2: If Y = {a1, c1, €1, 01} and n = { ¢,{c1},{0:}.{C1, 01}, {a1, €1, 01}, Y}.Let A
={a:} then Clg-ma(A) ={ai}.

Theorem 111.3: For any y € Y where (Y,n) is a topological space, ye clgma(M) if & only if
MnN E #¢ for each g-m; open E containing y.

Proof : let ye clgma(M). Take E as a g-m; open containingy sM NE=¢ = MCY -E.
Therefore

Clgma(M) S Y-E = y¢ clg.ma(M) which is a contradiction .Thus MNE # ¢ V g-m; open set E
containing y.

Conversely, suppose y & Clgma(M) then 3 a g-ma closed set V containing M > y¢ V.
ThenyeY-V and Y-V is g-m; open set. Thus MN(Y-V) = ¢ ,which is a contradiction .Thus
y€ Clgma(M).

Remark 111.4: If MCS Y then M S clg.ma(M) S cl(M).
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Example 111.5: Let Y= {by, f1, hy, m} and n = {¢,{fi},{m},{f1,m:},{b1,h1,m:},Y}. If M =
{h1,m1} then cl(M) = {b1,h;,m1} and clg-ma(M) = {h1,m1}. Thus M < clg.ma(M) S cl(M).

Theorem 111.6: If Q is g-ma closed , cl(g-ma(Q))= Q.

Proof: Let M be g-ma closed . Since MS M & M is g-m, closed set, it belongs to all g-m,
closed containing M. This implies M is equal to intersection of all g-m, closed containing M.
Thus M = clgma(M) < M. Therefore clgma(M) = M.

Remark I111.7: For any subsets M of Y , ¢l g-ma(M) # cl(M).

Example 111.8: Let Y={ki,m1,p:} and n ={ ¢,{ki},{m1,p:1},Y}. Let M ={m:} be g-m. closed
set. Clearly cl g-ma (M) = {m1} and cl(M) = {my,p1}. Thus Clgma(M) # cl(M).

Remark 111.9: For any subsets M & N of Y, if M < N then clgma(M) # clgma(N)

Example 111.10:LetY={ks,m1,p1,l1}and

n:{d)’{kl}’{ml}i{pl}i{klvml}’ {mlvpl}v{klvpl}v{ml’Il}!{klvmlvpl}v{klvml’Il}!{mlvpl!ll}!Y}'
Let M ={mi} and N ={mgy,p,l:}.Clearly M< N but clgma(M) = {my,li} and clgma(N) =

{ki,my,11}.
Therefore clg-ma(M) # clg-ma(N).

Remark 111.11: For any g-ma closed sets M and N if M< N then clg.ma(M) < clg-ma(N).

Example 111.12: In Example 111.10, the set M ={p1,l:} and N={my,ps,l:} be g-m. closed sets
then M N. Now Clgma(M) ={p1,li}and clgma(N) ={m1,p1,11}. Hence clg.ma(M) < clg-ma(N).

Remark 111.13: For M, N € Y, clgma(M) = clg-ma(N) does not imply M = N.
Example 111.14: In Example I11.10 , the set M ={m;} and N ={my,li} then cl gma(M)
={m1,|1}and CIg.ma(N) :{m]_,ll}. C|eal’|y CIg-ma(M) = CIg-ma(N) but M 75 N

Theorem H1.15: If Q, T < Y in (Y n),then

Clgma(9) = ¢
Clg-ma(Q) is g-ma closed setin Y.
If QcT then Clg-ma(Q) - Clg—ma(T)-

Clg-ma(QNT) = clg-ma(Q)N clg-ma(T)

Proof: Results (i) (ii) and (iii) are obvious from the definition 111.1. (iv) We know that
QNT=Q and QNTET from (iii) we have Clgma (QNT) S Clgma (Q) and Clgma (QNT) S Clg-ma
(M.

Thus clg-ma(TNQ) S Clg-ma(Q)N clg-ma(T) —(i).

Letye Clgma(Q) N clgma(T) this implies y e cl g.ma(Q) and y € Clgma(T). By definition 111.1 3g-
maclosed L& O>QSL & TS0, yeLNO. Thus QNTES LNO & LNO is g-m, closed set by
theorem 2.13[10]. Thus

ye Clgma(Q) N clgma(T) = ye€ Clgma(QNT). Hence clgma(Q) N clg-ma(T) S Clgma(QNT) —(ii).
From (i) and (ii) , we have Clgma(QNT) = clg-ma(Q)N clg-ma(T).

Remark 111.16: For M, N< Y in (Y,n) then  Clgma (M U N) £ clgma (M) U Clg-ma(N).

Example 111.17: Consider Y={my,a1,ks,l:}and n={¢,{a:},{l.}.,{as,11},{ma,ks,1:},Y}.
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Let M ={ai} and N ={myki}then M U N ={my,a;,ki}. Clearly clgma(M)={ai}, clg-ma(N)
:{ml,kl} but CIg-ma(M U N): ¢ Hence Clg-ma(M U N) 7éclg-ma(l\/l) U CIg-ma(N).

Theorem 111.18: For any subset A of Y, Clgma(Clg-ma(A))= Clg-ma(A).

Proof: Consider U to be g-ma closed containing A . By definition I11.1 clgms(A) < U. Since U
is a g-m, closed contained in each g-m, closed containing A, we have clgma(Clg-ma(A)) S clg.
ma(A). Thus Clg.ma(Clg-ma(A)) = Clg-ma(A). We now introduce g-m.- interior.

Definition 111.19: Let M < Y in (Yn). g-ma -interior of M is the union of all g-m; open
contained in M , represented as  intg.mi(M).

Theorem 111.20: For any subset M €Y, Y- intgmi (M) = Clg-ma (Y - M).

Proof : Let ye Y- intgmi (M) , this implies y & intgmi(M). Therefore every g-m; open set E
containing y 3 EC M. Thus for each g-m; open set E intersects Y - M. Therefore EN(Y - M) #
¢, then by Theorem I11.3 yeClgma (Y- M). Therefore Y- intgmi (M) < cClgma(Y- M)----(i)
Conversely , Lety e clgma(Y- M) ,then for each g-m; open set E containing y intersects Y-
M. Therefore EN(Y- M) # ¢, then by definition 111.19 y ¢ intgmi(M) , this implies ye Y-
intg.mi(M). Therefore Clgma(Y- M) S Y- intgmi(M)---(ii). From (i) and (ii) we have , Y- intg.
mi(M) = CIg-ma(Y' M)

Remark I11.21: If QC Y in (Y,n) then int Q Cintgmi(Q) Q.

Example 111.22:Consider Y={f1, b1, g1, i1} and t={ ¢ ,{b1},{i1},{br,i1},{f1,01,i1},Y}.
Let M = {b1,g91,i1} then int M={bs,i1} and intg.mi (M) = {b1,g1,i1}. Clearly int M < intgmi(M)
cM.

Remark 111.23: For a subset M of (Y,n) , intgmi(M) # int M.
Example 111.24: 1t is clearly seen in Example 111.22.thus intg.mi (M) # int M.
Remark 111.25: Let Q , T < Y in (Y,n) ,then intgmi(Q) = intg-mi(T) does not imply Q = T.

Example 111.26: LetY = {p1,W1,Zl,h1} andn=1{¢ ,{pl},{pl,Wl},{Z1,h1},{p1,21,h1},Y}. Let E
= {z1,h1} and F = {w1,z1,h1}, then intgmi(E) = {z1,h1}= intgmi(F) but E #F.

Remark 111.27: For any subsets F and Q of (Y,n), intg.mi(F) U intgmi(Q) # intgmi(F U Q).
Examplelll.28:LetY={p1,w1,z1,h:} and

n={¢, {pa}.{wi} {za}.{pr,w}.{p1, 21} {wr,za},{ws,h},{p1,w1,z1},{ps,w1,h:}, {wr,z1,h:},Y}. Let
R ={p1,wi} and K ={p;,h1} then R U K = {p1,w1,h:}. Clearly intgmi(R) = {p1,w1}, intgmi(K) =
{p} and intgmi (R U K) = {p1,w1,h:}. Thus intgmi(R) U intg.mi(K) # intg-mi(R U K)

4.g-ma- Neighborhoods and g-ma-Limit Points

Here we introduce g-ma- neighbourhood(briefly g-ma- nbhd) , g-ma-limit and g-m.-
derived set.
Definition 1V.1: Aset NS Y in (Y,n) is g-ma- neighborhood of a point ye Y if 3 a g-m; open
setE>yeECSN.

Let Ng-ma be collection of all g-m, neighborhoods.
Definition IV.2 : Aset NS Y in (Y,n) is g-ma- nbhd of D where DS Y , if 3 a g-m; open set
E>DeECSN.
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Theorem IV.3: Aset ECY in (Y,n) is g-m; open if & only if E is g-m, nbhd of everyone of
its points.

Proof : Consider E to be g-m; open , then for any ye Y , ye ECE. Therefore E is g-m, nbhd
of everyone of its points.

Conversely, let E contains a g-m, neighborhood of each of its points. For each yeE, 3
a neighborhood Ny of v > yeNyCE . By definition IV.1 3 a g-m; open set Vy >
yeVy S Ny E. We now intend to prove that E = U{V,: yeE}. Let ye E, by definition 3 g-
mi open set Vy > yeV,. Therefore yelU {V,: ye E} which implies ECU {V,: yeE}. Let
ze{Vy: yeE} so z belongs to some Vy for some yeE. Hence zeE. Therefore U{Vy:
yeE}<E. Hence E = U{V,: yeE} for each V, , where Vy is g-m; open set. Hence E is g-m;
open set.

Theorem IV.4: If L be a g-ma closed subset of (Y,n) and y € clg-ma(L) if and only if for each g-
Ma nbhd N of y , NNL#¢.

Proof : Consider N to be g-ma neighborhood of a point y in (Y,1) > NNL = ¢ , then by
definition IV.1 3 an g-m; open set E 5y e ECN. Therefore ENL = ¢, so ye Y- E. Thus clg.
ma(L) € Y- E. Therefore y  clgma(L) which is a contradiction. Thus NNL # ¢.

Conversely , Let y¢& clg.ma(L) thus by Definition 111.1 3 a g-maclosed E > L < E and
yZE. Thusye Y- E & Y- E is g-m; open. Thus Y-E is g-ma neighbourhood of y but LN(Y-E)
= ¢, which is a contradiction. Thus ye Clgma(L).

Remark IV.5: If Q & G are g-ma neighborhood , QNG need not be g-ma neighborhood.

Example 1V.6: Let Y ={di,hy,1i} and n = {¢,{d:},{l:}.{d: ,1:}.{d1, hi},Y}
Clearly Q ={d;, hi} and G= {d,1.} are any two members of Ng.ma(y) but {di,h1}N{ds,l:} =
{d.} is not a member of Ng-ma(y).

Theorem IV.7: Let ye Y in (Y,n). If Ngma(y) is the collection of all g-ma neighborhood of y
then Ng.ma(y) # ¢ and y belongs to each member of Ng.ma(y).

Proof: Let Y be g-m; open set containing m thus by Theorem IV.III , it is a g-ma
neighborhood of each of its points. Hence 3 atleast one g-ma neighborhood namely y > Ng.
ma(m) # ¢. Let M e Ng.ma(m), M is a g-ma neighborhood of m , by definitionlVV.1 3 a g-m; open
set V>m eV =M this implies me M. Therefore m belongs to every member M of Ng.ma(m).

Remark 1V.8: If K be a g-m, neighbourhood of y , for any ye Y and M K, then M need
not be g-ma, neighbourhood of y.

Example 1V.9: Let Y= {dy, f1, l.} and 1 = {¢,{d.},{f.}.{d1, f.},{d1, 1.}, Y}.
Let N = {d,, |1} be g-ma neighbourhood of Y and let M = {d.} .Clearly M< N but M is not g-
ma neighbourhood of

Definition 1V.10: Consider L to be a subset of (Y,n) and ye Y. Then a point yeY is g-ma
limit point of L if and only if for each g-m; open E containing y contains atleast one point of
L other thanyi.e [E-{y}] N L#¢.

A set of all g-m, limit points of subset L of Y is g-m. derived set of L & is symbolized
as dg-ma(A).
Theorem IV.11: For M, N< Y in (Y,n), then
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o dgm(d) =9
o (i) If MC N then dgma(M) S dgma(N).

Proof:

o Letye dgma(9) that is y is g-ma limit point of ¢. Then by definition IV.10 ¥ g-m; open set U
containing y, it contains atleast one point of M other than y. Thus we should have [U-{y}] N
M # ¢ which is not possible. Hence dg-ma(¢) = ¢.

o (ii) Letye dgma(M), that is y is g-ma limit point of M . Then by definition 1VV.10 V¥ g-m; open
U containing y contains atleast one point of M other than y. Since M < N this implies [U-{y}]
NMC[U-{y}] N N. Thusy is g-ma limit point of N that is y e dg-ma(N). Therefore dy.
ma(M) < dg-ma(N).

Theorem IV.12: If Q, TS Y in (Y,n), then dg.ma(Q N T) S dg-ma(Q) N dg-ma(T).

Proof : As QNTCQ & QNTC T. Thus by Theorem V.11 (ii) we have dg-ma(QNT) < dg-

Theorem IV.13: If Q,TC Y in (Y,n) then dg-ma(Q) U dg-ma(T) S dgma(Q UT).

Proof : AsQc QU Tand T€ QU T. Thus by Theorem IV.11 (ii) we have

dgma(Q) S dg-ma(Q U T) and dg-ma(T) S dgma(Q U T) . Thus dg-ma(Q) U dg-ma(T) = dg-ma(Q U
T).

Remark 1V.14: The converse of the hypothesis need not be valid, as observed from the
accompanying illustration.

Example IV.15: Let Y ={ai,e1,i1} and n = {¢.{a1}.{i1}.{a1, i1}.{e1, i1}, Y}.

Let Q ={a1,i1} , T={es, ir}and Q U T ={as,e1,i1}= Y. Clearly dg-ma(Q) = {e1} , dg-ma(T) = {1},
dg-ma(Q) U dg-ma(T) ={e1} and  dg-ma (Q U T) = {as,e1,i1}. Therefore dgma(Q U T) & dg-ma(Q) U
dg-ma(T).

Theorem 1V.16: Consider any subset M of (Y,1) and y e dg-ma(M) then ye dg-ma(M-{y}).

Proof: Let ye dgma(M) , that is y is g-ma limit point of M, then by definition IV.10 V g-m;
open U containing y contains at least one point of M other than y of M -{y}. Hence y is g-m,
limit point of M -{y} & ye dgma (M-{y}). Hence y e dg-ma(M) = ye dg.ma (M).
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