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Abstract. Lin introduced and studied two new partition functions PD,(n) and PDO,(n),
which count the number of designated summands in two partition functions PD(n) and
PDO(n), respectively. In this paper, we prove the generating functions for PD0.(48n),
PDO.(48n + 14), PD0O,(48n + 16), PD0O,(48n + 22) and PD0O,(48n + 46). Also, we
find some new congruences and infinite families of congruences modulo 16 and modulo 72
for PDO.(n).
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1. Introduction

MacMohan [1] introduced and examined a new class of partition function in which some
parts are tagged and he studied these partition functions with exactly k different sizes.

In [2], Andrews, Lewis and Lovejoy studied the partitions with designated summands. In
these partitions, exactly one part is tagged or designated among the parts with same
magnitude. For example, there are ten partitions of 4 with designated summands, namely,

4" 3" +1',2"+2,2+2",2"+1"+1,2"+1+1",1"+1+1+1,1+1"4+1+1,1+
1+1"+1,1+1+1+1".

PD(n) denotes the total number of partitions of n with tagged parts and PDO (n) denotes the
total number of partitions of n with tagged parts, where all parts are odd. Therefore, in the
above example, PD(4) = 10 and PDO(4) = 5.

Chen, Ji, Jin and Shen [3] proved the generating function of PD(3n) and PD(3n + 2) which
implies the congruence given in [2].

Using the generating function of PD(3n) and PD(3n + 2) defined in [3], Xia [4] proved
some infinite families congruences modulo 9 and modulo 27 for PD (n).

In [5], Lin introduced new partition functions PD;(n) and PDO;(n), where PD.,(n) and
PDO:(n) count the total number of designated summands in PD(n) and PDO(n)
respectively. He established the generating functions for PD;(n) and PDO;(n) as

Y%, PD,(n)q™ =l( B _ _fe )
n= 2 f13f62 fifafs
and

. af2fEfL
Yo PDO.(m)q" = L2272,

where fi, = (4% ¢°)w and (a; @)oo = [I5=1(1 — ag™ ™).

Adansie, Chern and Xia [6] generalized Lin’s conjecture PD;(27n + 6) = PD,(27n + 21) =
0(mod 9).

Baruah and Kaur [7] proved conjectures proposed by Lin for the congruences modulo 8 in
[5]. Also, they proved some new congruences for PD;(n).

Recently, Chern and Hirschhorn [8] gave elementary proofs for PD(n), PDO(n), PD:(n) and
PDO.(n) introduced by Andrews et al. [2] and Chen et al. [3]. They simplified the formulas
for }.,.s0 PD(3n)q™ and ). ,,-o PD(3n + 1)g™ and improved some congruences of Lin [5] for
modulo 9 and modulo 27.
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Very recently, we [9,10] proved the generating function for PDO.(16n) and PDO,(16n +
8). In Theorem 1.1, we further extend these results and prove the generating functions for
PD0.(48n) and PD0O,(48n + 16). Also, we prove a congruence modulo 72 for PDO,(n).
Theorem 1.1. For n > 0, we have

> o PDO.(48n + 16)q™ = 36f,y(q>)(mod 72) :

(1.1)

Y=o PDO.(48n)q™ = 36f,f(q,q*) (mod 72) ’
1.2)

PDO.(48n + 32) = 0(mod 72)

(1.3

In the Theorem 1.2, we prove the generating functions for PD0O,(48n + 22), PD0:(48n +
46) and PD0.(48n + 224). Also, we prove some congruences modulo 16 for PDO,(n).
Theorem 1.2. For n = 0, we have
PD0.(48n + 6) = 0(mod 16) ,
(1.4)
PDO:(48n + 38) = 0(mod 16) ,
(1.5)
Y2, PDO.(48n + 22)q™ = 8f,f; (mod 16) :
(1.6)
> oPDO.(48n + 14)q™ = 8f3f?a(q?)(mod 16) :
1.7
PDO:(48n + 30) = 0(mod 16) ,
(1.8)
Y PDO.(48n + 46)q™ = 8f3f,f3(mod 16)
(1.9)
where

3n+1 3n+2
a(q) = 2?)?1,71:—00 qm2+mn+n2 =1+6%;., (1fq3n+1 - 1iq3n+2)'
2. Proof of Theorem 1.1.
From [8, Eq. (4.4)], we get
Snz0 PDO(8m)q" = 369 25

13
fi

Also, in [9, Eq. (1.1)], we prove that

6 6
¥ o PDO,(16n)q" = 6;29;32 (mod 72)
176

4 6 2
= 36%.%(m0d 72)

= 36200 £
= 36f24f62 I (mod 72)

= 36f6.%(m0d 72)
= 36/5(f (4% q%) + q(q°))(mod 72).

Thus, we have

Yo o PDO.(16(3n + 1))q™ = 36£,3(q>) (mod 72),
which implies that

>® »PDO.(48n + 16)q™ = 36/,3(q3)(mod 72).
This completes the proof of (1.1).

Also,

Yioe0 PDO.(16(3n))q™ = 36f,£(q, q*) (mod 72),
which implies that
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YneoPDO.(48n)q™ = 36f,f(q,q°) (mod 72).
This completes the proof of (1.2).

and

PDO,(16(3n + 2)) = 0(mod 72),

which implies that

PDO.(48n + 32) = 0(mod 72).

This completes the proof of (1.3).

Thus, we complete the proof of the theorem.

3. Proof of Theorem 1.2.

Now, from [7, Eq. (1.7)], we have

16 £10 28 4 4 8 c4
Z?lo=0PDOt(8n + 6)qn — 8(2 f2 f6 _ qu f3f12 _ 16q2 f2 f3f4-f12

73y FEEfE
Thus,
© PDO.(8n + 6)q" = 8¢ 222 (mod 16
Zn:o t( n+ )q - qf121f62f48(m0 )
_ P21 fs
= = 1
8q f118f62f48 f13 (mOd 6)

— 22 13
= 89 5-—3¢.(mod 16
T i 77 (mod 16)

_ 1 fE foff:
= 84f7 135 (575 + 3¢ 7252) (mod 16),

f5
From which we extract

2 2
¥ oPDO.(16n + 6)q™ = 8qf3f2 % (mod 16)

2 5
= 8¢ 255 (mod 16)
1

= 8qf5f¢ (mod 16),
From which we further extract that
PDO.(16(3n) + 6) = 0(mod 16),
which implies that
PDO0O.(48n + 6) = 0(mod 16).
This completes the proof of (1.4).
Also,
PDO,(16(3n + 2) + 6) = 0(mod 16),
which implies that
PDO.(48n + 38) = 0(mod 16).
This completes the proof of (1.5).
and
¥ ,PDO.(16(3n + 1) + 6)q™ = 8f,f; (mod 16),
which implies that
> ,PDO.(48n + 22)q™ = 8f,f, (mod 16).
This completes the proof of (1.6).

And,
6 £3
T-0 PDO, (8(2n + 1) + 6)q™ = 8f £ 125 (mod 16)
176
— 8f26f33f6 d 16
= —flé (mo )
6 £3
= 8% (mod 16)
2
= 8f,; 3 fs(mod 16).
Thus,
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320 PDO.(16n + 14) ¢ = 8f3 f{fsa(q®) — 3¢*f}(mod 16),

From which we extract

Y=o PDO(16(3n) + 14) q" = 8ffa(q?)(mod 16),

which implies that

Yo o PDO.(48n + 14) q" = 8f3f2a(q?)(mod 16).

This completes the proof of (1.7).

Also,

Y=o PDO,(16(3n + 1) + 14) g™ = 0(mod 16),

which implies that

PDO:(48n + 30) = 0(mod 16).

This completes the proof of (1.8).

and,

Yo o PDO, (16(3n + 2) + 14)q™ = 8f>f,f2 (mod 16),

which implies that

¥* o PDO, (48n + 46)q™ = 8f3f,fE (mod 16).

This completes the proof of (1.9).

Thus, we complete the proof of the theorem.
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