
 European Journal of Molecular & Clinical Medicine

 ISSN 2515-8260 Volume 07, Issue 06, 2020

203

Enhanced Tunneled Burrow Wheeler

Transform to reduce decoding time with

minimum space consumption
Ranjitha S

1
, Robert L

2

1
Research Scholar, Department of Computer Science, Government Arts College

(Autonomous), Coimbatore, Tamilnadu, India
2
Associate Professor, Department of Computer Science, Government Arts College

(Autonomous), Coimbatore, Tamilnadu, India

E-mail: ranjithabiju@gmail.com
1
 , robertatgac@gmail.com

2

Abstract:DNA or genomic sequences compression and indexing using the standard

algorithms are facing a high complexity as massive datasets grow rapidly.To avoid this

problem, a Tunneled Run-Length Encoded (RLE) Burrows-Wheeler Transform (BWT)-

based encoding with Improved Index (TBWT-II) algorithm has been proposed that uses

Text-Label index (TLBW-index) for counting and discovering the labeled patterns.

However, the reduction on global space consumption of the TLBW-index was not effective.

Also, the classic MTF in TBWT-II has a specific local property that can be leveraged

during encoding time and the decoded character was a series function of the decoded

values of prior characters. Therefore in this article, an Enhanced TBWT-II (ETBWT-II)

algorithm is proposed to effectively reduce the global space consumption of TLBW-index.

The major goal of this algorithm is to avoid the need of local searching capabilities within

the compressed database and minimize the space consumption during retrieval of

characters. As a result, a locally-decodable Move-To-Front (MTF) encoding is used

instead of standard MTF in TBWT-II for reducing the decoding time of a single character

with the minimum space consumption. Finally, the experimental results on SCOPe 1.67

dataset show the performance efficiency of proposed ETBWT-II algorithm compared to the

existing compression algorithms.

Keywords:DNA sequence compression, Text indexing, BWT, TBWT-II, Move-To-Front

encoding

1. INTRODUCTION

Normally, DNA sequences are structured by using a group of four bases, viz. A, G, T and C.

Every set of three symbols like TGC, ACT, and so on in the DNA sequences are called as

codons. Also, the genomes size can be varied. Typically, the nucleotide sequences are

accumulated by some large archival databases like GenBank at the National Center for

Biotechnology Information (NCBI) [1], the DNA Data Bank of Japan (DDBJ) [2], the Short

Read Archive (SRA) [3], etc.By using such databases, the sequenced data are classified,

preserved and assigned. These databases size has been two or three percentage higher in

recent years. As a result, most of the conventional compression algorithms are not adopted to

compress the DNA sequences in an efficient manner. To avoid this problem, many advanced

algorithms have been suggested for DNA sequences compression.

 European Journal of Molecular & Clinical Medicine

 ISSN 2515-8260 Volume 07, Issue 06, 2020

204

Among many compression algorithms, BWT algorithm [4] is mostly favoured rather than

other algorithms for compressing DNA sequences because of its efficiency on both

compression and indexing of DNA sequences.On the other side, the computational cost of

this algorithm is high while compressing high amount of DNA sequences. Therefore, a

TBWT algorithm [5] is introduced that minimizes the cost of RLE-BWT by means of its

combinatorial properties. This algorithm is executed only on width-maximal run-blocks with

higher height and width.

The encoding of a TBWT needs the residual BWT with the bit vectors. In contrary, the

TBWT inversion has no ability for perfectly matching the tunnel start or end to the respective

tunnel because of the interfaces of start or end intervals of blocks while treating critical

collisions.As a result, a TBWT-II algorithm [6] is suggested that simplifies the TBWT by

efficiently indexing the labeled texts. This TBWT-II considers a novel index for a text with

non-overlapping labels that can accumulate the text in a BWT. The label sequence is

considered in the format of TLBW-index that facilitates the effective text-label queries for

counting and discovering the labeled patterns. These patterns can be utilized on any labeled

DNA sequences. But, the global space consumption of the TLBW-index is reduced only at the

minimal level. Also, the classic MTF in TBWT-II has a specific local property that can be

leveraged during encoding time and the decoded character is a series function of the

decoded values of prior characters.

Hence in this article, an ETBWT-II algorithm is proposed for further reducing the global

space consumption in an effective way. The main aim of ETBWT-II algorithm is to deal with

the requirement of local searching capabilities in the compressed database and reduce the

space consumption during retrieval of each character. For this purpose, a locally-decodable

MTF method is applied in this ETBWT-II algorithm instead of classical MTF in TBWT-II.

Based on this method, the decoding time of a single character of the actual text and the space

redundancy are minimized.

The rest of the sections are prepared as follows: Section II surveys the related works on DNA

sequences compression algorithms. Section III describes the ETBWT-II algorithm whereas

Section IV presents its efficacy. Also, Section V summarizes the entire discussion.

2. RELATED WORKS

Sardaraz et al. [7] proposed a DNA sequence compression algorithm, namely SeqCompress

that copes with the space complexity of biological sequences. This algorithm was based on

the lossless data compression and the statistical model with an arithmetic coding was used for

compressing DNA sequences. However, the decompression time was high.

Kimura & Koike [8] proposed BWT of reads with three basic functionalities for detecting

genomic rearrangements. Initially, breakpoints regions were detected from the discordant

pairs based on the conjugate gradient method. Then, the reads partially matching the

breakpoints regions were collected and identified as the branching points among the collected

reads. But, it needs an improved compression technique to compress the large-scale datasets.

Eric et al. [9] proposed an optimal seed based compression algorithm using a substitution

mechanism for DNA sequences. In this algorithm, the repetition structures were exploited by

generating the offline dictionary which has all such repeats with the details of mismatches.

But, the compression ratio was not effective and also the computational complexity was high.

Sandhya et al. [10] proposed a novel two-stage algorithm by combining the characteristics of

both Lempel-Ziv-Welch (LZW) and Huffman coding algorithms. Initially, the input sequence

was given to the LZW algorithm for obtaining the coded output for compressed sequence.

 European Journal of Molecular & Clinical Medicine

 ISSN 2515-8260 Volume 07, Issue 06, 2020

205

After that, it was converted into the binary form and the likelihood of symbols was computed.

These likelihoods were assigned in decreasing manner and given as input to the Huffman

algorithm. Moreover, Huffman encoding was achieved and the compressed sequence was

acquired. However, the complexity was high and ineffective for more number of sequences.

Saada& Zhang [11] proposed an algorithm for compressing the DNA sequences on the basis

of binary representations of DNA sequences. Initially, a new method was proposed for

compressing the DNA sequence and converting it into the binary representation. After that,

the resulting DNA was compressed by using the extended-ASCII encoding. Nonetheless,

compression ratio was less.

Punitha&Murugan [12] proposed a novel algorithm, namely compressBest for compressing

the DNA sequences. This algorithm was based on the utilization of 2-bits encoding

mechanism includes split into segments, appropriate matching and the decompression

matching. The 2-bit encoding mechanism was performed while bases were distributed

randomly. On the other hand, the compression ratio was less than the lossless compression

algorithm.

3. PROPOSED METHODOLOGY

In this section, the proposed ETBWT-II algorithm is briefly described for compressing and

indexing the DNA sequences.Consider the alphabet { | |} where

 | | according to the lexicographical ordering on and (| |)is the MTF

stack with at the top and | | at the bottom. For ,| |-, consider , - is the character at

location in , initiating from the top. Set a string () and
 () () * | | + is the MTF encoding of with the

primary MTF stack (| |).

Given a MTF stack (| |) and a permutation | |, consider is

the stack such that , ()- , - for all ,| |-. Also, is associated with the

permutation () which transforms the primary stack to , i.e., () . For , -,
consider is the stack induced by simulating the MTF decoder on , -, initiating from .

As well, is the stack induced by (, -), i.e., the stack after encoding the initial
characters of , initiating from . For , consider | | is the common

permutation induced by simulating the MTF decoder on , -, initiating from .

At first, a single B-tree 𝒯is built over the entire MTF encoding ()
* | | + which supports local decoding queries. Assume is the branching

factor. Each node is augmented with the permutation () . Assume is an

internal node with its children being in order from left to right. After that, is

augmented with the composition of permutations of its children, i.e.,

 () () () () (1)

It is observed that the node whose subtree 𝒯 is constructed over the sub-array , -
is augmented with the value () . The query algorithm maintains the MTF stack

which is initialized for identity stack at the starting of the array. Consider , - is the

query index. The algorithm traverses down the tree, updating at each level. It maintains the

invariant that whenever it enters a node whose sub-tree includes , -, it updates to

the true stack before the starting of , -.
To maintain this invariant recursively, the base is taken at the root whose sub-tree has the

entire array . As a result, the query algorithm starts , which corresponds to the true

 European Journal of Molecular & Clinical Medicine

 ISSN 2515-8260 Volume 07, Issue 06, 2020

206

primary MTF stack. Assume is the node at depth whose sub-tree 𝒯 includes , -.
If the query algorithm has entered and is the true MTF stack . By hypothesis,

 , consider is the children of in order from left to right and is the child

of whose sub-tree encompasses . After that, is updated as:

 () () () (2)

It indicates the update rule which maintains the invariant at the node at depth ,

considering the invariant is maintained at a node at depth . Therefore, the proof that the

invariant is maintained follows by induction on . Finally, the algorithm reaches the leaf

node corresponding to . At this moment, the MTF stack is the true stack . Thus, it

reports , - and run time is ().

For simplifying, the update rule (2) is stated in terms of forward compositions of

permutations . Practically, if
 ⁄ , one can identically update by initiating from

 and composing the inverse permutations
 () for :

 ()

 ()
 () () (3)

To support rank queries under the MTF encoding, consider is an internal node with

children .Set a character .Generally, the MTF stack at the starting of the

sub-array rooted at 𝒯 is varied from the MTF stack at the starting of the sub-array 𝒯 rooted

at each child . Therefore, () is defined in terms of the values of its children

by including the entry of the vector () which corresponds to , for each , -.

For , -, the true MTF stack at the beginning of the sub-array rooted at , considering

the MTF stack at the beginning of the sub-array rooted at is is given by Eq. (2). Thus,

 () ∑ . () () ()()/
 (4)

Consider * +| | and each node is augmented with () . Since the

permutation () is encoded, the value at each internal node is a function of the values of

its children and thus this is a legitimate B-tree.

The query algorithm, given() , -, initializes a rank counter and traverses

similar root-to-leaf path as before. Set an internal node with children in its

path. Consider , - is such that the sub-array rooted at has the index . The algorithm

updates as:

 ∑ . () () ()()/

 (5)

After that, it recurses to and executes this process until it reaches the leaf and

returns (). This B-tree 𝒯 is compressed for supporting rank queries under the MTF

encoding with respect to the desired space bound (()). Consider and is

split into ⁄ sub-arrays
 ⁄
 of size and a B-tree is constructed over each sub-

array. For each , ⁄ -, an accurate MTF stack is accumulated at the starting of the sub-

array , the occurrence of each character in the prefix , () - and its index in

memory.

For a MTF character * | | +, consider is the occurrence of in and each

occurrence of in is encoded by

 bits. A zero-order entropy constraint is exploited

by augmenting each node with an additional value () which is the sum of the entropy

of the symbols in its sub-tree. So,

 () ∑

| |
 ∑

 ∑ ∑

 ⁄

 ∑ ()

 ⁄

 (6)

 European Journal of Molecular & Clinical Medicine

 ISSN 2515-8260 Volume 07, Issue 06, 2020

207

In Eq. (6), () denotes the sum of entropy of the symbols in . Assume is an alphabet

of these values (). Since the entropy of each occurrence of a character can acquire one of

 () values and the sub-tree of each node have at most leaves,| | ().

As a result, for each node , the vector of values is encoded

as () (() () ()). The additional space needed for accumulating the

accurate MTF stack and the rank of each character at the beginning of each sub-array

 , ⁄ - is at most

(| | | | | |). Also, the space needed for the look-up

tables is analyzed by considering the alphabet size | | | | | | | | (| |

()| |)with . Therefore, the look-up tables occupy the space as:

 (| | | |) (| | | | | |) () ()(7)

Here, the penultimate equality follows by using the value of in two cases:

 If | | , then

 | |⁄ . Therefore, | |

 and | | .

 Or else,

 ⁄ . Thus, and | |

 .

This space consumption is insignificant for small enough constant . But, as , the

minimum redundancy is as:

 (| |) | |(
 (| |)) | |(

 | |) (8)

Moreover, the hypothesis| | () is used and is adjusted by a constant factor for

obtaining the overall space requirement as:

 () .

 ()
/

 ()⁄ (9)

Thus, this locally-decodable MTF encoding minimizes the space consumption and decoding

time of a single character effectively.

4. EXPERIMENTAL RESULTS

In this section, the performance of proposed ETBWT-II algorithm is evaluated by using

MATLAB 2017b as well as compared with the existing algorithms such as TBWT-II and

TBWT. The comparison analysis is prepared in terms of compression ratio, computation

time, encoding time and decompression time. In this experiment, DNA sequences are taken

from the ASTRAL SCOPe 1.67 dataset which is obtained from the SCOPe website.Fig. 1

shows the example of two annotated sequences from the dataset.

Fig. 1: Two Annotated Sequences from the Dataset

4.1 Compression Ratio

 European Journal of Molecular & Clinical Medicine

 ISSN 2515-8260 Volume 07, Issue 06, 2020

208

It defines the ratio of the compressed genomic sequence to the length of actual genomic

sequence. Table 1 shows the compression ratio values for proposed and existing algorithms.

Table 1: Comparison of Compression Ratio (for 1000 Sequences)

Block Size Compression Ratio (%)

TBWT TBWT-II ETBWT-II

2000 20.229 28.289 32.658

4000 21.624 29.098 33.077

6000 20.560 32.852 35.833

8000 19.907 27.902 34.400

10000 19.596 28.289 34.865

Fig. 2: Compression Ratio vs. Block Size

Fig. 2 shows the compression ratio for TBWT, TBWT-II and ETBWT-II algorithms under

different block sizes for 1000 sequences. In this graph, x-axis denotes the block size for 1000

sequences and y-axis denotes the compression ratio in %. From this analysis, it is observed

that the proposed ETBWT-II algorithm achieves higher compression than the other

algorithms such as TBWT and TBWT-II. For example, if the block size is 2000, then the

compression ratio of ETBWT-II algorithm is 32.66% which is higher than TBWT and

TBWT-II algorithms whose compression ratio values are 20.23% and 28.29%, respectively.

4.2 Computation Time

It is the time taken for executing the TBWT, TBWT-II and ETBWT-II algorithms to

transform the original DNA sequences into different blocks. Table 2 shows the computation

time value for proposed and existing algorithms for 1000 sequences.

Table 2: Comparison of Computation Time (for 1000 Sequences)

Algorithms Computation Time (sec)

TBWT 4695.9

TBWT-II 5678.0

ETBWT-II 6375.9

 European Journal of Molecular & Clinical Medicine

 ISSN 2515-8260 Volume 07, Issue 06, 2020

209

Fig. 3 shows the computation time of TBWT, TBWT-II and ETBWT-II algorithms for 1000

sequences. In this graph, x-axis denotes the number of sequences and y-axis denotes the

computation time in seconds. Here, consider 1000 sequences to evaluate the computation

time. For 1000 sequences, the computation time of ETBWT-II algorithm is 35.78% higher

than TBWT and 12.29% higher than TBWT-II algorithm. From this analysis, it is observed

that the proposed ETBWT-II algorithm achieves a high computation time than the other

algorithms.

Fig. 3. Comparison of Computation Time

4.3 Encoding Time

It is the time taken for executing the RLE on the transformed DNA sequences using ETBWT-

II, TBWT-II and TBWT algorithms. Table 3 shows the RLE time value for proposed and

existing algorithms for 1000 sequences.

Table 3: Comparison of RLE Time (for 1000 Sequences)

Algorithms RLE Time (sec)

TBWT 500.5580

TBWT-II 420.2851

ETBWT-II 380.3406

 European Journal of Molecular & Clinical Medicine

 ISSN 2515-8260 Volume 07, Issue 06, 2020

210

Fig. 4. Comparison of RLE Time

Fig. 4 shows the RLE time of TBWT, TBWT-II and ETBWT-II algorithms for 1000

sequences. In this graph, x-axis denotes the number of sequences and y-axis denotes the RLE

time in seconds. Here, consider 1000 sequences to evaluate the RLE time. For 1000

sequences, the RLE time of ETBWT-II algorithm is 24.02% reduced than TBWT and 9.5%

reduced than TBWT-II algorithm. From this analysis, it is observed that the proposed

ETBWT-II algorithm achieves the reduced RLE time than the TBWT and TBWT-II

algorithms.

4.4 Decompression Time

It is defined as the time taken to decompress the original DNA sequences using Inverse

versions of ETBWT-II (IETBWT-II), TBWT-II (ITBWT-II) and TBWT (ITBWT)

algorithms. Table 4 shows the decompression ratio values for proposed and existing

algorithms.

Table 4: Comparison of Decompression Time (for 1000 Sequences)

Block Size Decompression Time (sec)

ITBWT ITBWT-II IETBWT-II

2000 2297.2 1971.8 1398.4

4000 2397.0 1577.4 1320.7

6000 2506.0 2075.6 1485.8

8000 2120.5 1971.8 1584.9

10000 2205.3 1478.8 1251.2

 European Journal of Molecular & Clinical Medicine

 ISSN 2515-8260 Volume 07, Issue 06, 2020

211

Fig. 5: Decompression Time vs. Block Size

Fig. 5 shows the decompression time for ITBWT, ITBWT-II and IETBWT-II algorithms

under different block sizes for 1000 sequences. In this graph, x-axis denotes the block size for

1000 sequences and y-axis denotes the decompression time in seconds. From this analysis, it

is observed that the IETBWT-II algorithm achieves less decompression time than the

ITBWT-II and ITBWT algorithms. For example, if the block size is 2000, then the

decompression time of IETBWT-II algorithm is 1398seconds which is lesser than the ITBWT

and ITBWT-II algorithms whose decompression time values are 2297seconds and

1972seconds, respectively.

4.5 Decompression Memory

It is defined as the memory needed for decompression process using IETBWT-II, ITBWT-II

and ITBWT algorithms. Table 5 shows the decompression memory values for proposed and

existing algorithms.

Table 5: Comparison of Decompression Memory (for 1000 Sequences)

Block Size Decompression Memory (Kb)

ITBWT ITBWT-II IETBWT-II

2000 5902.1 5624.3 5000.1

4000 5557.1 5461.4 4994.5

6000 5090.7 4885.3 4465.2

8000 5282.7 4692.6 4289.9

10000 5826.2 5114.7 4678.4

 European Journal of Molecular & Clinical Medicine

 ISSN 2515-8260 Volume 07, Issue 06, 2020

212

Fig. 6: Decompression Memory vs. Block Size

Fig. 6 shows the decompression memory for ITBWT, ITBWT-II and IETBWT-II algorithms

under different block sizes for 1000 sequences. In this graph, x-axis denotes the block size for

1000 sequences and y-axis denotes the decompression memory in Kilobytes (Kb). From this

analysis, it is observed that the proposed IETBWT-II algorithm achieves less memory than

the ITBWT-II and ITBWT algorithms for decompressing the original DNA sequences. For

example, if the block size is 2000, then the decompression memory of IETBWT-II algorithm

is 15.28% less than the ITBWT and 11.1% less than the ITBWT-II algorithms.

5. CONCLUSION

In this article, an ETBWT-II algorithm is proposed with the objective of neglecting the local

searching abilities within the compressed database and reducing the global space

consumption during characters retrieval process. To achieve this objective, a locally-

decodable MTF encoding is applied used instead of classical MTF in TBWT-II algorithm.

Finally, the experimental results on SCOPe 1.67 dataset proved that the ETBWT-II algorithm

has higher performance than the existing TBWT-II and TBWT algorithms.

6. REFERENCES

[1]. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank. Nucleic

Acids Res., 2005;33Suppl 1:34-38.

[2]. Sugawara H, Ogasawara O, Okubo K, Gojobori T, Tateno Y. DDBJ with new system

and face. Nucleic Acids Res., 2007;36Suppl 1:22-24.

[3]. Shumway M, Cochrane G, Sugawara H. Archiving next generation sequencing

data. Nucleic Acids Res., 2009;38Suppl 1:870-871.

[4]. Li C, Liu H, Liu J, Qin Y, Wang Z. A burrows-wheeler transform based method for

DNA sequence comparison. Comput. Biol.Bioinform., 2014;2(3):33-37.

 European Journal of Molecular & Clinical Medicine

 ISSN 2515-8260 Volume 07, Issue 06, 2020

213

[5]. Baier U. On undetected redundancy in the burrows-wheeler transform. arXiv preprint

arXiv:1804.01937, 2018.

[6]. Ranjitha S, Robert L. Tunneled burrows-wheeler transform encoding with improved

indexing for genomic sequences compression. Int. J. Adv. Sci. Technol.,

2020;29(5):7682-7691.

[7]. Sardaraz M, Tahir M, Ikram AA, Bajwa H. SeqCompress: an algorithm for biological

sequence compression. Genom., 2014;104(4):225-228.

[8]. Kimura K, Koike A. Analysis of genomic rearrangements by using the burrows-wheeler

transform of short-read data. BMC Bioinform.,2015;16(18):S5.

[9]. Eric PV, Gopalakrishnan G, Karunakaran M. An optimal seed based compression

algorithm for DNA sequences. Adv. Bioinform., 2016.

[10]. Sandhya, Kulkarni S, Kini Y. Pre equal architecture for lossless data compression and

decompression using hybrid algorithm. Int. J. Adv. Electr. Electron. Eng., 2017;6.

[11]. Saada B, Zhang J. DNA sequence compression technique based on nucleotides

occurrence. Proc.Int. Multi-Conf. Eng. Comput. Sci., Hong Kong, vol. 1, 2018.

[12]. Punitha K, Murugan A. A novel algorithm for DNA sequence compression. Emerg.

Res.Comput. Inf.Commun. Appl., 2019;151-159.

