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Abstract:DNA or genomic sequences compression and indexing using the standard 

algorithms are facing a high complexity as massive datasets grow rapidly.To avoid this 

problem, a Tunneled Run-Length Encoded (RLE) Burrows-Wheeler Transform (BWT)-

based encoding with Improved Index (TBWT-II) algorithm has been proposed that uses 

Text-Label index (TLBW-index) for counting and discovering the labeled patterns. 

However, the reduction on global space consumption of the TLBW-index was not effective. 

Also, the classic MTF in TBWT-II has a specific local property that can be leveraged 

during encoding time and the decoded     character was a series function of the decoded 

values of prior characters. Therefore in this article, an Enhanced TBWT-II (ETBWT-II) 

algorithm is proposed to effectively reduce the global space consumption of TLBW-index. 

The major goal of this algorithm is to avoid the need of local searching capabilities within 

the compressed database and minimize the space consumption during retrieval of 

characters. As a result, a locally-decodable Move-To-Front (MTF) encoding is used 

instead of standard MTF in TBWT-II for reducing the decoding time of a single character 

with the minimum space consumption. Finally, the experimental results on SCOPe 1.67 

dataset show the performance efficiency of proposed ETBWT-II algorithm compared to the 

existing compression algorithms. 

 

Keywords:DNA sequence compression, Text indexing, BWT, TBWT-II, Move-To-Front 

encoding 

 

1. INTRODUCTION 

 

Normally, DNA sequences are structured by using a group of four bases, viz. A, G, T and C. 

Every set of three symbols like TGC, ACT, and so on in the DNA sequences are called as 

codons. Also, the genomes size can be varied. Typically, the nucleotide sequences are 

accumulated by some large archival databases like GenBank at the National Center for 

Biotechnology Information (NCBI) [1], the DNA Data Bank of Japan (DDBJ) [2], the Short 

Read Archive (SRA) [3], etc.By using such databases, the sequenced data are classified, 

preserved and assigned. These databases size has been two or three percentage higher in 

recent years. As a result, most of the conventional compression algorithms are not adopted to 

compress the DNA sequences in an efficient manner. To avoid this problem, many advanced 

algorithms have been suggested for DNA sequences compression.  
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Among many compression algorithms, BWT algorithm [4] is mostly favoured rather than 

other algorithms for compressing DNA sequences because of its efficiency on both 

compression and indexing of DNA sequences.On the other side, the computational cost of 

this algorithm is high while compressing high amount of DNA sequences. Therefore, a 

TBWT algorithm [5] is introduced that minimizes the cost of RLE-BWT by means of its 

combinatorial properties. This algorithm is executed only on width-maximal run-blocks with 

higher height and width.  

The encoding of a TBWT needs the residual BWT with the bit vectors. In contrary, the 

TBWT inversion has no ability for perfectly matching the tunnel start or end to the respective 

tunnel because of the interfaces of start or end intervals of blocks while treating critical 

collisions.As a result, a TBWT-II algorithm [6] is suggested that simplifies the TBWT by 

efficiently indexing the labeled texts. This TBWT-II considers a novel index for a text with 

non-overlapping labels that can accumulate the text in a BWT. The label sequence is 

considered in the format of TLBW-index that facilitates the effective text-label queries for 

counting and discovering the labeled patterns. These patterns can be utilized on any labeled 

DNA sequences. But, the global space consumption of the TLBW-index is reduced only at the 

minimal level. Also, the classic MTF in TBWT-II has a specific local property that can be 

leveraged during encoding time and the decoded     character is a series function of the 

decoded values of prior characters.   

Hence in this article, an ETBWT-II algorithm is proposed for further reducing the global 

space consumption in an effective way. The main aim of ETBWT-II algorithm is to deal with 

the requirement of local searching capabilities in the compressed database and reduce the 

space consumption during retrieval of each character. For this purpose, a locally-decodable 

MTF method is applied in this ETBWT-II algorithm instead of classical MTF in TBWT-II. 

Based on this method, the decoding time of a single character of the actual text and the space 

redundancy are minimized. 

The rest of the sections are prepared as follows: Section II surveys the related works on DNA 

sequences compression algorithms. Section III describes the ETBWT-II algorithm whereas 

Section IV presents its efficacy. Also, Section V summarizes the entire discussion. 

 

2. RELATED WORKS 

 

Sardaraz et al. [7] proposed a DNA sequence compression algorithm, namely SeqCompress 

that copes with the space complexity of biological sequences. This algorithm was based on 

the lossless data compression and the statistical model with an arithmetic coding was used for 

compressing DNA sequences. However, the decompression time was high.  

Kimura & Koike [8] proposed BWT of reads with three basic functionalities for detecting 

genomic rearrangements. Initially, breakpoints regions were detected from the discordant 

pairs based on the conjugate gradient method. Then, the reads partially matching the 

breakpoints regions were collected and identified as the branching points among the collected 

reads. But, it needs an improved compression technique to compress the large-scale datasets. 

Eric et al. [9] proposed an optimal seed based compression algorithm using a substitution 

mechanism for DNA sequences. In this algorithm, the repetition structures were exploited by 

generating the offline dictionary which has all such repeats with the details of mismatches. 

But, the compression ratio was not effective and also the computational complexity was high. 

Sandhya et al. [10] proposed a novel two-stage algorithm by combining the characteristics of 

both Lempel-Ziv-Welch (LZW) and Huffman coding algorithms. Initially, the input sequence 

was given to the LZW algorithm for obtaining the coded output for compressed sequence. 
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After that, it was converted into the binary form and the likelihood of symbols was computed. 

These likelihoods were assigned in decreasing manner and given as input to the Huffman 

algorithm. Moreover, Huffman encoding was achieved and the compressed sequence was 

acquired. However, the complexity was high and ineffective for more number of sequences. 

Saada& Zhang [11] proposed an algorithm for compressing the DNA sequences on the basis 

of binary representations of DNA sequences. Initially, a new method was proposed for 

compressing the DNA sequence and converting it into the binary representation. After that, 

the resulting DNA was compressed by using the extended-ASCII encoding. Nonetheless, 

compression ratio was less.  

Punitha&Murugan [12] proposed a novel algorithm, namely compressBest for compressing 

the DNA sequences. This algorithm was based on the utilization of 2-bits encoding 

mechanism includes split into segments, appropriate matching and the decompression 

matching. The 2-bit encoding mechanism was performed while bases were distributed 

randomly. On the other hand, the compression ratio was less than the lossless compression 

algorithm.   

 

3. PROPOSED METHODOLOGY 

 

In this section, the proposed ETBWT-II algorithm is briefly described for compressing and 

indexing the DNA sequences.Consider the alphabet   {         | |} where       

   | | according to the lexicographical ordering on   and   (         | |)is the MTF 

stack with    at the top and  | | at the bottom. For   ,| |-, consider  , - is the character at 

location   in  , initiating from the top. Set a string   (          )     and   
   ( )   (          )  *      | |   +  is the MTF encoding of   with the 

primary MTF stack   (         | |). 

Given a MTF stack   (         | |) and a permutation    | |, consider        is 

the stack such that   , ( )-   , -     for all   ,| |-. Also,   is associated with the 

permutation  ( ) which transforms the primary stack    to  , i.e.,    ( )    . For   , -, 
consider   is the stack induced by simulating the MTF decoder on  ,   -, initiating from  . 

As well,    is the stack induced by    ( ,   -), i.e., the stack after encoding the initial   
characters of  , initiating from  . For        , consider       | | is the common 

permutation induced by simulating the MTF decoder on  ,     -, initiating from  . 

At first, a single B-tree 𝒯is built over the entire MTF encoding      ( )  
*      | |   +  which supports local decoding queries. Assume     is the branching 

factor. Each node   is augmented with the permutation  ( )        . Assume   is an 

internal node with its children being            in order from left to right. After that,   is 

augmented with the composition of permutations of its children, i.e., 

  ( )    (  )    (    )      (  )                    (1) 

It is observed that the node   whose subtree 𝒯  is constructed over the sub-array  ,     - 
is augmented with the value  ( )      . The query algorithm maintains the MTF stack   

which is initialized for identity stack    at the starting of the array. Consider   , - is the 

query index. The algorithm traverses down the tree, updating   at each level. It maintains the 

invariant that whenever it enters a node   whose sub-tree includes  ,     -, it updates   to 

the true stack    before the starting of  ,     -. 
To maintain this invariant recursively, the base is taken at the root whose sub-tree has the 

entire array  . As a result, the query algorithm starts     , which corresponds to the true 
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primary MTF stack. Assume   is the node at depth   whose sub-tree 𝒯 includes  ,     -. 
If the query algorithm has entered   and   is the true MTF stack   . By hypothesis,     

   , consider            is the children of   in order from left to right and     is the child 

of   whose sub-tree encompasses  . After that,   is updated as: 

    (     )    (     )      (  )                    (2)  

It indicates the update rule which maintains the invariant at the node at depth    , 

considering the invariant is maintained at a node at depth  . Therefore, the proof that the 

invariant is maintained follows by induction on  . Finally, the algorithm reaches the leaf 

node corresponding to  . At this moment, the MTF stack   is the true stack    . Thus, it 

reports     ,  - and run time is    (     ). 

For simplifying, the update rule (2) is stated in terms of forward compositions of 

permutations    . Practically, if    
 ⁄ , one can identically update   by initiating from 

     and composing the inverse permutations   
  (  ) for     : 

    
  (   )    

  (     )      
  (  )    ( )     (3) 

To support rank queries under the MTF encoding, consider   is an internal node with 

children          .Set a character    .Generally, the MTF stack at the starting of the 

sub-array rooted at 𝒯  is varied from the MTF stack at the starting of the sub-array 𝒯   rooted 

at each child      . Therefore,    (   ) is defined in terms of the values of its children 

by including the entry of the vector    (  ) which corresponds to   , for each   , -. 

For   , -, the true MTF stack at the beginning of the sub-array rooted at  , considering 

the MTF stack at the beginning of the sub-array rooted at  is    is given by Eq. (2). Thus, 

   (   )  ∑    .     (    )    (    )      (  )( )/ 
      (4) 

Consider     *       +| | and each node   is augmented with   ( )     . Since the 

permutation   ( ) is encoded, the value at each internal node is a function of the values of 

its children and thus this is a legitimate B-tree. 

The query algorithm, given(    )    , -, initializes a rank counter      and traverses 

similar root-to-leaf path as before. Set an internal node   with children            in its 

path. Consider    , - is such that the sub-array rooted at     has the index  . The algorithm 

updates    as: 

      ∑    .     (    )    (    )      (  )( )/
    
          (5) 

After that, it recurses to    and executes this process until it reaches the leaf and 

returns   (    ). This B-tree 𝒯 is compressed for supporting rank queries under the MTF 

encoding with respect to the desired space bound  (   ( )). Consider      and   is 

split into   ⁄  sub-arrays           
 ⁄
 of size   and a B-tree is constructed over each sub-

array. For each   ,  ⁄ -, an accurate MTF stack is accumulated at the starting of the sub-

array  , the occurrence of each character     in the prefix  ,  (   ) - and its index in 

memory. 

For a MTF character   *      | |   +, consider    is the occurrence of   in   and each 

occurrence of   in   is encoded by    
 

  
 bits. A zero-order entropy constraint is exploited 

by augmenting each node   with an additional value   ( ) which is the sum of the entropy 

of the symbols in its sub-tree. So, 

  ( )  ∑      
 

  

| |  
    ∑    

 

   

 
    ∑ ∑    

 

   
    

 
 ⁄

    ∑   (  )
 

 ⁄

     (6) 
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In Eq. (6),   (  ) denotes the sum of entropy of the symbols in  . Assume    is an alphabet 

of these values  ( ). Since the entropy of each occurrence of a character can acquire one of 

 (     ) values and the sub-tree of each node have at most  leaves,|  |   (      ). 

As a result, for each node  , the vector of values is encoded 

as  ( )  (  ( )    ( )   ( )). The additional space needed for accumulating the 

accurate MTF stack and the rank of each character     at the beginning of each sub-array 

     ,  ⁄ - is at most
 

 
(| |      | |    | |). Also, the space needed for the look-up 

tables is analyzed by considering the alphabet size | |  |  |  |   |  |  |   (| |  

(   )| |        )with     . Therefore, the look-up tables occupy the space as: 

 (| |      | | )    ( | |    | |  | |               )    (     )    ( )(7) 

Here, the penultimate equality follows by using the value of   in two cases: 

 If  | |         , then       
     

 | |⁄ . Therefore, | |        

     and             | |       . 

 Or else,       
     

       ⁄ . Thus,               and  | |  

                         . 

This space consumption is insignificant for small enough constant    . But, as    , the 

minimum redundancy is as: 

 (| | )   | |( 
 (| |  ))   | |( 

 | |  )              (8) 

Moreover, the hypothesis| |   ( ) is used and   is adjusted by a constant factor for 

obtaining the overall space requirement as: 

    ( )   .
    

   (         )
/
 

     ( )⁄             (9) 

Thus, this locally-decodable MTF encoding minimizes the space consumption and decoding 

time of a single character effectively. 

 

4. EXPERIMENTAL RESULTS 

 

In this section, the performance of proposed ETBWT-II algorithm is evaluated by using 

MATLAB 2017b as well as compared with the existing algorithms such as TBWT-II and 

TBWT. The comparison analysis is prepared in terms of compression ratio, computation 

time, encoding time and decompression time. In this experiment, DNA sequences are taken 

from the ASTRAL SCOPe 1.67 dataset which is obtained from the SCOPe website.Fig. 1 

shows the example of two annotated sequences from the dataset. 

 

 
Fig. 1: Two Annotated Sequences from the Dataset 

 

4.1 Compression Ratio 
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It defines the ratio of the compressed genomic sequence to the length of actual genomic 

sequence. Table 1 shows the compression ratio values for proposed and existing algorithms. 

 

Table 1: Comparison of Compression Ratio (for 1000 Sequences) 

Block Size Compression Ratio (%) 

TBWT TBWT-II ETBWT-II 

2000 20.229 28.289 32.658 

4000 21.624 29.098 33.077 

6000 20.560 32.852 35.833 

8000 19.907 27.902 34.400 

10000 19.596 28.289 34.865 

 

 
Fig. 2: Compression Ratio vs. Block Size 

 

Fig. 2 shows the compression ratio for TBWT, TBWT-II and ETBWT-II algorithms under 

different block sizes for 1000 sequences. In this graph, x-axis denotes the block size for 1000 

sequences and y-axis denotes the compression ratio in %. From this analysis, it is observed 

that the proposed ETBWT-II algorithm achieves higher compression than the other 

algorithms such as TBWT and TBWT-II. For example, if the block size is 2000, then the 

compression ratio of ETBWT-II algorithm is 32.66% which is higher than TBWT and 

TBWT-II algorithms whose compression ratio values are 20.23% and 28.29%, respectively. 

 

4.2 Computation Time 

It is the time taken for executing the TBWT, TBWT-II and ETBWT-II algorithms to 

transform the original DNA sequences into different blocks. Table 2 shows the computation 

time value for proposed and existing algorithms for 1000 sequences. 

 

Table 2: Comparison of Computation Time (for 1000 Sequences) 

Algorithms Computation Time (sec) 

TBWT 4695.9 

TBWT-II 5678.0 

ETBWT-II 6375.9 
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Fig. 3 shows the computation time of TBWT, TBWT-II and ETBWT-II algorithms for 1000 

sequences. In this graph, x-axis denotes the number of sequences and y-axis denotes the 

computation time in seconds. Here, consider 1000 sequences to evaluate the computation 

time. For 1000 sequences, the computation time of ETBWT-II algorithm is 35.78% higher 

than TBWT and 12.29% higher than TBWT-II algorithm. From this analysis, it is observed 

that the proposed ETBWT-II algorithm achieves a high computation time than the other 

algorithms. 

 
Fig. 3. Comparison of Computation Time 

 

4.3 Encoding Time 

It is the time taken for executing the RLE on the transformed DNA sequences using ETBWT-

II, TBWT-II and TBWT algorithms. Table 3 shows the RLE time value for proposed and 

existing algorithms for 1000 sequences. 

 

Table 3: Comparison of RLE Time (for 1000 Sequences) 

Algorithms RLE Time (sec) 

TBWT 500.5580 

TBWT-II 420.2851 

ETBWT-II 380.3406 

 

 



                                      European Journal of Molecular & Clinical Medicine 

                                                                                 ISSN 2515-8260                 Volume 07, Issue 06, 2020 
 

210 

 

 
Fig. 4. Comparison of RLE Time 

 

Fig. 4 shows the RLE time of TBWT, TBWT-II and ETBWT-II algorithms for 1000 

sequences. In this graph, x-axis denotes the number of sequences and y-axis denotes the RLE 

time in seconds. Here, consider 1000 sequences to evaluate the RLE time. For 1000 

sequences, the RLE time of ETBWT-II algorithm is 24.02% reduced than TBWT and 9.5% 

reduced than TBWT-II algorithm. From this analysis, it is observed that the proposed 

ETBWT-II algorithm achieves the reduced RLE time than the TBWT and TBWT-II 

algorithms. 

 

4.4 Decompression Time 

It is defined as the time taken to decompress the original DNA sequences using Inverse 

versions of ETBWT-II (IETBWT-II), TBWT-II (ITBWT-II) and TBWT (ITBWT) 

algorithms. Table 4 shows the decompression ratio values for proposed and existing 

algorithms. 

 

Table 4: Comparison of Decompression Time (for 1000 Sequences) 

Block Size Decompression Time (sec) 

ITBWT ITBWT-II IETBWT-II 

2000 2297.2 1971.8 1398.4 

4000 2397.0 1577.4 1320.7 

6000 2506.0 2075.6 1485.8 

8000 2120.5 1971.8 1584.9 

10000 2205.3 1478.8 1251.2 
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Fig. 5: Decompression Time vs. Block Size 

 

Fig. 5 shows the decompression time for ITBWT, ITBWT-II and IETBWT-II algorithms 

under different block sizes for 1000 sequences. In this graph, x-axis denotes the block size for 

1000 sequences and y-axis denotes the decompression time in seconds. From this analysis, it 

is observed that the IETBWT-II algorithm achieves less decompression time than the 

ITBWT-II and ITBWT algorithms. For example, if the block size is 2000, then the 

decompression time of IETBWT-II algorithm is 1398seconds which is lesser than the ITBWT 

and ITBWT-II algorithms whose decompression time values are 2297seconds and 

1972seconds, respectively. 

 

4.5 Decompression Memory 

It is defined as the memory needed for decompression process using IETBWT-II, ITBWT-II 

and ITBWT algorithms. Table 5 shows the decompression memory values for proposed and 

existing algorithms. 

 

 

Table 5: Comparison of Decompression Memory (for 1000 Sequences) 

Block Size Decompression Memory (Kb) 

ITBWT ITBWT-II IETBWT-II 

2000 5902.1 5624.3 5000.1 

4000 5557.1 5461.4 4994.5 

6000 5090.7 4885.3 4465.2 

8000 5282.7 4692.6 4289.9 

10000 5826.2 5114.7 4678.4 
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Fig. 6: Decompression Memory vs. Block Size 

 

Fig. 6 shows the decompression memory for ITBWT, ITBWT-II and IETBWT-II algorithms 

under different block sizes for 1000 sequences. In this graph, x-axis denotes the block size for 

1000 sequences and y-axis denotes the decompression memory in Kilobytes (Kb). From this 

analysis, it is observed that the proposed IETBWT-II algorithm achieves less memory than 

the ITBWT-II and ITBWT algorithms for decompressing the original DNA sequences. For 

example, if the block size is 2000, then the decompression memory of IETBWT-II algorithm 

is 15.28% less than the ITBWT and 11.1% less than the ITBWT-II algorithms. 

 

5. CONCLUSION 

 

In this article, an ETBWT-II algorithm is proposed with the objective of neglecting the local 

searching abilities within the compressed database and reducing the global space 

consumption during characters retrieval process. To achieve this objective, a locally-

decodable MTF encoding is applied used instead of classical MTF in TBWT-II algorithm. 

Finally, the experimental results on SCOPe 1.67 dataset proved that the ETBWT-II algorithm 

has higher performance than the existing TBWT-II and TBWT algorithms. 
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