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ABSTRACT: A Hamiltonian Path is the path passing through every vertex of the graph. In this paper the 

notion of translation shows a dual part in both theoretical and practical requests of complete Fuzzy 

Charts. In this research work proved with Hamiltonian complete fuzzy sequence on K2n+1 complete fuzzy 

chart. Compared go existed methods this work gives more improvement and compete with present 

applications. 
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1. INTRODUCTION 

Fuzzy graph analysis gives the more applications in different areas, these applications are helpful for 

many technologies such as IT, neural networks, artificial intelligence, machine learning and cluster analysis 

etc. The modern science, some connectivity relations are related to fuzzy cut nodes and fuzzy bridges are 

founded by Bhatta Charya. The theory like decomposition integration and numerical analysis depending on 

Hamiltonian concepts. In this theoretical practical trees cycles parts and bridges or introduced for random 

analysis. In this research work fuzzy graphs Hamiltonian techniques are introduced for advanced 

applications. Earlier Rosenfeld had done some phenomenal work on fuzzy equivalents of numerous 

elementary chart- the notion of disintegration of charts into Hamiltonian cycles, paths into regular charts and 

hypothetical concepts like pledges, tracks, series, trees, and connectedness. Klas Markstrom presented. 

Among the variety of exemplary changes in science and technology, the concept of uncertainty played a 

significant role, which led to the development of fuzzy sets, which in turn helped in the transition from graph 

theory to fuzzy graph theory. This paper familiarizes an improved concept in fuzzy graphs, called 

contraction. Two types of contraction namely edge contraction and neighborhood contraction are introduced.  

Edge contraction is an act of merging the two end vertices of an edge, neighborhood contraction is the act 

of merging the two adjacent vertices 

 

Notation 1.1: Hamiltonian computations are covers the vertices of 𝐺 𝑖𝑛 𝐺 ∗ (𝑉, 𝐸) and evolution paths p in 

graph 

Notation 1.2: G_f = (σ,µ)    be a fuzzy graph and let 𝑢𝑣  be the edge of 𝐺𝑓 , then the edge contracted fuzzy 

graph w.r.t the edge 𝑢𝑣 is denoted by 𝐺𝑓\𝑢𝑣 and is a chart with vertex set  𝑉′  =  [𝑉\{𝑢, 𝑣} ∪ {𝑤}] where 

𝜎(𝐺𝑓\𝑢𝑣) = 𝜎(𝐺𝑓)  ∀  vertices    𝑥 ∈ 𝑉, and 

 

Notation 1.3 𝐺𝑓\𝑢𝑣 and is a graph with vertex set 

  
𝛽 (𝑥, 𝑦)  ≤  𝛼 (𝑥)  ∧  𝛼 (𝑦) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈  𝑆 𝑤ℎ𝑒𝑟𝑒 ∧
 𝑠𝑡𝑎𝑛𝑑𝑠 𝑓𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑢𝑚. 𝑇ℎ𝑒 𝑢𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔 𝑐𝑟𝑖𝑠𝑝 𝑔𝑟𝑎𝑝ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑢𝑧𝑧𝑦 𝑔𝑟𝑎𝑝ℎ 𝐺: (𝛼, 𝛽) 𝑖𝑠 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑎𝑠 𝐺 ∗
: (𝑉, 𝐸). 𝑊ℎ𝑒𝑟𝑒 𝐸 ⊆ =  𝑉 ×  𝑉. 

  

Notation 1.4  

: 𝑃 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ ‘𝑛’ 𝑖𝑠 𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑛𝑜𝑑𝑒𝑠 𝑢0, 𝑢1, … … 𝑢𝑛 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 
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 𝛽 (𝑢𝑖 − 1, 𝑢𝑖) >  0 𝑖1, 2 … … 𝑛 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑎 𝑓𝑢𝑧𝑧𝑦 𝑝𝑎𝑡ℎ 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑎 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑜𝑓  
𝑎 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑎𝑟𝑐 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 𝑖𝑡𝑠 𝑙𝑒𝑛𝑔𝑡ℎ. 

 Notation 1.5: 𝐼𝑓 𝑃 𝑖𝑠 𝑎 𝑐𝑦𝑐𝑙𝑒 𝑎𝑛𝑑 𝑢0 =  𝑢𝑛 𝑎𝑛𝑑 𝑛 ≥  3, 𝑡ℎ𝑒𝑛 𝑃 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑎 𝑓𝑢𝑧𝑧𝑦 𝑐𝑦𝑐𝑙𝑒 (𝑓 −
 𝑐𝑦𝑐𝑙𝑒) 𝑖𝑓 𝑖𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 𝑜𝑛𝑒 𝑤𝑒𝑎𝑘𝑒𝑠𝑡 𝑎𝑟𝑐. 
  

Notation 1.6: A fluffy way P in a fluffy chart G covers all the vertices of G totally once then the way is 

called Hamiltonian Fuzzy Path. 

Notation 1.7:    

𝐴 𝑓𝑢𝑧𝑧𝑦 𝑐𝑦𝑐𝑙𝑒 𝐶 𝒊𝑛 𝑎 𝑓𝑢𝑧𝑧𝑦 𝑔𝑟𝑎𝑝ℎ 𝐺 𝑐𝑜𝑣𝑒𝑟𝑠 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑜𝑓 𝐺 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑙𝑦 𝑜𝑛𝑐𝑒 𝑒𝑥𝑐𝑒𝑝𝑡 𝑡ℎ𝑒 𝑒𝑛𝑑  
𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑐𝑦𝑐𝑙𝑒 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛 𝑓𝑢𝑧𝑧𝑦 𝑐𝑦𝑐𝑙𝑒.  
 

Notation 1.8: 𝑭𝑢𝑧𝑧𝑦 𝐺𝑟𝑎𝑝ℎ 𝐺: (𝛼, 𝛽) 𝑖𝑠 𝑠𝑎𝑖𝑑 𝑡𝑜 𝑏𝑒 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑖𝑓 𝛽 (𝑥, 𝑦)  = 𝛼(𝑥) ∧ 𝛼(𝑦) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 & 𝑦.  
 

Notation 1.9: 𝑇ℎ𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑎 𝑓𝑢𝑧𝑧𝑦 𝑔𝑟𝑎𝑝ℎ 𝑖𝑠 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝐺𝑐 ∶ (𝛼𝑐, 𝛽𝑐) , 𝑤ℎ𝑒𝑟𝑒 𝛼𝑐 𝐼 =
 𝛼 𝑎𝑛𝑑 𝛽𝑐 (𝑥, 𝑦)  = ∧ [ 𝛼 (𝑥), 𝛼(𝑦)]  −  𝛽(𝑥, 𝑦) . 
 

2. RESULTS & APPLICATIONS  

Notation 2.1: Kn is a finished fuzzy_chart with 'n' vertices.  

 

Example 2.2: 𝐼𝑓 𝐺𝑓 𝑖𝑠 𝑎 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑣𝑒𝑟𝑡𝑒𝑥 𝑓𝑢𝑧𝑧𝑦 𝑔𝑟𝑎𝑝ℎ, 𝑡ℎ𝑒𝑛 𝑒𝑣𝑒𝑟𝑦 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑎  

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝛾 − 𝑓𝑖𝑥𝑒𝑑 𝑣𝑒𝑟𝑡𝑒𝑥 𝑜𝑓 𝐺𝑓(𝑣)
 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣. 
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Theorem 2.4: For every n ≥ 1, Complete fuzzy graph can be partitioned into n Hamiltonian complete fuzzy 

cycles C2n+1.  

Proof: Let G = K2n+1 be a complete fuzzy graph.  

𝐿𝑎𝑏𝑒𝑙 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 0,1,2, 3, … . ,2𝑛 − 1. 
𝐼𝑛 𝑡ℎ𝑖𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑓𝑢𝑧𝑧𝑦 𝑔𝑟𝑎𝑝ℎ 𝑓𝑜𝑟𝑚 𝑡ℎ𝑒 𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑓𝑢𝑧𝑧𝑦 𝑐𝑦𝑐𝑙𝑒𝑠 𝑎𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑠. 

(𝐶1)  𝑖𝑠 𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑓𝑢𝑧𝑧𝑦 𝑐𝑦𝑐𝑙𝑒 𝑡ℎ𝑎𝑡 𝑖𝑠  
(𝐶1), 0,2𝑛 − 1,1,2𝑛 − 2,2,2𝑛 − 3, … 𝑛 − 1, 𝑛, 

(𝐶2), 1,0,2,2𝑛 − 1,3,2𝑛 − 2, … , 𝑛, 𝑛 + 1, 
(𝐶3) ,2,1,3,0,4,2𝑛 − 1, … . . 𝑛 + 1, 𝑛 + 2, 

. . .  

… . 
(𝐶𝑛) 𝐼, 𝑛 − 1, 𝑛 − 2, 𝑛, 𝑛 − 3, 𝑛 + 1, 𝑛 − 4, … . .2𝑛 − 2,2𝑛

− 1, . (𝑠𝑜, 𝑒𝑎𝑐ℎ 𝑡𝑖𝑚𝑒 𝑤𝑒 𝑎𝑑𝑑 1 𝑡𝑜 𝑒𝑣𝑒𝑟𝑦 𝑙𝑎𝑏𝑒𝑙 𝑎𝑛𝑑 𝑓𝑖𝑛𝑑 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑚𝑜𝑑𝑢𝑙𝑜 2𝑛). 
𝐹𝑜𝑟 𝑒𝑥𝑎𝑚𝑝𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑜𝑓 𝐾9 𝑤𝑖𝑡ℎ, 0,1,2,3,4,5,6,7 (𝑛 = 4) 𝑎𝑛𝑑 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒 𝑖𝑡 𝑖𝑛𝑡𝑜  

0 7 1 6 2 5 3 4. 
1 0 2 7 3 6 4 5. 
2 1 3 0 4 7 5 6. 

3 2 4 1 5 0 6 7. (𝑦𝑜𝑢 𝑐𝑎𝑛 𝑣𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑒 𝑡ℎ𝑖𝑠 𝑏𝑦 𝑝𝑢𝑡𝑡𝑖𝑛𝑔 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 0 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 2𝑛
− 1 𝑐𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒 𝑎𝑙𝑜𝑛𝑔 𝑎 𝑐𝑖𝑟𝑐𝑙𝑒 𝑤𝑖𝑡ℎ 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒. )  

Corollary 2.5: For any n ≥1, K2n can be partitioned into n Hamiltonian complete fuzzy paths P2n-1 

Proof: Take the composition of IK2n+1 of theorem 1 and delete the vertex K2n+1 will become K2n, While each 

Hamiltonian complete fuzzy path P2n-1 of K2n  

 

3. Cycles in regular fuzzy graph 

Notation 3.1: 

𝐸𝑣𝑒𝑟𝑦 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑓𝑢𝑧𝑧𝑦 𝑔𝑟𝑎𝑝ℎ 𝐺 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑟 –  𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑖𝑓 𝑒𝑣𝑒𝑟𝑦 𝑣𝑒𝑟𝑡𝑒𝑥 𝑜𝑓 𝐺 ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑟  
Notation 3.2: 𝐴 3 −  𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑓𝑢𝑧𝑧𝑦 𝑔𝑟𝑎𝑝ℎ 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑐𝑢𝑏𝑖𝑐 𝑓𝑢𝑧𝑧𝑦 𝑔𝑟𝑎𝑝ℎ  
 

Notation 3.3: 𝐴 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑓𝑢𝑧𝑧𝑦 𝑔𝑟𝑎𝑝ℎ 𝑔 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑟 –  𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑖𝑓 𝑒𝑣𝑒𝑟𝑦 𝑣𝑒𝑟𝑡𝑒𝑥 𝑜𝑓 𝐺 ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑟  
 

Notation 3.4: 1 − 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑓𝑢𝑧𝑧𝑦 𝑔𝑟𝑎𝑝ℎ 𝑖𝑠 𝑎 𝑠𝑝𝑎𝑛𝑛𝑖𝑛𝑔 1 −
 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑓𝑢𝑧𝑧𝑦 𝑠𝑢𝑏 𝑔𝑟𝑎𝑝ℎ 𝑜𝑓 𝐺.  
 

. . 

… 

…. 

2𝑛 − 2;  0,2𝑛 − 3;  1,2𝑛 − 4; . . . 𝑛 − 2, 𝑛 − 1.  
 

Theorem 3.6: Let G (α, β) be a complete fuzzy graph where G*: (V, E) is an odd cycle. Then G is regular 

iff β is a constant function.  

𝑃𝑟𝑜𝑜𝑓: 𝐼𝑓 𝛽 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑠𝑎𝑦 𝛽 (𝑢, 𝑣)  = 𝑐, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 ∈ 𝐸, 𝑡ℎ𝑒𝑛 𝑑(𝑣) = 2𝑐, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑣 
∈ 𝑉. 𝑆𝑜, 𝐺 𝑖𝑠 𝑟𝑒𝑔𝑢𝑙𝑎𝑟. 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑒𝑙𝑦, 𝑠𝑢𝑝𝑝𝑜𝑠𝑒 𝑡ℎ𝑎𝑡 𝐺 𝑖𝑠 𝑎 𝑘 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑓𝑢𝑧𝑧𝑦 𝑔𝑟𝑎𝑝ℎ. 
𝐿𝑒𝑡 𝑒1, 𝑒2, … , 𝑒2𝑛 + 1 𝑏𝑒 𝑡ℎ𝑒 𝑒𝑑𝑔𝑒𝑠 𝑜𝑓 𝐺 ∗  𝑖𝑛 𝑡ℎ𝑎𝑡 𝑜𝑟𝑑𝑒𝑟. 
𝐿𝑒𝑡 𝛽(𝑒1)  =  𝑘1. 𝑆𝑖𝑛𝑐𝑒 𝐺 𝑖𝑠 𝑘 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟, 
𝛽(𝑒2)  =  𝑘 − 𝑘1  
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𝛽(𝑒3)  =  𝑘 −  (𝑘 − 𝑘1)  =  𝑘1  
𝛽(𝑒4)  =  𝑘 −  𝑘1  
𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛. 
𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝛽(𝑒𝑖)  =  𝑘1, 𝑖𝑓 𝑖 𝑖𝑠 𝑜𝑑𝑑  
=  𝑘 − 𝑘1 𝑖𝑓 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛  
𝐻𝑒𝑛𝑐𝑒 𝛽(𝑒1)  =  𝛽(𝑒2𝑛 +  1) = 𝑘1. 
𝑠𝑜 𝑖𝑓 𝑒1 𝑎𝑛𝑑 𝑒2𝑛 + 1 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑎𝑡 𝑎 𝑣𝑒𝑟𝑡𝑒𝑥 𝑢, 𝑡ℎ𝑒𝑛 𝑑(𝑢) = 𝑘. 𝑠𝑜 𝑑(𝑒1)  +  𝑑(𝑒2𝑛 + 1)  =  𝑘  
𝑖𝑒 𝑘1 +  𝑘1 =  𝑘  
2𝑘1 =  𝑘  
𝑘1 =  𝑘/2. 
𝐻𝑒𝑛𝑐𝑒 𝑘 − 𝑘1 = 𝑘/2. 𝑠𝑜 𝛽(𝑒𝑖)  =  𝑘/2, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖. 𝐻𝑒𝑛𝑐𝑒 𝛽 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 
 

Theorem 3.7: Let 𝐺 (𝛼, 𝛽) be a finished fluffy chart where 𝐺 ∗: (𝑉, 𝐸) is an even cycle. At that point G is 

normal if β is a steady capacity or substitute edges have same enrollment esteems.  

 

Validation: If either β is a steady capacity or substitute edges have same enrollment esteems, at that point 

G is a normal  

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑒𝑙𝑦, 𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝐺 𝑖𝑠 𝑎 𝑘 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑓𝑢𝑧𝑧𝑦 𝑔𝑟𝑎𝑝ℎ. 
𝐿𝑒𝑡 𝑒1, 𝑒2 , … , 𝑒2𝑛 𝑏𝑒 𝑡ℎ𝑒 𝑒𝑑𝑔𝑒𝑠 𝑜𝑓 𝑒𝑣𝑒𝑛 𝑐𝑦𝑐𝑙𝑒 𝐺 ∗  𝑖𝑛 𝑡ℎ𝑎𝑡 𝑜𝑟𝑑𝑒𝑟. 
𝑃𝑟𝑜𝑐𝑒𝑒𝑑𝑖𝑛𝑔 𝑎𝑠 𝑖𝑛 𝑡ℎ𝑒𝑜𝑟𝑒𝑚, 
𝛽(𝑒𝑖)  =  𝑘1, 𝑖𝑓 𝑖 𝑖𝑠 𝑜𝑑𝑑  
=  𝑘 − 𝑘1 𝑖𝑓 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛  
𝑓 𝑘1 =  𝑘 − 𝑘1, 𝑡ℎ𝑒𝑛 𝛽 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 
𝑓 𝑘1 ≠  𝑘 − 𝑘1, 𝑡ℎ𝑒𝑛 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒 𝑒𝑑𝑔𝑒𝑠 ℎ𝑎𝑣𝑒 𝑠𝑎𝑚𝑒 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑣𝑎𝑙𝑢𝑒𝑠. 

That is G 

be a 3- regular complete fuzzy graph on a cycle G*, then by known theorem, either β is a constant function 

or alternate edges have same membership values.  

So there does not exist a unique edges xy such that 𝛽(𝑥𝑦) =∧ {𝛽(𝑢𝑣)/ 𝛽(𝑢𝑣) > 0}.  
Therefore, G is a complete fuzzy cycle.  

Hence by known lemma, G cannot be a complete fuzzy tree.  

 

Example 3.9  

Is a cubic complete fuzzy graph and G* is a cycle. Then G is a complete fuzzy cycle. Also, it cannot be a 

complete fuzzy tree. 

 

5. Complement of complete fuzzy cycles 

 
Theorem 4.1  

𝐿𝑒𝑡 𝐺 ∶ (𝛼, 𝛽) 𝑏𝑒 𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑓𝑢𝑧𝑧𝑦 𝑔𝑟𝑎𝑝ℎ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡
∗  𝑖𝑠 𝑎 𝑐𝑦𝑐𝑙𝑒 𝑤𝑖𝑡ℎ 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 𝑓𝑖𝑣𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠. 𝑇ℎ𝑒𝑛 (𝐺 ∗) 𝑐 𝑐𝑎𝑛𝑛𝑜𝑡 𝑏𝑒 𝑎 𝑐𝑦𝑐𝑙𝑒. 

𝑷𝒓𝒐𝒐𝒇: 𝐺𝑖𝑣𝑒𝑛 𝐺 ∗  𝑖𝑠 𝑎 𝑐𝑦𝑐𝑙𝑒 ℎ𝑎𝑣𝑖𝑛𝑔 𝑛 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑛 ≥ 6. 
𝑇ℎ𝑒𝑛 𝐺 ∗  𝑤𝑖𝑙𝑙 ℎ𝑎𝑣𝑒 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑛 𝑒𝑑𝑔𝑒𝑠. 
𝑠𝑖𝑛𝑐𝑒 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑜𝑓 𝐺 𝑎𝑟𝑒 𝑎𝑙𝑠𝑜 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝐺 𝑐. 
𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛 𝐺 𝑐 𝑖𝑠 𝑛. 𝐿𝑒𝑡 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑜𝑓 𝐺 𝑎𝑛𝑑 𝐺 𝑐 𝑏𝑒 𝑣1, 𝑣2, … , 𝑣𝑛. . 
𝑇ℎ𝑒𝑛 𝐺𝑐 𝑚𝑢𝑠𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑎𝑡𝑙𝑒𝑎𝑠𝑡 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑒𝑑𝑔𝑒𝑠. 
(𝑣1, 𝑣3), (𝑣1, 𝑣4), (𝑣1, 𝑣5), … . , (𝑣1, 𝑣𝑛); (𝑣2, 𝑣4), (𝑣2, 𝑣5), … . , (𝑣2, 𝑣𝑛); (𝑣3, 𝑣5), (𝑣3, 𝑣6), … , (𝑣3, 𝑣𝑛)  
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𝑠𝑖𝑛𝑐𝑒 𝑛 ≥ 6 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝐺 ∗  𝑤𝑖𝑙𝑙 𝑏𝑒 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑛. 𝑇ℎ𝑢𝑠 𝐺 𝑐 𝑤𝑖𝑙𝑙 𝑛𝑜𝑡 𝑏𝑒 𝑎 𝑐𝑦𝑐𝑙𝑒. 
 

Corollary 4.2:  

𝐿𝑒𝑡 𝐺 𝑏𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑓𝑢𝑧𝑧𝑦 𝑐𝑦𝑐𝑙𝑒 𝑤𝑖𝑡ℎ 6 𝑜𝑟 𝑚𝑜𝑟𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠. 𝑇ℎ𝑒𝑛 𝐺𝑐 𝑤𝑖𝑙𝑙 𝑛𝑜𝑡 𝑏𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑓𝑢𝑧𝑧𝑦 𝑐𝑦𝑐𝑙𝑒. 
 

6. Conclusion 

We have defined and studied two types of contractions, namely edge and neighborhood contraction in fuzzy 

graphs. We have discussed few basic results on the same and investigated these new topics on some special 

classes of fuzzy graphs. We have applied the big idea of domination to the networks which has been explained 

through an example. Our future work is to further extend this concept of contraction to other variants of 

domination and also to apply it for different types of K2n+1 Fuzzy graphs. 
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