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Abstract

In this paper, we define a new class of generalized contractive condition for
proving some common fixed point results for four mappings satisfying in
complete S-metric spaces. Our results generalize and unify some results in the
recent literature and illustrate the unique common fixed point of four self-maps
through some example.
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1.Introduction and Preliminaries

Banach’s contraction principle is most important results in theory of fixed point.
With this concept many mathematicians introduced various metric spaces like b-
metric, G-metric, D-metric etc., In addition to that Sedghi[l] introduced the S-
metric space and some fixed point theorems on it. He also introduced the D* metric
space from the D-metric space. Currently fixed point theory attracts many
researchers to discover various results on it. S-metric space is further extended by
K. Prudhvi, Animesh Gupta and so on. Many authours [2,3,4,5] define compatible
mappings to prove the unique common fixed point in S-metric spaces.

Definition 1.1:

Let J be a nonempty set. An S-metric space is a function

S: J3 — [0, ] that satisfies the following conditions for all r, s, t, b € J
(1) S(r,s,t) =0ifand onlyif r = s = t.
(2) S(r,s,t) < S(r,r,b) + S(s,s,b) + S(t,t,b)

The pair (J, S)is called on S-metric space.
(I) LetR be areal line. Then
S(r,s,t) =|r+t—2s|+|r—t|,
forallr,s,t,b € Ris a S-metric on R.
S(r,r,r)=lr+r—=2r|+|r—r|=0
S(r,s,t) =|r+t—2s|+ |r—t|
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S(r,s,t) <|r+b—=2r|+|r—>b|l+|s+b—2s|+|s—b|
+|t — b — 2t| + |t — b|
S(r,s,t) < S(r,r,b) + S(s,s,b) + S(¢t,t,b)
Taker =2,s=3,t =6,b =4
S(2,3,6)=12+6-23)|+[2—6|=6
S(2,2,4)=12+4-2Q2)| +[2—4| =4
S(3,3,4)=13+4-23)|+[3—4| =2
S(6,6,4) = |6+ 4 —2(6)| + |6 — 4] = 4
5(2,3,6) <5(2,2,4)+5(3,3,4) + S(6,6,4)
6 <4+2+4

6 <10

S(r,s,t) is a S-metric space.

Definition 1.2[1]:
Let (J, S) be an S-metric space and G C J. A sequence {u,} in Jconverges to u if

S (un, un,u) — 0 as n = oo, that is for every € > 0 there exists n, € N such that for

n = ny, S(un,un’u) < £. We denote lim,,_,,, u,, = u and we say that u is the limit of
{u,}in J.
Definition 1.3[1]:

Let (J, S) be an S-metric space and G € J. A sequence {u,}in J is said to
beCauchy sequence if for each € > 0, there exists n, € N such that
S(un, upu) < €, for eachn,m = ny.
Definition 1.4[2]:

Let (J,S) and (J’,S") be two S-metric space, and l: (J,S) — (J',S") be a
function. Then [ is said to be continuous at a point b € J if and only if for every
sequence Uy, in J, S(up, up, b) = 0 implies ' (1(wy), I(uy,), (b)) = 0. A function [ is
continuous at J if and only if it is continuous at all b € J.

Definition 1.5:
Let (J, S) be an S-metric space. A pair {l, k} is said to becompatible if only if
lim,,_, o, S(lku,, lku,, lku,) = 0, whenever {u, } is a sequence in J such that
lim,,_,, lu, = lim,_,, ku, = r for some r € J.
Lemma 1.6:
In an S-metric space, we have S(u, u, v) = S(v, v, u).
Lemma 1.7[3]:
Let (J, S) be an S-metric space. If there exist sequences {u, } and {v,}
such that lim,,_,,, 4, = u and lim,,_,,, v, = v, then lim,,_,o, S(u,, u,, v,) =
S(u,u,v).
Lemma 1.8[2]:

Let (J, S) be an S-metric space. If there exist two sequences {u,} and {v,}
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such that lim,,_,., S(u,, u,, v,) = 0, whenever {u,} is a sequence in X such that
lim,_, u, = r for some r € x, thenlim,,_,,, v,, = .

2. MAIN RESULTS
Theorem 2.1:
In a complete S-metric space (J,S), the self-maps arel,k,A and B with
I(J) € B(J),k(J) € A(J) and {l, A} and {k, B} are compatible. If
S(lu, v, kw) < p max{S(lu, lu, kw), S(lv, lv, Au), S(Au, Av, Bw),
S(kw, kw, Bw)} 2.1
Foreach,v,we J,0<p<1.
Also A and B are continuous.
Then [, k, A and B have a unique common fixed point in (J.
Proof:
Letuy € J.
Since I(J) € B(J), there exists u; € J such that lu, = Bu,.
Also, ku,; € A(J), we choose u, € J such that ku, = Au,.
In general, u,,,, € J is chosen such that lu,,, = Bu,,,;and u,,,, € J such that
kuzpir = Algnya.
{v,} € J is obtained such that
Von = lUpn = BUynyg
Von+1 = KUoni1 = AUz, nz=0
To prove:{v, } is a Cauchy sequence.
SWan Van Vans1) = Sugn, lugy, kugniq)
< p max{S(luzn, luzn, kuany1), S Wian, lugn, Agy),
S(Auzn, Auzn, Busnit), S(Kugni, kuzpner, Bugny1)}
= p max{S(Vzn, Von, Van+1), S Wan, Van, Van—1),
SWan—1,V2n—1,V2n)s S Wan+1, Van+1, Van) }
= p max{S(Wzn_1, Van-1,V2n), SW2n, Von, Van+1)} (2.2)
If S(Wan, Van, Van+1) > S(V2n-1, Van-1, V2n). then by (2.2)
S(”an Vans v2n+1) < p S(”an Vans v2n+1)
which is a contradiction.
Hence S(Van, Van, Van+1) < S(Vzn-1, Van-1, V2n)
Therefore by (2.2)
SWan Vans Vant1) < P S(Wan-1, Van-1, Van) (2.3)
SWan-1,V2n-1,V2n) = S(Wan, Vons Von-1)
= S(lugn, lugp, kzn—4)
< p max{S(luyp, iy, ktzn_1), S LUz, LUz, Altsyy,),
S(Auyy, AUgy, Busn_1), S(Kugn_q, kUsn_1, Bugn_1)}

=p maX{S(UZn» Vons v2n—1)» S(UZn: Vo Van-1)»
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SWan-1,V2n—1, V2n-2), SWan—1, V2n—1, V2n—2)}
= p max{S(Vzn-2, Van-2, Van-1), SWzn, Van, Van-1)} (2.4)
If S(V2n, Von, Van-1) > S(Van-2, Van-2, Van-1). then by (4)
S(”Zn: Vons v2n—1) <p S(”an Von vZn—l)
which is a contradiction.
Hence S(V2n-1, Van-1, V2n) < S(Van-2, Van—2, Van-1)
Therefore, by (4)
S(Wan-1,V2n-1,V2n) <D S(Wan—2) Van-2, Van-1) (2.5)
From (2.3) and (2.5)
S(Un: Un» vn—l) = pS(vn—llvn—llvn—Z)’ n=2
where 0 <p < 1.
Hence for n > 2, it follows that
S(Un: Uny vn—l) == pn—l S(v1, V1, V) (2.6)
For n > m, by triangle inequality in S-metric space we have
S(Un: Un vm) = ZS(Um» Um, Um+1) + 2S(Um+1r Um+1 vm+2) + -
+2S(Vn_1, V1, Vn)

From (2.6) we have
SV Uy V) < 2(0™ + p™H 4 -+ ™) S(vy, 4, vp)

<2p™(A+p+p’+-) Sy, vy, vp)

< Z%S(Ul,vl,vo) —»0asm-00<p<1

Therefore {v,} is a Cauchy sequence.
Since (J is a complete S-metric space for some v € J such that

lim lu,, = lim Bu,,,; = lim ku,,,; = lim Au,p,,, = v

n—oo n—oo n—oo n—oo
Claim:v is a common fixed point of [, k, A and B.
Since A is continuous,

lim,, o A%Uypip = Av, lim,_ o Alu,, = Av
Since [ and A are compatible,
lim S(lAu,,, lAu,,, Alu,,) =0

n—->oo

By lemma 1.8,

lim [Au,, = Av
n—oo

Putu =v = Au,,, and w = u,, 4 in (1)
S(lAuZn' lAuZn' ku2n+1) = p maX{S(lAU'Zn: lAuZn: ku2n+1):
S(lAuy,, lLAuy,, A%uy,),
S(AZuZTl' AZuZn' Bu2n+1);
S(ku2n+1r ku2n+1! Bu2n+1)} (2-7)
In (2.7), apply upper limit n —» o
S(Av,Av,v) = %1_{1010 S(lAuUyy, AUy, kUgy 1)

< p max{lim S(lAuy,, AUy, ktspn 1),
n—-oo
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lim S(lAu,,,, lAu,,, A%u,,), lim S(A%u,,,, A%u,,, Bu,,.1),
n—o0o

n—>oo

lim S(kuyy 11, Kiony1, Bugny1)}

n—c
S(Av,Av,v) < pmax{S(Av, Av,v), S(Av, Av, Av),S(Av, Av,v),S(v,v,v)}

=p S(Av, Av,v)
S(Av,Av,v) < p S(Av,Av,v) , 0 < p < 1 it follows that Av = v.
Since B is continuous,

lim,, o B*uy,,1 = Bv, lim,_ . Bku,,.q = Bv
Since k and B are compatible,
lim S(kBuspni1, kBusniq, Bkusni,) =0

n—->oo

By lemma 1.8,

lim kBuy,,, = Bv
n—oo

Putu = v = uy, and z = Bu,,,, in (2.1)
S(luZn' luan kBu2n+1) < p maX{S(luZn: luZn: kBu2n+1):
S Mgy, luzn, Atay),
S(Auzn, Ay, B*Upn 1),
S(kBuzps1, kBUznir, B*Upni1)} (2.8)
In (2.8), apply upper limit when n — oo
S(v,v,Bv) = 1111_r)r010 S(lugp, lugy, kBUgniq)

< p max{lim S(lu,,,, luy,, kBUyy 1),
n—oo
lim S(lu2n, lu2n; AuZn)r
n—oo
llm S(Auz-n, AuZn; Bzu2n+1);
n—oo

lim S(kBuyp i1, kKBUzpy1, B2 Upni1)}

n-c
< p max{S(v,v, Bv),S(v,v,v),S(v,v,Bv),S(Bv, Bv, Bv)}
<p{S(,v,Bv)}
S(v,v,Bv) < p{S(v,v,Bv)} ,0 < p < 1itfollows that Bv = v.
Also, we can apply (1)
S, v, kuyp,q) < pmax{S(v, v, kuyy,1), S, v, Av),
S(Av, Av, Bugny1), S(Kugny1, kUzpniq, Bugny1)} (2.9)
In (2.9), apply upper limit n - o as Av = Bv = v
S(l,lv,v) < pmax{S(lv, lv,v),S(lv, lv,v),S(Av, Av,v), S(v,v,v)}
= pS(lv, lv,v)
Since0 <p <1, S(v,lv,v) =0and lv =v
Byusing (2.1)and Av =Bv =1lv =v
S, v, kv) =Sy, v, kv)
< pmax{S(lv, v, kv), S(lv, lv, Av), S(Av, Av, Bv), S(kv, kv, Bv)}
= pmax{S(v,v, kv),S(v,v,v),S(v,v,v),S(kv, kv, v)}
=p S, v, kv)
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S(w,v,kv) =0and kv = v
Av = Bv = lv = kv = v is proved
If there exist another common fixed point u € J of all [, k, A and B, then
S(tu,u,v) = S(lu, lu, kv)
< p max{S(lu, lu, kv), S(lu, lu, Au), S(Au, Au, Bv), S(kv, kv, Bv)}
= pmax{S(u,u, v),S(u,u,u),S(u,u,v),S(v,v,v)}

=pS(u,u,v)
which implies that S(u,u,v) =0andu = v
Therefore, v is a unique common fixed point of [, k, A and B.
Hence proved.
The following example explains the theorem (2.1)
Example 2.2:

Let y = [0,1] be S-metric with S(u, v,w) = |u — w| + |v — w|. Define [, k, A

and B on J by

8 4 2
w=(3) kw=(3), A4w=(3) Bw=3
Obviously, I(J) € B(J) and k(J) S A(J).
Furthermore, the pairs {l, A} and {k, B} are compatible mappings.
Solution:
Also for each u, v,w € J, we have
S(lu, v, kw) = |lu — kw| + |[lv — kw|
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<ﬂm {S(lu, v, kw), S(lv, lv,Au),S(Au,Av,BW)}
=729 M S(kw, kw, Bw)

where 40/729 <p<lL

Thus [, k, A and B satisfy the conditions given in theorem 2.1.And 0 is the unique
common fixed point of [, k, A and B.
CONCLUSION
In this paper, we proved the common fixed point theorem for the pairs
of compatible mappings. With the help of complete S-metric space the common
fixed point theorem were found and the unique common fixed point of four self-
maps were also identified. Numerical examples were also illustrated.
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