
European Journal of Molecular & Clinical Medicine 

 

ISSN 2515-8260 Volume 10, Issue 01, 2023 

 

3546 
 

APPLICATIONS OF CUBIC ROOT FUZZY SETS IN 

DECISION MAKING APPROACH 

 

K.Balamurugan 

Assistant Professor, Department of Mathematics, 

M.A.M school of Engineering, Tiruchirappalli-621105, 

Tamilnadu, India.  Email:bala.algebra@gmail.com 

Dr.R.Nagarajan 

Professor, Department of Science and Humanities, 

J.J.College of Engineering and Technology, 

(Sowdambikka Group of Instituitions) 

Tiruchirappalli-620009.Tamilnadu, India. 

Email:rajenagarajan1970@gmail.com 

 

ABSTRACT: The Cubic root fuzzy set is the extension of fuzzy set. In this paper, we  

investigate various algebraic structures of  cubic root fuzzy set (CR-fuzzy set) which is an 

extension of fuzzy set. Various operations, score function, accuracy functions and some 

standard results to be proved based on CR-fuzzy set. Finally, we propose applications of CR-

fuzzy set in decision making approach with suitable example. 
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1.Introduction: In 1965, Zadeh [19] introduced uncertainty sets. After the introduction of the 

idea of fuzzy sets, several researches were conducted on the generalizations of fuzzy sets. 

The integration between fuzzy sets and some uncertainty approaches such as soft sets and 

rough sets have been analysed in [1, 4, 8]. The idea of intuitionistic fuzzy set has been 

introduced by Atanassov [3] as a generalization concept of uncertainty sets. The intuitionistic 

uncertainty set theory is applicable in various application areas, such as algebraic structures, 

control systems and various engineering fields. Many researchers have worked various 

applications of intuitionistic uncertainty set such as medical application, real life situations, 

education and networking [10–12]. Recently, Yager [18] launched a nonstandard uncertainty 

set referred to as Pythagorean uncertainty set which is the generalization of intuitionistic 

uncertainty sets. The construct of Pythagorean uncertainty sets can be used to characterize 

uncertain information more sufficiently and accurately than intuitionistic uncertainty set. 

Garg [9] presented a developed score function for the ranking order of interval-valued 

pythagorean fuzzy sets. Ibrahim et al. [13] defined a new generalized Pythagorean 

uncertainty set is called (3, 2)-Fuzzy sets. In 2020, fermatean  uncertainty sets proposed by 

Senapati and Yager [17], can handle uncertain information more easily in the process of 

decision making. They also discussed basic operations over the fermatean uncertainty sets. 

The main advantage of fermatean fuzzy sets is that it can describe more uncertainties than 

pythagorean fuzzy sets, which can be applied in many decision-making problems. The 

relevant research can be referred to [15, 16]. K.Balamurugan and R.Nagarajan [6] defined 

some algebraic attributes of (3,2)- fuzzy set structures. Al-shami [2] introduced a new 

mailto:rajenagarajan1970@gmail.com


European Journal of Molecular & Clinical Medicine 

 

ISSN 2515-8260 Volume 10, Issue 01, 2023 

 

3547 
 

extensions of fuzzy sets called square-root fuzzy sets (briefly, SR-Fuzzy sets). Y.A.Salih et.al 

[14] introduced a new type of generalised fuzzy sets is called cubic root (briefly, CR-Fuzzy 

set). They also defined operations, score function and accuracy function of CR-fuzzy set with 

several properties. In this article, we  investigate various algebraic structures of  cubic root 

fuzzy set (CR-fuzzy set) which is an extension of fuzzy set. Various operations, score 

function , accuracy functions and some standard results to be proved based on CR-fuzzy set. 

Finally, we propose  applications of CR-fuzzy set in decision making approach with suitable 

example. 

 

2.PREMINARIES AND VARIUOS BASIC CONCEPTS 

Before we present our main concepts and results, we recall the definitions of 

Intuitionistic fuzzy set (IFS) and Fermatean fuzzy set (FFS). 

Definition 2.1: (Intuitionistic fuzzy set) LetX be a nonempty set. An intuitionistic fuzzy set 

A in X is an object having the form A = {〈x, μA(x), νA(x)〉/x ∈ X} , where the 

functions μA(x), νA(x): X → [0,1] define respectively, the degree of membership and degree 

of non-membership of the element x ∈ X to the set A , which is a subset of  X , and for every 

element x ∈ X, 0 ≤ μA(x) + νA(x) ≤ 1 . Furthermore, we have πA(x) = 1 − μA(x) − νA(x) 

called the intuitionistic fuzzy set index or hesitation margin of x  in A .πA(x)is the degree of 

indeterminacy of x ∈ X to the IFS A and πA(x) ∈ [0,1] i.e., πA(x): X → [0,1] and  

0 ≤ πA(x) ≤ 1 for every x ∈ X.πA(x) expresses the lack of knowledge of whether x belongs 

to IFS or not. 

Definition 2.2: (Pythagorean Fuzzy set) A Pythagorean fuzzy set D on a set X is defined by 

D = {(x, (αD(x), βD(x))/x ∈ X}where αD: X → [0,1] is the degree of membership and 

βD: X → [0,1] is the degree of non – membership of 𝑥 ∈ 𝑋, respectively which fulfil the 

condition 0 ≤ αD
2(𝑥) + 𝛽𝐷

2(𝑥) ≤ 1 for all 𝑥 ∈ 𝑋. 

 

Definition 2.3: (Fermatean fuzzy set) Let ‘X’ be a universe of discourse A. Fermatean fuzzy 

set ‘F’ in X is an object having the form F = {〈x, mF(x), nF(x)〉/x ∈ X} where 

mF(x): X → [0,1]andnF(x): X → [0,1], including the condition 

0 ≤ (mF(x))
3

+ (nF(x))
3

≤ 1 for all x ∈ X. The numbers mF(x)signifies the level (degree) 

of membership and nF(x)indicate the non-membership of the element ‘x’ in the set F. 

 

Definition 2.4: [(3,2)- fuzzy set]Let X be a universal set. Then the (3, 2)-fuzzy set (briefly, 

(3, 2)-FS) D is defined by D = {〈x, αD(x), βD(x)〉/x ∈ X}where αD: X → [0,1] is the degree 

of membership and βD: X → [0,1]is the degree of non – membership of x ∈ X to 𝐷, with the 

condition0 ≤ (αD(x))
3

+ (βD(x))
2

≤ 1the degree of indeterminacy of x ∈ X to 𝐷 is defined 

by πD(x) = 1 − [(αD(x))
3

+ (βD(x))
2

]. 

In this section ,we discuss the notion of cube root fuzzy set (briefly, CR-FS) and study 

its factors in detail. 

For computations, we use only five decimal places in the whole paper. 
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Let X be a universal set such that  αD: X → [0,1] and βD: X → [0,1] are mapping. 

Then, the CR-fuzzy set ‘D’ is defined by D = {〈x, αD(x), βD(x)〉/x ∈ X}……………...(1) 

where αD(x)is the degree of membership and βD(x)is the degree of non – membership of x ∈

X, such that 0 ≤ (αD(x))
3

+ √βD(x) ≤ 1……………………………………………(2). 

Then, there is a degree of indeterminacy of x ∈ X to D defined by 

πD(x) = 1 − [(αD(x))
3

+ √βD(x)]………………………………………………………..(3) 

It is obvious that (αD(x))
3

+ √βD(x) + πD(x) = 1……………………………………….(4) 

Otherwise, πD(x) = 0 whenever (αD(x))
3

+ √βD(x) = 1. In the interest of simplicity, we  

Shall mention the symbol D = (αD, βD) for the CR- fuzzy set 

D = {〈x, αD(x), βD(x)〉/x ∈ X}.The space of CR-fuzzy membership grades is displaced in 

figure-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparison of grades space of IFSs, PFSs, FFSs, (3,2)-FSs and CR-FSs. 

Author Set domain Membership function 

L.A.Zadeh[1965] Fuzzy set 0 ≤ μ(x) ≤ 1 

K.Atanassov[1983] Intuitionistic fuzzy set 0 ≤ μ(x) + ν(x) ≤ 1 

F. Smarandache [1998] Neutrosophic fuzzy set 0 ≤ T(x) + I(x) + F(x) ≤ 3 

R.R.Yager, [2013] Pythagorean Fuzzy set 0 ≤ (μ(x))
2

+ (ν(x))
2

≤ 1 

Senapati and Yager (2020) Fermatean fuzzy set 0 ≤ (μ(x))
3

+ (ν(x))
3

≤ 1 

H. Z. Ibrahim.etal [2022] (3,2)- fuzzy set 0 ≤ (μ(x))
3

+ (ν(x))
2

≤ 1 

H. Z. Ibrahim.etal [2022] Square root fuzzy set 0 ≤ (μ(x))
2

+ √ν(x) ≤ 1 

H. Z. Ibrahim.etal [2022] Cubic root fuzzy set 0 ≤ (μ(x))
3

+ √ν(x) ≤ 1 
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Figure-1 
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Definition 2.5: Let D1 = (αD1
, βD1

) and D2 = (αD2
, βD2

) be two CR-Fuzzy sets. Then  

(i) D1 = D2 if and only if  αD1
=  αD2

 and βD1
= βD2

. 

(ii) D1 ≥ D2 if and only if  αD1
≥ αD2

 and βD1
≤ βD2

. 

Example 2.6 

(i) If D1 = (0.2,0.9) and D2 = (0.2,0.8)for S = {x}then D1 = D2. 

(ii)If D1 = (0.3,0.9) and D2 = (0.2,0.94 )for S = {x} then αD1
≥ αD2

 and βD1
≤ βD2

. 

 

Definition-2.7: Let D1 = (αD1
, βD1

) and D2 = (αD2
, βD2

) be two CR-Fuzzy sets. Then 

(i) D1 ∩ D2 = (min{αD1
, αD2

}, max{βD1
, βD2

}) 

(ii) D1 ∪ D2 = (max{αD1
, αD2

}, min{βD1
, βD2

}) 

(iii) D1
C = ((βD1

)
6

, √αD1
) . 

Note that (√(β𝐷)62
+ √(α𝐷)24

) = (β𝐷)3 + √αD1
 

             = (0.3)3 + √0.9 = 0.97568 < 1. 

So D1
C
 is a CR-fuzzy set. 

 It is obvious that (D1
C)

c
= (βD1

6, √αD1
4 )

C
= (αD1

, βD1
)= D1. 

Remark2.8: It is noticed that (DC)c = D. This shows a validity of complementary law in  

CR-Fuzzy sets. 

Example 2.9: Assume that D1 = (αD1
= 0.42, βD1

= 0.54) and 

D2 = (αD2
= 0.45, βD2

= 0.57)are both CR-Fuzzy sets for S = {x}.Then 

(i) D1 ∩ D2 = (min{αD1
, αD2

}, max{βD1
, βD2

}) 

              = (min{0.42,0.45}, max{0.54,0.57}) 

         = (0.42 , 0.57). 

(ii) D1 ∪ D2 = (max{αD1
, αD2

}, min{βD1
, βD2

}) 

                          = (max{0.42,0.45}, min{0.54,0.57}) 

         = (0.45 , 0.54) 

 

(iii) D1
C = ((0.54)6, √0.42

4
) 

 

3.SOME STANDARD RESULTS IN CR- FUZZY SET STRUCTURES 

Theorem3.1 :(Commutative law) Let D1 = (αD1
, βD1

) and D2 = (αD2
, βD2

) be two CR-

Fuzzy sets. Then the following properties hold; 

(i) D1 ∩ D2 = D2 ∩ D1 

(ii) D1 ∪ D2 = D2 ∪ D1 

Proof: From the definition-2, we can obtain the following 

(i) D1 ∩ D2 = (min{αD1
, αD2

}, max{βD1
, βD2

}) 
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        = (min{αD2
, αD1

}, max{βD2
, βD1

}) 

        = D2 ∩ D1 

(ii) The proof is similar to (i). 

Theorem-3.2: A Cube Root fuzzy subset D = {x, αD(x), βD(x)} of a group G is cube root 

fuzzy subgroup of G if and only if αD
3(xy−1) ≥ min{αD

3(x), αD
3(y)} and  

√β𝐷(xy−1) ≤  max{√β𝐷(x), √β𝐷(y)}for all x, y ∈ G. 

Proof: Let D = {x, αD(x), βD(x)/ x ∈ G, αD
3(x) + √β𝐷(x) ≤ 1} be a cube root fuzzy 

subgroup of G. Then for all x, y ∈ G, 

αD
3(xy−1) ≥ min{αD

3(x), αD
3(y−1)}= min{αD

3(x), αD
3(y)} and  

√β𝐷(xy−1) ≤ max{√β𝐷(x), √β𝐷(y−1)}= max{√β𝐷(x), √β𝐷(y)}. 

Conversely, suppose that αD
3(xy−1) ≥ min{αD

3(x), αD
3(y)} and  

√β𝐷(xy−1) ≤  max{√β𝐷(x), √β𝐷(y)}for all x, y ∈ G. Then 

αD
3(xy) = αD

3(x(y−1)−1) ≥ min{αD
3(x), αD

3(y−1)} =  min{αD
3(x), αD

3(y)} 

Thus αD
3(xy) ≥  min{αD

3(x), αD
3(y)}……………. (1) 

Similarly, √β𝐷(xy) ≤  max{√β𝐷(x), √β𝐷(y)} ………………(2) 

Next, αD
3(x−1) = αD

3(ex−1) ≥  min{αD
3(e), αD

3(x)} = αD
3(x) 

i.e. αD
3(x−1) ≥ αD

3(x)………………….(3) 

Similarly, √β𝐷(x−1) ≤ √β𝐷(x)…………..(4).  

The inequalities (1) to (4), show that Dis cube root fuzzy subgroup of G. 

Theorem-3.3: Let D = {x, αD(x), βD(x)} be a cube root fuzzy subgroup of G. Then  

αD
3(xm) ≥ αD

3(x)and√β𝐷(xm) ≤ √β𝐷(x)for all x ∈ G and m ∈ N. 

Proof: We prove this theorem by mathematical induction method. Suppose x ∈ G, then  

√β𝐷(x2) = √β𝐷(xx) ≤  max{√β𝐷(x), √β𝐷(x)}=√β𝐷(x). 

Therefore, the inequality is valid for m = 2. Assume that the theorem is true for m = n − 1. 

That is, √β𝐷(xn−1) ≤ √β𝐷(x).Then , 

√β𝐷(xn) = √β𝐷(xxn−1) ≤  max {√β𝐷(x), √β𝐷(xn−1)} 

           ≤  max {√β𝐷(x), √β𝐷(xn−1)} ≤ √β𝐷(x) 

Thus, by induction principle, we have √β𝐷(xn) ≤ √β𝐷(x), for all m ∈ N. 

Similarly, we can show αD
3(xm) ≥ αD

3(x), for all m ∈ N. 

 

Theorem-3.4: Let D = {x, αD(x), βD(x)} be a cube root fuzzy subgroup of G. If  

αD(x1) ≠ αD(x2)andβD(x1) ≠ βD(x2), for some x1,x2 ∈ G , then  

αD
3(x1x2)= min{αD

3(x1), αD
3(x2)}and √β𝐷(x1x2) ≤  max{√β𝐷(x1), √β𝐷(x2)}. 

Proof: Suppose that for some x1,x2 ∈ G. We have αD(x1) < αD(x2); then obviously  
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αD
3(x1) < αD

3(x2). Consider , 

αD
3(x1) = αD

3(x2
−1x2x1) ≥ min{αD

3(x2
−1), αD

3(x2x1)} 

   ≥ min{αD
3(x2), αD

3(x1x2)}…………………..(1) 

Since αD
3(x1) < αD

3(x2), therefore from relation (1) we obtain αD
3(x1) ≤ αD

3(x1x2)…(2) 

Also, αD
3(x1x2) ≥ min{αD

3(x1), αD
3(x2)} = αD

3(x1). That is αD
3(x1x2) ≥ αD

3(x1)….(3) 

From (2) and (3), we have αD
3(x1x2) = αD

3(x1) = min{αD
3(x2), αD

3(x1)}…….(4) 

Similarly, αD
3(x1x2) = min{αD

3(x2), αD
3(x1)} if αD

3(x1) > αD
3(x2). 

Next, assume that βD(x1) < βD(x2); then clearly √β𝐷(x1) < √β𝐷(x2). 

Consider, √β𝐷(x2) = √β𝐷(x1
−1x1x2) ≤  max{√β𝐷(x1

−1), √β𝐷(x1x2)} 

          = max{√β𝐷(x1), √β𝐷(x1x2)}………… (5) 

Since √β𝐷(x1) < √β𝐷(x2), therefore from relation (1) , 

we obtain√β𝐷(x2) ≤ √β𝐷(x1x2)…………..(6) 

Also, √β𝐷(x1x2) ≤  max{√β𝐷(x1), √β𝐷(x2)}=√β𝐷(x2), that is √β𝐷(x1x2) ≤ √β𝐷(x2)..(7) 

From (6) and (7), we have √β𝐷(x1x2) = √β𝐷(x2) = max{√β𝐷(x1), √β𝐷(x2)}…..(8) 

Similarly, the result can be proved if √β𝐷(x1) > √β𝐷(x2). 

 

Theorem-3.5: Let ‘e’ denote the identity element of G and D = {x, αD(x), βD(x)} be a cube 

root fuzzy subgroup of G. Then 

(i) if αD
3(x1) = αD

3(e) for some x1 ∈ G, then αD
3(x1x2) = αD

3(x2) for all x2 ∈ G. 

(ii) if√β𝐷(x1) = √β𝐷(e) for some x1 ∈ G, then√β𝐷(x1x2) = √β𝐷(x2)for all x2 ∈ G. 

Proof: Suppose that D = {x, αD(x), βD(x)} is a Cube Root fuzzy subgroup of G. 

(i) Let αD
3(x1) = αD

3(e) for some x1 ∈ G. Then 

αD
3(x2) = αD

3(x1
−1x1x2) 

 ≥ min{αD
3(x1

−1), αD
3(x1x2)} 

 = min{αD
3(x1), αD

3(x1x2)} 

 = min{αD
3(e), αD

3(x1x2)}…………………..(1) 

Since αD
3(e) = αD

3(x1), therefore from relation (1), we obtain αD
3(x2) ≤ αD

3(x1x2)…(2) 

Also, αD
3(x1x2)  ≥ min{αD

3(x1), αD
3(x2)} = αD

3(x2), that is αD
3(x1x2)  ≥ αD

3(x2)…(3) 

From (2) and (3), we get αD
3(x1x2) = αD

3(x2)……………..(4) 

(ii)The proof is similar to that of (i). 

 

Theorem-3.6: Let ‘e’ denote the identity element of G and D = {x, αD(x), βD(x)} be a 

cuberoot fuzzy subgroup of G. Then H = {x ∈ G / αD
3(x) = αD

3(e)and√β𝐷(x) = √β𝐷(e)} 

is a subgroup of G. 

Proof: By definition of H, we have e ∈ H. Therefore H is non-empty subset of G. Let x1, x2 ∈

H, then αD
3(x1) = αD

3(e) = αD
3(x2) and√β𝐷(x1) = √β𝐷(e) = √β𝐷(x2). 

Now, √β𝐷(x1x2
−1) ≤  max{√β𝐷(x1), √β𝐷(x2

−1)} 

  =  max{√β𝐷(x1), √β𝐷(x2)} 
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  =  max{√β𝐷(e), √β𝐷(e)} 

√β𝐷(x1x2
−1) ≤ √β𝐷(e). 

Also, by definition, we have √β𝐷(e) ≤ √β𝐷(x1x2
−1). 

Therefore, √β𝐷(x1x2
−1) = √β𝐷(e). Similarly, we can show that αD

3(x1x2
−1) = αD

3(e). 

Thus, x1x2
−1 ∈ H, which completes the proof. 

 

Theorem-3.7: (Involution Law) Let D1 = (αD1
, βD1

) and D2 = (αD2
, βD2

) be two CR-Fuzzy 

sets. Then, 

(i) (D1 ∩ D2) ∪ D2 = D2,  

(ii) (D1 ∪ D2) ∩ D2 = D2. 

Proof: From the definition-2, we can obtain the following 

(i)(D1 ∩ D2) ∪ D2 = (min{αD1
, αD2

}, max{βD1
, βD2

}) ∪ (αD2
, βD2

) 

        = (max{min{αD2
, αD1

}, αD2
}, min{max{βD2

, βD1
}, βD2

}) 

        = (αD2
, βD2

) = D2 

(ii) The proof is similar to (i). 

 

Theorem-3.8: (Demorgon’s Law) Let D1 = (αD1
, βD1

) and D2 = (αD2
, βD2

) be two CR-

Fuzzy sets. Then, 

(i) (D1 ∩ D2)C = D1
C ∪ D2

C
 

(ii) (D1 ∪ D2)C = D1
C ∩ D2

C
 

Proof: For the two CR-Fuzzy sets D1and D2, according to definition (2), we obtain the  

following 

(i)(D1 ∩ D2)C = (min{αD1
, αD2

}, max{βD1
, βD2

})
C
(βD1

)
6

, √αD1
 

 = (max {(βD1
)

6
, (βD2

)
6

} , min{√αD1
, √αD2

}) 

  = ((βD1
)

6
, √αD1

4 ) ∪ ((βD2
)

6
, √αD2

4 ) 

 = D1
C ∪ D2

C
 

(ii) The proof is similar to (i). 

 

Theorem-3.9: (Associative Law) Let D1 = (αD1
, βD1

),D2 = (αD2
, βD2

) and D3 = (αD3
, βD3

) 

be three CR-Fuzzy sets. Then, 

(i) D1 ∩ (D2 ∩ D3) = (D1 ∩ D2) ∩ D3,  

(ii) D1 ∪ (D2 ∪ D3) = (D1 ∪ D2) ∪ D3. 

Proof: For the three CR- Fuzzy sets D1,D2and D3, according to definition (2), we obtain the  

following 

(i)D1 ∩ (D2 ∩ D3) = (αD1
, βD1

)  ∩ (min{αD2
, αD3

}, max{βD2
, βD3

}) 

         = (min {αD1
, min{αD2

, αD3
}} , max {βD1

, max{βD2
, βD3

}}) 

         = (min{min{αD1
, αD2

}, αD3
}, max{max{βD1

, βD2
}, βD3

}) 
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         = (min{αD1
, αD2

}, max{βD1
, βD2

}) ∩ (αD3
, βD3

) 

         = (D1 ∩ D2) ∩ D3 

(ii) The proof is similar to (i). 

 

Example of CR-Fuzzy set3.10: Assume that αD(x) = 0.3, βD(x) = 0.9for S = {x}. Then 

D = (0.3,0.9)is not an intuitionistic fuzzy set because 0.3 + 0.9 = 1.2 > 1. But it is  

pythagorean fuzzy set, fermatean fuzzy set and (3,2)-fuzzy set. In contrast,  

(0.3)3 + √0.9 = 0.9759 < 1.  

Note that 𝜋D(x) = 0.0243 and hence (αD(x))
3

+ √βD(x) + 𝜋D(x) = 1. 

 

Remark3.11 :From the figure-1, we get that  

(i)   The space of pythagorean membership grades is larger than the space of CR-fuzzy     

membership grades. 

(ii)  The CR-fuzzy set and IFS’s intersect at the point D = (0.3,0.9). 

(iii) For αD ∈ (0,0.3) and βD = (0.9,1) the space of CR-fuzzy membership grades starts to  

be larger than the space of intuitionistic membership grades. 

(iv) ForαD ∈ (0.3,1) and βD = (0,0.9) the space of CR-fuzzy membership grades starts to  

be smaller than the space of intuitionistic membership grades. 

 

Definition-3.12: (i) The score function of a CR-fuzzy set D = (αD, βD) can be represented as 

score(D) = s(D) = αD
3 − √βD. 

          (ii)The accuracy function of a CR-fuzzy set D = (αD, βD) can be represented as 

accuracy(D) = a(D) = αD
3 + √βD. 

 

Example 3.13: For an CR-fuzzy set D = (0.3,0.9), we find that 

  score(D) = s(D) = (0.3)3 − √0.9 = 0.027 − 0.948 = −0.921. 

  accuracy(D) = a(D) = (0.3)3 + √0.9 = 0.027 + 0.948 = 0.975. 

     In particular if D = (0,1), then  

score(D) = s(D) = (0)3 − √1 = 0 − 1 = −1. 

  accuracy(D) = a(D) = (0)3 + √1 = 0 + 1 = 1. 

 

Theorem 3.14: The suggested score function of any CR-fuzzy set D = (αD, βD) denoted by 

score(D)lies in [−1, 1]. 

Proof: Since for any CR-fuzzy set D we have αD
3 + √βD ≤ 1. 

 Hence αD
3 − √βD ≤ αD

3 ≤ 1 and  

  αD
3 − √βD ≥ √βD ≥ 1. 

 Therefore, −1 ≤ αD
3 − √βD ≤ 1. 

 Hence score(D) ∈ [−1,1]. 
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Remark 3.15: The suggested accuracy function of any CR-fuzzy set D = (αD, βD), denoted 

by accuracy(D)lies in [0, 1]. 

Example 2.25: Let D = (αD, βD) be a CR-fuzzy set. If s(D) = −0.5and a(D) = 0.7, then it 

follows αD(x) = (0.1)3, βD(x)=√0.6 and 𝜋D(x) = √0.5. 

 

Theorem 3.16: Let D = (αD, βD) be a CR-fuzzy set. Then s(D) = 0 if and only if  αD(x) =

βD(x)for all x ∈ X. 

Proof: Let s(D) = 0.Then(αD(x))3 − √βD(x) implies αD(x) = βD(x) for allx ∈ X. 

           Conversely, suppose that αD(x) = βD(x) for all x ∈ X. It follows immediately that,  

for allx ∈ X, (αD(x))
3

= √βD(x). Therefore (αD(x))
3

− √βD(x) = 0. 

Thus s(D) = 0. 

 

4. APPLICATIONS OF CR- FUZZY SET IN DECISION MAKING PROCESS. 

Decision making approach for  CR- fuzzy set 

Algorithm:  

Step-1 Construct D1complement and D2 complement for the decision matrix 

Step-2 Calculate  CR-fuzzy complement of D1
C
   ,D2

C
    of  D1,D2. 

Step -3 Calculate score function using the structure (c+d)/10. 

Step -4 Calculate the correlation coefficient between diseases and symptoms 

Step -5 Choose maximum valuefrom step-4. 

Step -6 Choose rank the order from step-5. 

By Numerical example, we construct the following problem based on the above algorithm 

Step-1                                              Table-1 CR- fuzzy set 𝐃𝟏 

D1= 

       

Symptoms 

Diseases 

Fever Headache Typhoid Cancer 

𝛼1 [0.2, 0.5] [0.1, 0.6] [0.3, 0.7] [0.2, 0.6] 

𝛼2 [0.1, 0.4] [0.2, 0.5] [0.2, 0.6] [0.1, 0.5] 

𝛼3 [0.3, 0.4] [0.1, 0.4] [0.1, 0.5] [0.1, 0.4] 

 

Table-2 CR- fuzzy set 𝐃𝟐 

D2= 

          

Symptoms 

Diseases 

Fever Headache Typhoid Cancer 

𝛼1 [0.1, 0.3] [0.3, 0.4] [0.1, 0.3] [0.2, 0.5] 

𝛼2 [0.2, 0.4] [0.1, 0.5] [0.3, 0.4] [0.1, 0.4] 

𝛼3 [0.3, 0.5] [0.2, 0.3] [0.1, 0.2] [0.3, 0.2] 

 

Table-3CR- fuzzy set 𝐃𝟏
𝐂 

D1
C
  = 

Symptoms 
Diseases 

Fever Headache Typhoid Cancer 

𝛼1 [0.8, 0.5] [0.9, 0.4] [0.7, 0.3] [0.8, 0.4] 
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𝛼2 [0.9, 0.6] [0.8, 0.5] [0.8, 0.4] [0.9, 0.5] 

𝛼3 [0.7, 0.6] [0.9, 0.6] [0.9, 0.5] [0.9, 0.6] 

 

Table-4 (3,2)- fuzzy set 𝐃𝟐
𝐂
 

D2
C
  = 

 

Symptoms 

Diseases 

Fever Headache Typhoid Cancer 

𝛼1 [0.9, 0.7] [0.7, 0.6] [0.9, 0.7] [0.8, 0.5] 

𝛼2 [0.8, 0.6] [0.9, 0.5] [0.7, 0.6] [0.9, 0.6] 

𝛼3 [0.7, 0.5] [0.8, 0.7] [0.9, 0.8] [0.7, 0.8] 

 

Step -2    Table-5 Calculate (3,2)- fuzzy (𝐃𝟏
𝐂, 𝐃𝟐

𝐂) 
 

Symptoms 

Diseases 

Fever Headache Typhoid Cancer 

𝛼1𝛼2 [0.8, 0.5] [0.9, 0.4] [0.7, 0.3] [0.8, 0.4] 

𝛼2𝛼3 [0.7, 0.5] [0.8, 0.5] [0.8, 0.4] [0.7, 0.5] 

𝛼3𝛼1 [0.7, 0.6] [0.7, 0.6] [0.9, 0.5] [0.8, 0.5] 

 

 

Table-6 Calculate CR- fuzzy (𝐃𝟐
𝐂, 𝐃𝟏

𝐂) 

Symptoms 
Diseases 

Fever Headache Typhoid Cancer 

𝛼1𝛼2 [0.9, 0.6] [0.7, 0.5] [0.8, 0.4] [0.8, 0.5] 

𝛼2𝛼3 [0.7, 0.6] [0.9, 0.5] [0.7, 0.5] [0.9, 0.6] 

𝛼3𝛼1 [0.7, 0.6] [0.8, 0.4] [0.7, 0.3] [0.7, 0.4] 

 

Step -3 Calculate the score function left and right value of CR- fuzzy set  L = (a+b) /3  

where i = 1,2 ….n and R = (a+b) /3  where j = 1,2 ….n 

Symptoms 
Diseases 

Fever Headache Typhoid Cancer 

𝛼1 [0.567, 0.367] [0.533, 0.300] [0.500, 0.233] [0.533, 0.300] 

𝛼2 [0.467, 0.367] [0.567, 0.333] [0.500, 0.300] [0.533, 0.367] 

𝛼3 [0.467, 0.367] [0.500, 0.333] [0.533, 0.267] [0.500, 0.300] 

 

Score function S = (L + R) /10  = (6.200 + 3.834) /10  = 10.03/10=1.003 

Where L is the sum of  left value of the bracket  and R is the sum of  right value of the 

bracket. 

Step -4 Calculate correlation coefficient between diseases and symptoms by using the  



European Journal of Molecular & Clinical Medicine 

 

ISSN 2515-8260 Volume 10, Issue 01, 2023 

 

3556 
 

formula is given by 

𝜌 =
∑ ∑ (𝑑𝑖𝑗)

2𝑛
𝑗=1

𝑛
𝑖=1

√∑ (𝑑𝑖)
2𝑛

𝑖=1
√∑ (𝑑𝑗)

2𝑛
𝑗=1

 

  Using step-3 we form a new calculation table as follows  

Y 

X 
1 2 3 4 

𝛼1 0.200 0.233 0.267 0.233 

𝛼2 0.100 0.234 0.200 0.166 

𝛼3 0.100 0.167 0.266 0.200 

    

𝜌 =0.301 < 1 

    

Step -5 Score function   = 1.003 

 Correlation function = 0.301 

 Maximum value = 0.267 

Step -6 From the table the order preference is given from step (4) as given below 

 Rank the order  
r1 < r2 = r4 < r3

 

    
r1 <  r4 < r3 < r2

 

    
r1 < r2 < r4 <  r3 

 

For𝛼1 symptoms  fever<Headache= Cancer<Typhoid 

For 𝛼2symptoms fever<Cancer<Typhoid<Headache 

For 𝛼3symptoms        fever<Headache<Cancer<Typhoid 

 

Result: 

Finally we conclude that symptoms (1)(ie) 𝛼1which is decide to choose the nearest ranking 

order for the given problem. 

Conclusion: Several mathematicians defined various algebraic structures in  various fuzzy 

Environment.  We propose a new algebraic structures based on cubic root fuzzy sets. One can 

obtain the similar idea in the field of square root fuzzy sets and ortho pair fuzzy sets. 
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