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ABSTRACT: We present the topological properties of some lacunary sequence spaces on
n-normed space defined via Euler and matrix summability transformations. Further some
inclusion relation between these spaces are studied.

INTRODUCTION AND PRELIMINARIES

Euler summability is widely used in numerical analysis to improve the convergence of the
series. These techniques are useful in computer science especially in making graphics and the
accelerated convergence techniques are also used to find eigenvalues and eigenvectors of
dynamical systems. The Euler transform (E, p) of the sequence S = (s,) of the partial sums

of a series Y5, ay, is defined as EF (S) = (1+1p)n =0 (;l) p™ Vs, p is positive real. A series
¥ a, is called (E, p) —summable to s if EE(S) = (1+1p)n =0 (Z) p™ Vs, — sand it is called

absolutely (E,p) — summable if X,|EY(S) — EY_,(S)| < . Suppose x = (x), be the
sequence of scalars, fork > 1, we will represent N, (x) the difference EX (x) — EP_, (x),
where E? is defined as above. Through the use of Abel’s transform we can write

n-—2
1 Sn-14n-1 Sn p"t
N = A I — )
O = =TT 2, A G e Ty G
J:

Where 4, = ¥¥_, [ﬁ (7) - (n ]_ 1)] p™~J=1 For a sequence x = (x,,),y = (y,) and the

scalar 4, we have N,,(x + y) = N,(x) + N,(y) and N,,(Ax) = AN,,(x).

In this paper we will study the topological properties of the class of sequence space defined
using

Musielak-Orlicz function. We introduce these spaces by using the Euler and matrix
transformations. Finally, we present the application of these spaces to statistical convergence.
Before proceeding we discuss some basic definitions and results required for the further
discussion.

A non-decreasing , continuous and convex function M with M(0) = 0,M(x) > 0 for x >
0 and M(x) — o as x — o is called an Orlicz function. Orlicz sequence space [10] denoted
Ly is

the space of sequences x = (x,) which satisfy ;" M (l%"'
Theorem 1.1. (I, ||x|]) is a Banach space, where ||x]|| = inf {p >0:350,M (l%") < 1}.

A sequence of Orlicz functions is called Musielak-Orlicz function. For more information
about the complementary function of a Musielak-Orlicz function, Musielak-Orlicz sequence
space,Luxemburg norm we refer the reader to [10].

)<oo,p>0.
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A real-valued function ||., ...,. || Defined on X™,where X is a linear space over the (real or
complex) field K of dimensiond,d > n > 2,n € N is called an n-norm ([5],[9]) if it fulfils
the conditions given below

(@) oy, x5, X3 e Xpp—1, Xn || = 0 iff x4, x5, ..., x,, are linearly independent;

(2) lxq, x5, X3 .., Xp—1, X, || IS invariant under permutations;

(3) ”axlyxZJ x3 ---:xn—lfxn” = |a|”x1)x2) ---1xn” Vace K;
@) llx + x', x5, %3 ooy X1, X || < M|, X5, oo, X0 || + 11X, X5, oon, X5l
The pair (X(K), |l., ..., . |]) Is called an n-normed space. For further detail about n-normed

space,see [6] and [7].
A sequence 8 = (k,) of positive integers with k, = 0,0 < k, < k., and h, = k, —
k,_1 = wasr — oo is called a Lacunary sequence [4]. The intervals I, = (k,_4, k,] are

determined by 6 and the ratio “r_ are denoted as qr-

ky—1
For more detail about sequence spaces we refer the reader to [1],[2] and [11].
[ p1 Wl(l) Wl(z) ]
(-1) @ |
Let M = [my,] =M1 P2 Wz " lwhere p = (p;) and w® = (w;)® are
lwl(_z) wz(_l) 29.3 .

some fixed numerical sequenc'es,t € Z\{0} .For a fixed k € N we define a finite

n+1
—,nis odd

2 . We construct  a matrix M, ¢ ) =

sequence t,, with ky terms as t,=
- n s even
M,whi =0V i>keandfori=1,2,...,kr we have some fixed sequences w'i and p.

Example 2.1. For kf = 2 we have t; = 1,t, = —1, we define p; = —1 Vi and wl.(t) =
1,fort=-1,1 0

{o,v{ € 7\{0,1,—1) e we have M, epx = jZy mypihn = {61+ 8281 = &2 +

$3,62 =83+ 84,83 —8a + 5 )

For a Musielak-Orlicz function M = (M;), we define the sequence given below in this
paper:

ES (M,,0,5, Rt s o, )
=1x
u]N Pj
1 — j(im Wt x>
= (x])'llm_z k—S M] (p ]f) 121y el < @, S
r hy n p
]:

>0, for somep >0

Here,p = (p;) is a bounded sequence of non-negative reals and u = (u;) a sequence of
positive reals.

Lemma 2.1(Maddox,[8]). If 0 < p; < supp; = H,K = max(1,2"~1) then |a]- + b]-|pj <
K{|aj|pj + |bj|pj} forall j and a;, b; € C.Also |a|P7 < max(1, la|") for all a € C.
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Theorem 2.1: E}! (M,u,p,s,mt(p‘wt’jf), ||.,...,.||) Is a linear space over the field of
complex numbers and is paranormed by the paranorm g(x) defined as:

1
Pk\ H

m
. pn/H. | i L oo _s uka< (p.wt.kf)x>
g(X) - lnf p ' 117I:n R, Zk:l k Mk 121y v Zp—1 <

\

1,n=123,..,

Here H = max(1, supypx)
Proof: Let x = (x),y = (i) € Ey; (M» w DS, M e i) s s ||),a,[? € C. There wil

exist positive integer p;, p, SO that,

1Pk
uka<im t x)
. 1 _ pw"k
hm_ZIc:}:l k=* Mk ( f) yZ1Z9, vy Zpn—1 < 00 and
r hr P1
1Pk
uka<ﬂR t Y)>
. 1 - (p,w ‘kf)
hm_zlio=1k s Mk yZ1Z3, ey Zp—1 < 00,
r hr p2

Since (M;,) is no_n-decreasing convex function so that max(2|a|pq, 2|B1p2 = ps3

Pk
uka(WE ¢ (ax+BY)>
. 1 _ pwhk
We have Iim—Y>" .,k S|M ( 1) s Z1Z9y weey Zy <
k=1 k 122 n-1
r hr P3
Pk
uka<iUt ¢ ax)
. 1 _ pw-k
lIim—Y2 k™ S|M ( /) s Z1Z9y weey Zoy +
k=1 k 122 n-1
r hr P3
1Pk
uka<m? t BY>
. 1 _ pwtk
lIim—Y2 k™ S|M ( /) L Z1Z9y weey Zoy <
k=1 k 122 n-1
r hr P3
B4
uka<ED? t x)
. 1 _ pw'k
Klim—Y2 k™% M, ) v Z1Z2y ey Zn—q +
r hr P3
1Pk
uka<ED? t x)
. 1 _ pw"k
Klim—Y"_ k™% M, (owtiy) yZ1Z2y ey Zp—1 < oo,
r hr p3
Therefore ax + by € E;! (M, u,p, s,iUt(p,Wt,kf), ., ...,. ||). Hence the space is linear. Further

we have gx)=g(—x) and gx+y)<gkx)+g(y) and M, (0)=0 ,we have
inf{pPr/"} = 0 if x = 0. Let us take a number 2, then,
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Pk
Auka<§m te x)
g(AX) = lnf an/H:liTmhizl?zlk—S Mk Ep'w - f) 12122, iy Zn—1 =<
T

1,n=1,2,3,... ; implies that

Pk
1 - Auka EIR ) t,k X
g(ix) = inf (As)Pn/H:li;nh—z ks | M, ( p(”w ) ),zlzz,...,zn_l
" k=1

<1,n=123,..

1
s = £ By 2.1 we have |A|Px/H < (max(1, |1|¥)# and hence,

121
9(Ax)
1 1 @ Auka M wtk X
= (max(1, [A|)Hinf (s)pn/H:lim—z k=S | My ( (awtiy) ),lez, ey Zp_q
r hy - p
k=1
<1n=123. H<1,N=1.2,..
Clearly Clearly g(x) —» 0 when x - 0 in E;! (M, u,p, S,iUt(p,Wt,kf), ., ...,. ||).Now let, 1, —»
0as n— o and E, (M,u,p,s,im(p’wt’kf),ll., ||) For any € > 0, let n, be a positive
integer such that
o Pk
1 UeNie (Em(p’wt’kf)x)
lim— Z k=% M, 2129, ey Zp—1 <=
r hy p 2
k=n0+1
For some p > 0.which implies that
1
- P\ H
. L i (Wpt i) %) €
h;nh_ Z k™% | M, ) ,Z1Z2) ey Zp-1 < >
r k=n0+1
Let us take 0 < |A| < 1, then convexity of (M) implies
Pk
)Luka<5U2 ¢ x>
. 1 o0 _ pw-k
llgnh—rzkznoﬂk $ My £ 1) 2122, ey Zp—1 <
Pk
1w ~ uka(im pwbk x) e\ H
Illlllnh—rzkznoﬂk S M, (p /) yZ1Z2y ey Zpq < (5) .
Since (M;,) is continuous everywhere in [0, 0),50
n Pk
1 0 . tu, Ny, (iUt(p‘Wt_kf)x)
h(t) = h;nh_z k=5 M, yZ1Z2y ey Zp—q
=t p
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is also continuous at 0. Hence there exists 0 < § < 1 such that |h(t)| < 6/2 for some 0 <

t < §.Let K issuchthat |A,| < & for n > K we have
1

n Pk\ H
. 1 ° Anuka (Ent(p,wt,kf)x) €
llm_z k—S Mk ,lez,...,zn_l <_.
r hy p 2
k=1
Thus forn > K
1
o P\ H
1 Anu Ny (im(p,wt,kf)x)
hm_z k—S Mk p ’ZIZZ""’ZTI.—I < €
Hence,g(Ax) converges to 0 as A converges to 0 and hence the result. ]

Theorem-2.2: For the Musielak-Orlicz functions M’ = (M;) and M" = (M) and for
s, S1, S, Where s, s4, s, are nonnegative real numbers, we have

M) E(Mwp s Rl D) 0 EL (M08 Mipen ) Il s Nl)
Ex (M 42" ,0,0,5, Tl o 1),
(i) If s; < s,,then
Eg (M’; u,p, S, S:R(p,wt,kf)’ ”; vy ”) c Eg (‘MII u,p, Sy, gJ't(p’wt’kf)' ||I ey ”):
@iii)  If M is equivalent to M then
Ed (M 0,5, Myt s ) = Bl (M08, Byt Nl s ).
Proof: Proof of this theorem is routine. [
Theorem:2.3: E]l (M WS, Mgt ey ller e ||) c
Ef (M,u,0,5 Ty tse ) Nl s 1), 0 < 13 < pye < 0.
Proof: Let x € E,! (]v[, u,r, S,m't(p’wt’kf), ., ...,. ||).There exists some p > 0 such that
[ee] Tk
1 N (R 1))
h_z 'ZI'ZZ""IZTI—I < 0,
=] p
uka( whkp) ) -
Hence, M, /) ,Z1,Z9, -, Zn—1|| | < 1 for sufficiently large k, let k > k, for
some fixed k, € N. As (M,,) is non-decreasing so
Pk
uka M wtk X
11m Z ks ( (pw'y) ),Z1,Zz. ey Zp—1
hy Lok, p
Tk
N b Uy Ny, (mt(p,wt,kf)x)
Shm—z k=5 My yZ1, Zgy ey Zn—1 < 0o,
kzkg p
Hence x € E;! (M, U D, S, Mt ) lles e ||). n
Theorem-2.4:1f 0 < p;, < 1,then
Ed (M0,0,5 Ry se Nl 1) € B (M,11,5, R e s )
(ii) If p;, = 1 for all k,then
ES (M1, Mpes s 1) € B (M,0,0,5 Mg s s )
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Proof- Proof is similar to that of 2.3. |
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