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Abstract: This paper estimates the Spectral approximation by Spectral Tau and Spectral 

Least Squares Method for the first order Neutral Delay Differential Equation (NDDE). 

Here the NDDE is reduced into advection Equation to determine Spectral solutions. The 

effects on different types of basis are compared with numerical solution of NDDE. The 

Legendre and Chebyshev Basis generate much superior results than the Mixed Fourier 

Basis. 
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1. INTRODUCTION 

Ordinary differential equations (ODEs) and delay differential equations (DDEs) are 

accustomed to represent many phenomena of physical appearance. While ODEs comprise of 

derivatives that depend upon the outcome at the current value of the time, whereas DDEs 

depend upon the outcome at previous times. Various practical challenges are able to be 

resolved by delay differential equations (DDE), since delays are intrinsic to practical systems. 

Further more, DDEs appear in manufacturing processes including machine tool vibrations, 

dynamics, optics, chemical kinetics, robotics, controls, acoustics, biology, ecology, 

economics and many areas. These delays can be fixed value or variable that takes part in a 

significant task in physical environment. NDDEs are a special category of DDEs, where the 

delay appear in the highest derivative of the DDEs, while in retarded delay differential 

equations (RDDEs), the delay is absent in the highest derivative of the DDEs. 

Delay differential equations of neutral type are the differential equations which engross 

either single delay or else several delays in the order of highest power of derivative, and 

which are engaged in diverse engineering models [1–7]. For instance the vibration of the 

beam is monitored by a delayed resonator and which is been suggested as the function of 
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delayed acceleration feedback [3]. The present approach employ acceleration sensor for its 

gain in high frequency-low amplitude circumstances, the delayed signal of acceleration 

sensor resulting to NDDE. It can be formed as Delayed nonlinear controller [4, 5] which is 

utilized to reduce the effect of container crane. When it is planted on a massive industrial 

container crane, the swing of cargo is reduced as well as results a significant improvement in 

the production of the crane. It is moreover experienced in the applications of actual dynamic 

sub structuring approach [6]. In exploring the dynamic reaction to complex configurations, 

the technique replaces the branch with original model to a numerical representation. Time 

delay appear while merging together the actual substructure and numerical by applying 

actuators. Numerical solution of NDDE with infinite delay [8] is shown by converging the 

solution to actual solution. 

To design oscillator for transmission line that generates chaotic elevated frequency and 

exhibit strong dynamics triggered with delay [9] which is designed by Nonlinear NDDE. 

Infinite Eigen values of characteristic equations represents DDEs of the dimensional systems. 

Universal approach for estimating the stability is to convert the partial differential equation 

(PDE) as DDE [10–13] of numerous delays. Then, PDE approximation is transformed by 

ordinary differential equations (ODEs) by applying spatial discretization technique, such as 

Spectral Least Squares [14], Spectral Tau methods [10, 15] and etc., this impact on the 

spectrum (All the Eigen values of the characteristic equation) is shown. 

 Here to estimate the Eigen values of NDDEs, we correlate the Spectral-Tau and Spectral 

Least Squares method. This Spectral methods gives favorable result since it converges 

exponentially to the exact solution [16]. Earlier, mixed Fourier basis was applied on 

construction of Spectral (Galerkin) methods, to obtain Eigen values of the NDDEs solution 

[14,15]. We learn the effect of the discretion of Spectral basis [16, 17] i.e, Mixed Fourier 

basis, Shifted Chebyshev basis and Shifted Legendre basis for a few sample problems on the 

convergence of the Eigen values. 

 

2. FORMULATION AND COMPUTATION OF SOLUTION OF A NEUTRAL 

DELAY EQUATION INTO AN ADVECTION EQUATION 

Consider the first order linear Neutral delay equation with m delays. 

 ̇( )    ( )  ∑    (    
 
   
̇ )    ∑    ̇(    

 
   )          (1) 

 ( )   ( )                        

where        (            ) .    
Shifting of time is applied by  (   )   (   )   ,    )  
The given NDDE in Equation (1) can be transformed into advection Equation  
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To approximate solution of Eqs. (2–4).are determined using the Spectral-Tau technique and 

Spectral-Least Squares technique as follows. 

Spectral-Tau Method 

The solution of the PDE (Eq.2) using Spectral –Tau method is denoted by means of 

 (   )  ∑   
 
   ( )  ( )                   (5) 

where   ( )        ( )  are the time dependent co-ordinates and the basis functions. 

Consider the summation for N terms  

 (   )   ( )  ( )                                        (6) 
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  ( )  ,  ( )   ( )       ( )-
  and  ( )  ,  ( )   ( )      ( )-

 . 

Substituting equation (6) in Equation (4) we get 

 ( )  ̇( )    ( )  ( )         (7) 

Pre-multiplying equation (7) with  ( ) and integrating over the domain we get: 
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In matrix form 
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with A =∫  ( ) ( ) 
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B=∫  ( )  ( ) 
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Substituting Equation (5) in equation (3) we get the scalar equation 
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From equation (9, 12) we get N+1 independent Equation.  

Truncate the system (9) and augment it with equation (12), we get an determinate system of 

the form 

     ̇( )       ( )        (13) 

where 

     [
 ̅

 ( ) 
]        (14) 

     [
 ̅

   ( )    ∑    (   )
 
 ∑     (   )

 
 ( ) 

   
 
   

]         (15) 

and the matrices  ̅  ̅ are evaluated by eliminating the end row of the given matrix A and B 

correspondingly. 

The initial state for equation (13) is  ( )     ∫  ( ) ( )  
 

  
  

The outcome of the NDDE is calculated by 

 ( )   (   )   ( )  ( )  
An approximation of the equation (1) is represented by the finite dimensional system (13). 

Spectral Least-Squares Method 

The replacement of the truncated approximate solution 

 (   )  ∑   
 
   ( )  ( )  causes error in the PDE (2) which is denoted by 

  (   )   ( )  ̇( )    ( )  ( )       (16) 

An excellent approximation is described by a “minute” error e(s, t) from the given 

boundary condition Equation (12).we aspire to estimate the subsequent constrained 

optimization problem to reduce the given error: 
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the integral square of the error function for the field is reduced by constructing a Lagrange 

multiplier  , to calculate  ̇( )  is given by 

 ( ̇(t)  )  
 

 
∫ , ( )  ̇( )    ( )  ( )- 
 

  
         ( )  ̇( )     ( )  ( )   

∑    (   )
 
 ( )  ∑     (   )

  
    ( ) 

   -              (19) 

To minimize L, the first order optimality condition is as follows 
  

  ̇(t)
                        (20) 

  

  
                           (21) 

equation (20) and (21) are Substituted by equation (19) we get: 

  ̇( )    ( )   ( )                        (22) 
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 ( )  ∑     (   )
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Where A and B are the basis-dependent matrices defined in equation (10) and equation (11) 

respectively. 

Applying Lagrange multiplier to solve Equation (22) and Equation (23) we get 
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Cross multiplying we get 
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Substituting the value of    ( ) in Eq.(22)  
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and simplifying we get: 

A ̇( )       ( )   (25) 

where       ,
,  ( ) ( )  ∑    ( ) (   )
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a ( )     ( )
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3. COMPUTATION OF SPECTRUM OF NDDE 
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The characteristic equation of (1) is given by  ( )          

  ( )      ∑    
     

     ∑    
     

              (27) 

where the complex eigen value λ of the characteristic equation (1) can be described as 

                          (28) 

Applying Euler’s identity in equation (27), we get 
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            (30) 

Equation (29) and (30) are transcendental equation having infinite number of Eigen values. 

We describe the set of the characteristic equation by spectrum of equation (1) as given 

below 

  *  | (  )               +         (31) 

The characteristic roots of the     system of Equation (13) and Equation (25) is 

estimated to get approximate spectrum which is given by 

 ̂    *  ̂|    (      ̂      )        ̂      ̂   +    (32) 

 ̂   *  ̂|    (   ̂     )        ̂      ̂   +   (33) 

Here the different choice of the basis functions  ( ) in equation (6) acts as an significant 

role in the convergence of the characteristic equation. To experiment this assumption let us 

consider the three different basis functions. 

i) Mixed Fourier Basis[15]: ( )  ,       .
 

 
 /     . 

 

 
 /   -     (34) 

ii) Shifted Legendre Polynomial[16]: 

  ( )   ,   ( )    
  

 
,    ( )  

(    )  ( )    ( ) (   )    ( )

   
, i=3, 4….   (35) 

iii) Shifted Chebyshev Polynomial [16]: 
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  ( )   ,   ( )    
  

 
,   ( )     ( )    ( )      ( ),           (36) 

 

4. NUMERICAL STUDIES 

We illustrate the above constructed algorithm using the following examples. The numerical 

solutions of the NDDEs (Eq. (1)) are computed and compared using ddeNsd solver, the 

Spectral Tau Method (Eq. 13) and Spectral Least Squares methods (Eq.25). To solve the 

ODEs (Eq. (13) and (Eq.25) resulting from the Spectral approximation  we use the “ode15s” 

integrator in Mat lab.  he NDDEs (Eq.(1)) were solved using “ddeNsd” solver in Mat lab and 

are based on a dissipative approximation [8] of NDDEs. It is noted that we may require a 

large number of terms in the series solution (Eq. (10)) to get a good approximation for the 

non-smooth solutions of NDDEs (Eq. (1)). 

Consider the following linear scalar NDDE [18]: when a=1, b=1, c=1 in general equation 

  ̇( )    ( )  ∑    (    
 
   
̇ )    ∑    ̇(    

 
   )             we have 

  ( )   ( )    (   )     (  –   )    ,    with initial condition  ( )      for         
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   0 

Figure 4.1 Solution of NDDE by Spectral Tau Method for N=3 

While we study the stability analysis of equation (1), it is found that greater stability occurs 

when N>2 also we infer the study of stability in the choice of Legendre Tau over the 

Chebyshev Tau and Fourier Tau over the ddeNsd solver. 

When   take different values, say    1, 5 and 10, it is shown that the convergence rate is 

higher for Spectral Tau method when delay     whereas the Spectral Least Square method 

converge for    , over the choice of legendre basis over the chebyshev Tau and Fourier 

Tau. 

Which is inferred in figure 1.1and 1.2, for all three values of  (    1, 5 and 10) in Spectral 

Tau methods it is clear that Legendre Tau Methods and Legendre Least Square Methods 

almost coincide with all the three types. 
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   0 

Figure 4.2 Solution of NDDE by Spectral Least Square Method for N=3 

 
Table 4.1 Spectrum of NDDE by Spectral Tau and Spectral Least Square Method 

 N=2 N=3 

       5   10       5   10 

Fourier Tau   -2.0 

 -2.0 

- 0.4 + 

0.8*i 

 - 0.4 - 

0.8*i 

- 0.2 + 0.6*i 

 - 0.2 - 0.6*i 

-1.099 

 - 0.9831 + 

4.569*i 

 - 0.9831 - 

4.569*i 

-1.973 

 - 0.12 + 

0.6871*i 

 - 0.12 - 

0.6871*i 

  -2.047 

 - 0.02998 + 

0.3411*i 

 - 0.02998 - 

0.3411*i 

Legendre Tau   -2.0 

 -2.0 

- 0.4 + 

0.8*i 

 - 0.4 - 

0.8*i 

  -2.0 

 -2.0 

    -1.043 

 - 0.4783 + 

4.772*i 

 - 0.4783 - 

4.772*i 

-1.764 

 - 0.1179 + 

0.7282*i 

 - 0.1179 - 

0.7282*i 

     -1.94 

 - 0.02997 + 

0.3504*i 

 - 0.02997 - 

0.3504*i 

Chebyshev Tau   -2.0 

 -2.0 

- 0.4 + 

0.8*i 

 - 0.4 - 

0.8*i 

  -2.0 

 -2.0 

 -1.043 

 - 0.4783 + 

4.772*i 

 - 0.4783 - 

4.772*i 

-1.764 

 - 0.1179 + 

0.7282*i 

 - 0.1179 - 

0.7282*i 

  -1.94 

 - 0.02997 + 

0.3504*i 

 - 0.02997 - 

0.3504*i 

Fourier Least 

Square spectrum 

-2.0 

 -1.5 

- 0.55 + 

0.5454*i 

 - 0.55 - 

0.5454*i 

 - 0.4 + 

0.3742*i 

 - 0.4 - 

0.3742*i  

  1.578 - 

1.819e-12*i 

 - 3.961 - 

1.819e-12*i 

 - 0.8918 + 

3.638e-12*i 

-1.372 

 - 0.1518 + 

0.5637*i 

 - 0.1518 - 

0.5637*i 

     -1.344 

 - 0.06556 + 

0.2944*i 

 - 0.06556 - 

0.2944*i 

Legendre Least 

Square spectrum 

  - 1.0 + 

1.118*i 

 - 1.0 - 

1.118*i 

 - 0.4 + 

0.5385*i 

 - 0.4 - 

0.5385*i  

- 0.325 + 

0.3455*i 

 - 0.325 - 

0.3455*i 

  -0.9945 

 1.164 + 

2.567*i 

 1.164 - 

2.567*i  

    -0.7847 

 - 0.007667 + 

0.6346*i 

 - 0.007667 - 

0.6346*i 

   -0.9827 

 - 0.04201 + 

0.2804*i 

 - 0.04201 - 

0.2804*i 

chebyshev Least 

Square spectrum 

  - 1.0 + 

1.118*i 

 - 1.0 - 

1.118*i 

 - 0.4 + 

0.5385*i 

 - 0.4 - 

0.5385*i  

- 0.325 + 

0.3455*i 

 - 0.325 - 

0.3455*i  

  -0.8949 

 1.114 + 

2.804*i 

 1.114 - 

2.804*i 

 -0.7715 

 - 0.01425 + 

0.6498*i 

 - 0.01425 - 

0.6498*i 

-0.9871 

 - 0.0398 + 

0.2845*i 

 - 0.0398 - 

0.2845*i  

 

0 0.5 1 1.5 2 2.5 3 3.5 4

0

20

40

60

80

100

120

140

160

time t

s
o
lu

ti
o
n
 y

 

 

Fourier least square

legendry least square

chebyshev least square

ddesnd



                               European Journal of Molecular & Clinical Medicine 

                                                                   ISSN 2515-8260                  Volume 07, Issue 02, 2020 

5014 
 

Spectrum of equation (1) using Spectral Tau and Spectral Least Square method are computed 

and shown in table1above, which is inferred in figure 1.3 and figure 1.4. 

 

 

Figure 4.3 Spectrum of NDDE by Spectral Tau Method 

 

Figure 4.4 Spectrum of NDDE by Spectral Least Square Method 

 

5. DISCUSSIONS AND CONCLUSION 

In this paper the first order linear Neutral Delay Differential Equation is reconstructed as 

Advection Equation and solutions are computed using Spectral Tau and Spectral Least 

Square Method. To study the stability analysis. Spectrum was found for different choice of 

basis function and Legendre Basis guarantees the stability of NDDE as all the Eigen values 

lies in the left half of the real plane compared to Fourier and Chebeshev method. But for 

   , the stability fails for all the basis of Spectral Least Square method. 
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