On Some Coefficient Inequalities For Certain Classes Of Regular And Multivalent Functions With Differential Operator

Elumalai Muthaiyan^{1,*}, Radhika Subramani ²

^{1,*}Department of Mathematics, St. Joseph's Institute of Technology, OMR, Chennai – 600 119, Tamilnadu, India.

*1988malai@gmail.com

Abstract

In this paper the author establishes the new result corresponds to the generalized differential operator $E_{\eta,s}^{\delta,m}\mathfrak{I}(z)$, related to multivalent regular functions. Also compute the Fekete szegö coefficient estimates are obtained for $\left|a_{s+2}-\lambda a_{s+1}^2\right|$ when $\lambda\geq 1$, with sharpness for the operator, and also point out, as particular cases, the results obtained earlier by various authors.

Keywords: Multivalent and regular functions, coefficient estimates, multivalent starlike and convex function, Fekete-Szegö problem.

1. INTRODUCTION

Let A be the category of functions $\Im(z)$ and the expansion

$$\Im(z) = z^s + \sum_{\tau=1}^{\infty} a_{\tau+s} z^{\tau+s} \ (s \in \mathbb{N} = \{1, 2, 3, ...\}) (1)$$

which are holomorphic within the unit disk $\Theta = \{z : |z| < 1\}$ and let $A = A_1$. A function $\mathfrak{T} \in A_s$ observe by way of equ (1) is said to be multivalently starlike if

$$\Re\left(\frac{z\Im'(z)}{s\Im(z)}\right) > 0, \quad (z \in \Theta).$$

We denote this category of functions by means of S_s^* . Note that the category S_s^* dicrese to $S_1^* := S^*$, the category of starlike in Θ , introduced by Robertson [10].

A function $\Im \in A_s$ is multivalently convex if

$$\Re\frac{1}{s}\left(\frac{z\Im'(z)+z^2\Im''(z)}{z\Im'(z)}\right)>0,\qquad \big(z\in\Theta\big).$$

We denote with the aid of C_s the familiar subcategory of A_s . In case s = 1, $C_s := C$ the category of convex functions in Θ , brought by way of Robertson [10] (also see [2]).

A function $\Im(z)$ belonging to A_s is strongly starlike of order η in Θ , and denote with the aid of $SS^*(K)$ if

$$\left| \arg \left(\frac{z \Im'(z)}{\Im(z)} \right) \right| < \frac{\pi}{2} \gamma \ \left(0 < \gamma \le s, \quad z \in \Theta \right). (2)$$

² Department of Mathematics, Chennai Academy of Architecture and Design, Thiruvallur – 601102, Tamilnadu, India.

If $\Im(z) \in A$ satisfies

$$\left| \arg \left(1 + \frac{z \Im'(z)}{\Im(z)} \right) \right| < \frac{\pi}{2} \gamma \quad \left(0 < \gamma \le s, \quad z \in \Theta \right) (3)$$

Let M $(m, \delta, \eta, \gamma)$ be the category of regular, \Im defined within the open unit disk Θ

$$\Re\left(\frac{\mathrm{E}_{\eta,s}^{\delta,m+1}\Im(z)}{\mathrm{E}_{\eta,s}^{\delta,m}g(z)}\right) > 0 \quad \left(\delta \in \mathrm{N}, \delta, m, s \in \mathrm{N}_0 = \mathrm{N} \cup \{0\}\right)$$

for some $g \in \mathbb{R}^{s}_{\gamma}(m, \delta, \eta, \gamma)$.

The author define the following differential operator $E_{\eta,s}^{\delta,m}: A_s \to A_s$ by

$$\mathbf{E}_{\eta,s}^{\delta,m}\mathfrak{I}(z) = z^{s} + \sum_{\tau=1}^{\infty} \Gamma_{\tau} (\tau + s)^{m} a_{\tau+s} z^{\tau+s} (4)$$

where
$$\Gamma_{\tau} = \frac{(\tau + s + \delta - 1)!(\eta - 1)!}{\delta!(\tau + s + \eta - 2)!}$$
,

with the assist of the differential operator $E_{\eta,s}^{\delta,m}$, we say that

$$\left| \arg \left(\frac{\mathbf{E}_{\eta,s}^{\delta,m+1} \Im(z)}{\mathbf{E}_{\eta,s}^{\delta,m} \Im(z)} \right) \right| < \frac{\pi}{2} \gamma \quad \left(\delta \in \mathbf{N}, \delta, m, s \in \mathbf{N}_0 = \mathbf{N} \cup \{0\} \right)$$

for some $\gamma (0 < \gamma \le s)$ and for all $z \in \Theta$.

Note that

$$L_{K}^{s}(0,0,1,\gamma,1) = SS_{s}^{*}(K)$$

and

$$L_{K}^{s}(1,0,1,\gamma,1) = SC_{s}(K).$$

If g(z) follow to A_s is said to be in the category $R_s(m, \delta, \eta, \gamma)$ denoted the category of regular function g(z) by

$$\left| \arg \left(\frac{\mathsf{E}_{\eta,s}^{\delta,m+1} g(z)}{\mathsf{E}_{\eta,s}^{\delta,m} g(z)} \right) \right| < \frac{\pi}{2} \gamma \qquad \left(0 \le \gamma \le s \right)$$

and for all $z \in \Theta$.

For the category S of multivalent regular function, ^[2] obtained the higher then point of $\left|a_{s+2} - \lambda a_{s+1}^2\right|$ when λ is non-imaginary. The upper bounded for $\left|a_{s+2} - \lambda a_{s+1}^2\right|$ is developed independent by many various authors. In this present work the author achive a sharp upper bounded for $\left|a_{s+2} - \lambda a_{s+1}^2\right|$ when $\lambda \ge 1$, $\Im(z)$ belongs to the category of functions as follows:

Definition 1:

Let $\Im(z) \in A_s$ and then $\Im \in M_s(m,\delta,\eta,\gamma)$ iff there exist $g \in R_{\tau,s}(m,\delta,\eta,\gamma)$ so that

$$R\left(\frac{E_{\eta,s}^{\delta,m+1}\Im(z)}{E_{\eta,s}^{\delta,m}g(z)}\right) > 0(5)$$

where
$$g(z) = z^{s} + b_{s+1}z^{s+1} + b_{s+2}z^{s+2} + \dots$$

Note that $M_s(0,0,1,\gamma) = K_s(\gamma)$ the category of multivalent close – to - convex.

2. Main Result

Lemma 2 Let $\xi \in P$, ξ be regular in Θ and follow by $\xi(z) = 1 + \upsilon_1 z + \upsilon_2 z^2 + ...$ and $\Re(\xi(z)) > 0$ for $z \in \Theta$. Then

$$\left|v_2 - \frac{v_1^2}{2}\right| \le 2 - \frac{|v_1^2|}{2}.$$
 (6)

Theorem 3 Let $\Im(z) \in M_s(m, \delta, \eta, \gamma)$ and observe by way of (1.1). Then for $\gamma \ge 1$ and $\lambda \ge 1$ we have that sharp disparity

$$\left|a_{s+2} - \lambda a_{s+1}^{2}\right| \leq 4 \left\lceil \frac{\gamma^{2} \left[\lambda \Gamma_{2} \left(s+2\right)^{m} - \frac{q}{2} \Gamma_{1}^{2} \left(s+1\right)^{2m+1}\right]}{s^{2} \Gamma_{1}^{2} \Gamma_{2} \left(s+1\right)^{2m+2} \left(s+2\right)^{m}}\right\rceil + \frac{4s\lambda \Gamma_{2} \left(s+2\right)^{m+1} \left(1+2\gamma\right) - 2\Gamma_{1}^{2} \left(s+1\right)^{2m+2} \left(s+2\gamma\right)}{s\Gamma_{1}^{2} \Gamma_{2} \left(s+1\right)^{2m+2} \left(s+2\right)^{m+1}}.$$

(7)

Proof. Let $\Im(z) \in M_s(m, \delta, \eta, \gamma)$ It observe by way of (1) that

$$\mathbf{E}_{\mu,s}^{\delta,m+1}\Im(z) = \mathbf{E}_{\mu,s}^{\delta,m}g(z)\varphi(z),(8)$$

for $z \in \Theta$, with $\varphi \in P$ observe by way of $\varphi(z) = 1 + \varphi_1 z + \varphi_2 z^2 + \varphi_3 z^3 + \dots$ Equating coefficients, we obtain

$$\Gamma_1(s+1)^{m+1}a_{s+1} = \Gamma_1(s+1)^m b_{s+1} + \varphi_1(9)$$

and

$$\Gamma_{2}(s+2)^{m+2} a_{s+2} = \Gamma_{2}(s+2)^{m} b_{s+2} + \Gamma_{1}(s+1)^{m} b_{s+1} \varphi_{1} + \varphi_{2}.$$
(10)

Also, it follows form equ (4) that

$$\mathbf{E}_{\mu,s}^{\delta,m+1}g(z) = \mathbf{E}_{\mu,s}^{\delta,m}g(z) \left[\Im(z)\right]^{\gamma},$$

where for $z \in \Theta$, $h \in P$ and

$$h(z) = 1 + h_1 z + h_2 z^2 + h_3 z^3 + \dots$$

Thus equating coefficients, we obtain

$$\Gamma_1 s (s+1)^m b_{s+1} = \gamma h_1, (11)$$

and

$$\Gamma_2(s+1)(s+2)^m b_{s+1} = \gamma \left[h_2 + \left(\frac{\gamma}{s} + \frac{\gamma - 1}{2} \right) h_1 \right], (12)$$

From equ (9), (10), (11) and (12) we have

$$a_{s+2} - \lambda a_{s+1}^{2} = \frac{1}{\Gamma_{2}(s+2)^{m+1}} \left(\varphi_{2} - \frac{1}{2} \varphi_{1}^{2} \right)$$

$$+ \frac{\gamma}{\Gamma_{2}(s+1)(s+2)^{m+1}} \left[h_{2} - \frac{1}{2} h_{1}^{2} \right]$$

$$+ \left[\frac{\Gamma_{1}^{2}(s+1)^{2m+2} - 2\lambda \Gamma_{2}(s+2)^{m+1}}{2\Gamma_{1}^{2}\Gamma_{2}(s+1)^{2m+2}(s+2)^{m+1}} \right] \varphi_{1}^{2} + \left[\frac{\gamma \Gamma_{1}^{2}(s+1)^{2m+2} - 2s\lambda\gamma \Gamma_{2}(s+2)^{m+1}}{s\Gamma_{1}^{2}\Gamma_{2}(s+1)^{2m+2}(s+2)^{m+1}} \right] \Im_{1}h_{1} (13)$$

$$+ \left[\frac{\gamma \left(\frac{\gamma}{s} + \frac{\gamma}{2} \right) \Gamma_{1}^{2} s^{2} (s+1)^{2m+1} - \lambda\gamma^{2} \Gamma_{2}(s+2)^{m+1}}{s^{2}\Gamma_{1}^{2}\Gamma_{2}(s+1)^{2m+2}(s+2)^{m+1}} \right] h_{1}^{2}$$

Assume that $a_{s+2} - \lambda a_{s+1}^2$ is non-negative. Hence we now estimate $\Re(a_{s+2} - \lambda a_{s+1}^2)$, the above and by applying the Lemma 2 and let $h_1 = 2re^{i\theta}$, $\varphi_1 = 2Re^{i\phi}$, $r, R \in [0,1]$, $\theta, \phi \in [0,2\pi]$, we obtain

$$(s+2)^{m+1} \Re \left[a_{s+2} - \lambda a_{s+1}^2 \right] = \frac{1}{\Gamma_2} \Re \left(\varphi_2 - \frac{1}{2} \varphi_1^2 \right) \\
+ \frac{\gamma}{\Gamma_2(s+1)} \Re \left[h_2 - \frac{1}{2} h_1^2 \right] \\
+ \left[\frac{\gamma \Gamma_1^2 (s+1)^{2m+2} - 2s\lambda \gamma \Gamma_2 (s+2)^{m+1}}{s \Gamma_1^2 \Gamma_2(s+1)^{2m+2}} \right] \Re \left(\psi_1 h_1 \right) + \left[\frac{\gamma \left(\frac{\gamma}{s} + \frac{\gamma}{2} \right) \Gamma_1^2 s^2 (s+1)^{2m+1} - \lambda \gamma^2 \Gamma_2 (s+2)^{m+1}}{s^2 \Gamma_1^2 \Gamma_2 (s+1)^{2m+2}} \right] \Re \left(h_1^2 \right) (14) \\
\leq \frac{2}{\Gamma_2} \left(1 - R^2 \right) \\
+ \left[\frac{\Gamma_1^2 \left(s+1 \right)^{2m+2} - 2\lambda \Gamma_2 \left(s+2 \right)^{m+1}}{2 \Gamma_1^2 \Gamma_2 \left(s+1 \right)^{2m+2}} \right] 4R^2 \cos 2\phi + \frac{2\gamma}{\Gamma_2 \left(s+1 \right)} \left(1 - r^2 \right) \\
+ \left[\frac{\gamma \Gamma_1^2 \left(s+1 \right)^{2m+2} - 2s\lambda \gamma \Gamma_2 \left(s+2 \right)^{m+1}}{s \Gamma_1^2 \Gamma_2 \left(s+1 \right)^{2m+2}} \right] \\
+ 4rR \cos \left(\theta + \phi \right)$$

$$+ \left[\frac{\gamma \left(\frac{\gamma}{s} + \frac{\gamma}{2} \right) \Gamma_{1}^{2} s^{2} \left(s+1 \right)^{2m+1} - \lambda \gamma^{2} \Gamma_{2} \left(s+2 \right)^{m+1}}{s^{2} \Gamma_{1}^{2} \Gamma_{2} \left(s+1 \right)^{2m+2}} \right]$$

$$\leq \left[\frac{4\lambda\Gamma_{2}(s+2)^{m+1}-4\Gamma_{1}^{2}(s+1)^{2m+2}}{\Gamma_{1}^{2}\Gamma_{2}(s+1)^{2m+2}}\right]R^{2} + \left\lceil\frac{4\gamma\left[2s\lambda\Gamma_{2}(s+2)^{m+1}-\Gamma_{1}^{2}(s+1)^{2m+2}\right]}{s\Gamma_{1}^{2}\Gamma_{2}(s+1)^{2m+2}}\right\rceil rR$$

$$+\gamma \left[\frac{4\gamma \left[\lambda \Gamma_{2}(s+2)^{m+1} - \left(\frac{1}{s} + \frac{1}{2}\right) \Gamma_{1}^{2} s^{2} (s+1)^{2m+1} \right]}{s^{2} \Gamma_{1}^{2} \Gamma_{2}(s+1)^{2m+2}} - \frac{2}{\Gamma_{2}(s+1)} \right] r^{2} + \frac{2}{\Gamma_{2}(s+1)} (\gamma + s + 1) (15)$$

$$= \Psi(r, R).$$

Derivative partially above when $(\delta, \gamma, \lambda) \ge 1$ and $\eta \ge 0$, we study that $\Psi_r \Psi_{RR} - (\Psi_{rR})^2 < 0$ therefore, the most of $\Psi(r, R)$ occurs on the limitations, hence the favored inequality follows by observing that

$$\begin{split} &\Psi(r,R) \leq \Psi\left(1,1\right) \\ &= 4 \left\lceil \frac{\gamma^{2} \left(s+2\right) \left[\lambda \Gamma_{2} \left(s+2\right)^{m} - \frac{s}{2} \Gamma_{1}^{2} \left(s+1\right)^{2m+1}\right]}{s^{2} \Gamma_{1}^{2} \Gamma_{2} \left(s+1\right)^{2m+2}} \right\rceil + \frac{4s \lambda \Gamma_{2} \left(s+2\right)^{m+1} \left(1+2\gamma\right) - 2 \Gamma_{1}^{2} \left(s+1\right)^{2m+2} \left(s+2\gamma\right)}{s \Gamma_{1}^{2} \Gamma_{2} \left(s+1\right)^{2m+2}}. \end{split}$$

If (7) is attained when $h_1 = \varphi_1 = 2i$ and $h_2 = \varphi_2 = -2$ Choosing $m = \delta = 0$ and $\eta = 1$ we get,

Corollary 4 Let $\Im(z) \in L(\gamma)$ and observe by way of (1). Then for $(\gamma, \lambda) \ge 1$ we have got the sharp disparity

$$|a_{s+2} - \lambda a_{s+1}^{2}| \leq \frac{2\gamma^{2} \left[2\lambda - s(s+1)\right]}{s^{2}(s+1)^{2}} + \frac{4s\lambda(s+2)(2\gamma+1) - 2(s+1)^{2}(2\gamma+s)}{s(s+1)^{2}(s+2)}.$$
(16)

Letting $m = \eta = 1$ and $\delta = 0$ we get

Corollary 5 *Let* $\Im(z) \in L(1,0,1,\gamma)$ *and observe by way of (1). Then for* $(\gamma,\lambda) \ge 1$ *we have got the sharp disparity*

$$|a_{s+2} - \lambda a_{s+1}^{2}| \le \frac{1}{s^{2}(s+1)^{4}(s+2)^{2}} \left[\frac{2(s+2)\gamma^{2} \left[2(s+2)\lambda - s(s+1)^{2}\right]}{+4s^{2}\lambda(s+2)^{2}(1+2\gamma) - 2s(s+1)^{4}(s+2\gamma)} \right]. (17)$$

Choosen s = 1 we get following

Corollary 6^[1] Let $\Im(z) \in L(m, \delta, \eta, \gamma)$ and observe by way of (1). Then for $\gamma \ge 1$ and $\lambda \ge 1$ we have got the sharp disparity

$$|a_{3}-\lambda a_{2}^{2}| \leq \frac{\gamma^{2} \left[3^{m} \lambda \eta^{2} (\delta+2)-2^{2m} \eta (\eta+1) (\delta+1)\right]}{2^{2m} 3^{m} (\delta+2) (\delta+1)^{2}} + \frac{3^{m+1} \lambda^{2} (\delta+2)-2^{2m+1} \eta (\eta+1) (\delta+1) |(2\gamma+1)|}{2^{2m} 3^{m+1} (\delta+2) (\delta+1)^{2}}. (18)$$

Corollary 7^[1] Let $\Im(z) \in K(\gamma)$ and observe by way of (1). Then for $(\gamma, \lambda) \ge 1$ we have got the sharp disparity

$$|a_3 - \lambda a_2| \le \gamma^2 (\lambda - 1) + \frac{(2\gamma + 1)(3\lambda - 2)}{3}$$
 (19)

Corollary 8^[1] Let $\Im(z) \in L(1,0,1,\gamma)$ and observe by way of (1). Then for $\gamma \ge 1$ and $\lambda \ge 1$ we have got the sharp disparity

$$|a_3 - \lambda a_2| \le \frac{1}{36} [3\gamma^2 (3\lambda - 4) + (9\lambda - 8)(2\gamma + 1)].$$
(20)

REFERENCES

- 1. Al-Hawary, T., Frasin, B. A. and Darus, M., 2016. Coefficient Inequality for Certain Classes of Analytic Functions, Miskolc Mathematical Notes, 17(1), pp. 29-34.
- 2. Duren, P.L., 1983. Univalent Functions, Springer, New York.
- 3. Fekete, M., and Szegö, G., 1933. Eine Bemerkung über ungrade schlicht Funktionen, J. London Math. Soc., 8, pp. 85-89.
- 4. Goel, R., and Mehrok, B., 1991. A coefficient inequality for certain classes of analytic functions, Tamkang J. Math., 22(2), pp. 153-163.
- 5. Jahangiri, M., 1995. A coefficient inequality for a class of close-to-convex functions, Math. Japon., 41(3), pp. 557-559.
- 6. Keogh, F., and Merkes, E., 1969. A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20, pp. 8-12.
- 7. London, R., 1993. Fekete-Szegö inequalities for close-to-convex functions, Proc. Amer. Math. Soc., 117, pp. 947-950.
- 8. Nasr, M., and Abdel-Gawad, H., 1991. On the Fekete-Szegö problem for close-to-convex functions of order p, New Trends in Geometric Functions Theory and Applications (Madaras 1990), World Sci. Pupl. Co., River Edge, N.J., pp. 66-74.
- 9. Pommerenke, C., 1975. Univalent functions, 1st ed. Göttingen: Vandenhoeck and Ruprecht.
- 10. Robertson, M.S., 1953. Multivalently starlike function, Duke Math. J. 20, pp. 539-550.