EU early access - regulatory framework & practical considerations
Debra Ainge
Clinigen Group, Burton-on-Trent, Staffordshire, UK

Abstract
European Regulation 726/2004/EC (Article 83) and Directive 2001/83 (Article 5), provide a regulatory framework for access to investigational medicines outside the context of the clinical trial, allowing physicians to access potentially life-saving medicines that would otherwise be unavailable for their patients. Treatment with an investigational product represents an important option for patients suffering from serious or life-threatening conditions where licensed alternatives are either unavailable or unsuitable for the patient. They can often be the only treatment option for disease areas of high unmet need such as rare diseases and orphan indications. Whilst the pharmaceutical industry has continued to focus on accelerating access to innovative new treatments by shortening the development timelines; increased regulatory challenges and delays due to pricing & reimbursement negotiations can result in delays of many years between positive phase III trials and commercial availability. Access Programs hence provide an important mechanism to bridge the time between clinical development, marketing authorisation and product launch. Although this EU framework exists, each member state has decided independently how and when to allow such access, and developed national rules and legislation to reflect this. As a result, there is no single, centralized European procedure for either single patient or cohort approaches; indeed there are often more differences between the member states than similarities. Generally, access is initiated by the physician, is limited to investigational products for the treatment of a serious or rare disease and where there is an absence of alternative approved treatments. The objective of this article is to provide an overview of the regulatory frameworks available in the member states, as well as practical considerations for implementation of an access program.

http://dx.doi.org/10.1016/j.nhtm.2014.11.016

Personalized medicine: Moving from correlation to causality in breast cancer
Sabrina Molinaro a, Stefania Pieroni a, Fabio Mariani a, Michael N. Liebman b

a National Research Council of Italy, Pisa, Italy
b Strategic Medicine, Inc, Kennett Square, PA, USA

Abstract
Personalized Medicine currently focuses on the right treatment for the right patient, but its long-term goal includes personalized risk assessment and prevention. Current emphasis focuses on advances in genetic testing and biomarker to enhance patient care. The considerable data generated by such approaches and access to patient EHR’s has led to many statistically-based studies to predict disease risk and prognosis, e.g. the Gail model for breast cancer risk assessment; evaluation of BRCA mutation profiles; and expression level analysis of her2/neu for Herceptin response. Such correlative analysis has been used to enhance clinical-decision making but is limited in its potential for understanding mechanisms of risk and disease. We have extended these correlative approaches to include systems-based process modeling, extending from pre-disease risk to early detection, treatment and outcome, in an effort to develop models for testing and validation against both existing data and enhanced data collection. Development and testing of this approach in breast cancer will be presented.

Risk Assessment: We have begun to model risk assessment by including specific aspects of a patient’s physiological development to help identify risk factors that can lead to improved guidelines for risk prevention. This can also identify specific causes for risk and disease through the course of normal breast development. Risk from any specific factor is something that changes over a person’s lifetime and is not likely to be constant. Simple statistical correlation of a risk factor, i.e. do you smoke? do you smoke more than 1 pack of cigarettes per day? needs to evolve to show how risk from each factor varies over a person’s lifetime/stage of development. This is because the molecular processes underlying physiological change also vary.

Methods: Risk factors were identified from the literature (from RR = 1.0 to > 4.0) and compared with those in the Gail model and then a physiological model of breast development, from pre-menarche to menopause, was drafted. These included both those included in the Gail model as well as other biomarkers, e.g. breast-feeding history, radiation exposure, oral contraceptive use, etc. A data set that represented a combination of actual and simulated patients, with 1458 patients in each, was used for the analysis. Univariate analysis was performed and comparison between the Gail model results and our models was performed using ROC analysis. Subsequent refinement eliminated several variables from consideration in the model.

Discussion: Our preliminary results begin to approach the specificity and sensitivity of the Gail model (AUC = 0.957 (Gail model) and 0.745 (physiological model)) and further refinement is ongoing. By contrast, our model presents the opportunity to more directly personalize risk assessment based on an individual patient’s characteristics and present the potential to develop management plans to reduce potential risk and to identify potential opportunities for biomarker/diagnostic development (and therapeutics) based on the specifics of the disease process unique to the patient.

http://dx.doi.org/10.1016/j.nhtm.2014.11.017