• Register
  • Login

European Journal of Molecular & Clinical Medicine

  • Home
  • Browse
    • Current Issue
    • By Issue
    • By Subject
    • Keyword Index
    • Author Index
    • Indexing Databases XML
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Indexing and Abstracting
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
Advanced Search

Notice

As part of Open Journals’ initiatives, we create website for scholarly open access journals. If you are responsible for this journal and would like to know more about how to use the editorial system, please visit our website at https://ejournalplus.com or
send us an email to info@ejournalplus.com

We will contact you soon

  1. Home
  2. Volume 7, Issue 9
  3. Authors

Online ISSN: 2515-8260

Volume7, Issue9

TONGUE IMAGE CLASSIFICATION FOR DIABETES DETECTION USING VARIOUS KERNELS OF SVM AND NON-NEGATIVE MATRIX FACTORIZATION

    G. Sridevi V. Shanthi J. Josphin Mary R. Charanya

European Journal of Molecular & Clinical Medicine, 2020, Volume 7, Issue 9, Pages 1418-1421
10.31838/ejmcm.07.09.148

  • Show Article
  • Download
  • Cite
  • Statistics
  • Share

Abstract

Diabetes people who also take antibiotics to combat different infections are particularly vulnerable to fungal mouth and tongue infection. The fungus prospers in the saliva of uncontrolled diabetes to high glucose levels. An efficient method for Tongue image classification using Non-Negative Matrix Factorization (NNMF) and various Support Vector Machine (SVM) kernels are presented in this study. The input tongue images are given to NNMF for feature extraction and stored in feature database. Finally, SVM kernels like linear, polynomial, quadratic and Radial Basis Function (RBF) are used for prediction. The system produces the classification accuracy of 92% by using NNMF and different SVM kernels
Keywords:
    Tongue images Non-negative matrix factorization Support Vector Machine kernels Diabetes detection
  • PDF (100 K)
  • XML
(2020). TONGUE IMAGE CLASSIFICATION FOR DIABETES DETECTION USING VARIOUS KERNELS OF SVM AND NON-NEGATIVE MATRIX FACTORIZATION. European Journal of Molecular & Clinical Medicine, 7(9), 1418-1421. doi: 10.31838/ejmcm.07.09.148
G. Sridevi; V. Shanthi; J. Josphin Mary; R. Charanya. "TONGUE IMAGE CLASSIFICATION FOR DIABETES DETECTION USING VARIOUS KERNELS OF SVM AND NON-NEGATIVE MATRIX FACTORIZATION". European Journal of Molecular & Clinical Medicine, 7, 9, 2020, 1418-1421. doi: 10.31838/ejmcm.07.09.148
(2020). 'TONGUE IMAGE CLASSIFICATION FOR DIABETES DETECTION USING VARIOUS KERNELS OF SVM AND NON-NEGATIVE MATRIX FACTORIZATION', European Journal of Molecular & Clinical Medicine, 7(9), pp. 1418-1421. doi: 10.31838/ejmcm.07.09.148
TONGUE IMAGE CLASSIFICATION FOR DIABETES DETECTION USING VARIOUS KERNELS OF SVM AND NON-NEGATIVE MATRIX FACTORIZATION. European Journal of Molecular & Clinical Medicine, 2020; 7(9): 1418-1421. doi: 10.31838/ejmcm.07.09.148
  • RIS
  • EndNote
  • BibTeX
  • APA
  • MLA
  • Harvard
  • Vancouver
  • Article View: 347
  • PDF Download: 356
  • LinkedIn
  • Twitter
  • Facebook
  • Google
  • Telegram
Journal Information

Publisher:

Email:  editor.ejmcm21@gmail.com

  • Home
  • Glossary
  • News
  • Aims and Scope
  • Privacy Policy
  • Sitemap

 

For Special Issue Proposal : editor.ejmcm21@gmail.com

This journal is licensed under a Creative Commons Attribution 4.0 International (CC-BY 4.0)

Powered by eJournalPlus