ORIGINAL RESEARCH

A retrospective study of critical incidents during anaesthesia in a tertiary care government hospital

1Dr. Richa Gupta, 2Dr. Devshri Raval, 3Dr. Rachana Gandhi, 4Dr. Aalap Shah

1Assistant Professor, 2Senior Resident, 4Third year Resident, Department of Anaesthesiology, GMERS Medical College, Gandhinagar, Gujarat, India
3Associate Professor, Department of Anaesthesiology, GMERS Rajpipla, Gujarat, India

Correspondence:
Dr. Rachana Gandhi
Associate Professor, Department of Anaesthesiology, GMERS Rajpipla, Gujarat, India

ABSTRACT
Introduction: Patient safety is the primary objective of health care. Success and failures are part of it. Adverse events can be controlled but cannot be eliminated. They should be reported, documented, and studied. Such data is important to monitor hospital performance and also they serve as a medium for training, simulation and improvement in standards of anaesthesia care.

Material and method: An observational retrospective study was conducted in a teaching tertiary level government hospital from patient records who underwent adverse events or deaths related to anaesthesia over one year from October 2016 to September 2017. Type of adverse events and their relation to ASA grading, type and speciality of operation, age, sex and comorbidities of the patient, time of critical incident when occurred with relation to anaesthesia were analysed. Mortality was included as a critical event in our study and analysed.

Results: Critical events were documented in 50 patients (0.5%), with mortality 54%, while rest recovered completely. Highest number were documented in age group 31 to 50 years (26%) and ASA III patients (50%). Critical incidences happened more with emergency surgeries (52%), in patients with single preoperative comorbidity (35) and under general anaesthesia (78%) in maintenance phase (32.8%). Highest cause of mortality was related to cardiovascular and respiratory events.

Conclusion: Morbidity and critical events will always be part of anaesthesia practice. They might be prevented with proper vigilance. When they happen, it should be reported without fear of punitive results. They should be studied and analysed, and proper protocols and checklists should be developed according to local guidelines and medical practices. Such studies are important part of medical education process and improve patient care.

Keywords: Adverse events, documentation, patient safety, mortality, guidelines

INTRODUCTION
Patient safety is the primary objective of hospital care across the world. Yet, adverse events occur in any area of medicine, more commonly in anaesthesiology. Some adverse events are avoidable, while some cannot be avoided as consequences of health care. Although, it is must to report any adverse event which occurs in medical practice, many of them are not reported. When such events occur, analysis of such data is important to monitor hospital performance and also because they serve as a medium for training, simulation and improvement in
standards of anaesthesia care.\(^1\) Also, by sharing such information, new policies are evolved which prevents recurrences.\(^2\)

With modernization of medicine, despite aging population with multiple co-morbidities, more and more complex, extensive surgeries are being performed leading to perioperative morbidity with decreasing mortality. But with complex extensive surgeries, adverse events are reported, half of which are preventable. These adverse events lead to increase in hospital admission days, cost of health care and also take a toll on mental health of patient and family members.

MATERIALS AND METHODS

After approval from the ethical committee, an observational retrospective study was conducted in a teaching tertiary government hospital. All patient records who underwent adverse events or death related to anaesthesia over one year, from October 2016 to September 2017 were screened retrospectively through patient records maintained in the department. All details on pre-operative condition of patient, intraoperative events and post operative events, including death were analysed. Adverse events including deaths were analysed and studied according to age, sex, elective or emergency, anaesthesia risk, number of co-morbidities, and type of anaesthesia given. Also, time and type of critical incidents was noted down. Number of critical events including deaths, according to the surgical branches was also discussed. Data of total number of anaesthesia delivered over one year, in different surgical specialities was also noted down and was analysed. Patient records which were incomplete, psychiatric patient undergoing ECT, patients anaesthetized for radiological procedures and peripheral anaesthetic calls in hospital were excluded from the study.

Standard monitoring was used in all patients including, electrocardiogram, pulse-oximetry, end tidal carbon dioxide monitoring and non invasive blood pressure monitoring. The data was collected and subjected to analysis by using SPSS software.

RESULTS

During the one year study, 10,028 patients were administered anaesthetic agents. Critical incidents were documented in 50 patients (0.5%), out of which 23 (46%) recovered completely and mortality was noted in 27 (54%) patients. Age wise distribution of critical incidents amongst patients undergoing anaesthesia showed highest incidence (26%) in age group 31 to 50 years followed by 51 to 70 years (20%) with least in geriatric age group of more than 71 years (6%). Paediatric population less than one year of age showed incidence of critical events (10%). Sex wise distribution showed incidence of critical events 56% (28) in males while 44% (22) in females.

Twenty six (52%) had emergency surgeries while 24 (48%) had elective procedures. Highest incidence of critical events was seen in cases posted under general surgery (32 out of 50). Majority of the critical incidents occurred in ASA grade III 25 (50%) as compared to ASA IV and V. The frequency of critical incidents (35) was maximum in patients with single pre-existing co-morbidity while 22 critical incidents were reported in both, patients with more than one comorbidity and patients with no comorbidity.

Out of 50 patients with critical incidents during the study period 27 mortalities were registered. It was seen that the highest cause of mortality was related to cardiovascular and respiratory events.

Incidents occurred more frequently in patients who received general anaesthesia 39 (78%) and occurred most commonly during maintenance phase i.e. 32.8% and least during phase of induction i.e. 7.81%.

Seventy seven incidents of critical events were documented in 50 patients in the study year, out of which maximum was death within 24hrs of giving anaesthesia which was 35%,
followed by cardiovascular (18%), followed by respiratory (16%). Cardiac events documented were bradycardia (1.3%), hypotension (18.2%) and arrhythmias (3.9%). Respiratory events documented were aspiration (3.9%), laryngospasm/bronchospasm (2.6%), stridor (1.3%), hypoxia (2.6%), hypercarbia (2.6%), pulmonary oedema (2.6%), respiratory distress (1.3%), failed or difficult intubation (3.9%). Other events included delayed recovery, recurarization, faulty techniques, haemetemesis, TURP syndrome, bone cement implantation syndrome and cardiorespiratory arrest.

Chart-1

AGE WISE DISTRIBUTION

<table>
<thead>
<tr>
<th>Age Group</th>
<th><18 year</th>
<th>18-30 year</th>
<th>31-50 year</th>
<th>51-70 year</th>
<th>>71 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chart-2

ASA GRADING OF PATIENTS

<table>
<thead>
<tr>
<th>ASA Grade</th>
<th>ASA 1</th>
<th>ASA 2</th>
<th>ASA 3</th>
<th>ASA 4</th>
<th>ASA 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DISCUSSION
Success and failures are part of human work. Failures occur in patterns which when correctly identified and timely reported and documented, can be prevented from repeating. Failures should be analyzed, classified and assessed in order to determine the cause and make effective guidelines and strategies to prevent them from repeating again.

In respect to the major areas of risks in anaesthesia, the most valuable source of information can be obtained from the ASA Closed Claims Project Database and the National Confidential Enquiry into Perioperative Deaths (NCEPOD) reports.
With new technological advances and safer drugs, anaesthesia is becoming safer in recent times with very serious incidences becoming gradually rare in the population\(^7\). The outcome of critical incidents invariably will depend on the severity of insult, timely intervention and the patient's preoperative health status.

Anaesthesia-related mortality in most developed countries is now less than 1:50,000. Anaesthesia in healthy young patients of ASA I–II physical status, it is found much lower, i.e., 1 per 250,000\(^8,9\).

Documentation and reporting of critical incidence is important to improve the standard of care under anaesthesia\(^10\). The death attributable to anaesthesia alone was only 0.05 per 10,000 anaesthetics as per first edition of the Confidential Enquiry into Perioperative Deaths arranged by both the Association of Anaesthetists and the Association of Surgeons of Great Britain and Ireland where perioperative deaths occurring during 12 months in three National Health Service regions were examined\(^11\)–\(^17\).

The frequency of critical incidents in our study was 0.5%. There was a vast difference of critical incidents in various studies. These incidences could vary from 0.28 to 12.1%\(^14\)–\(^19\). Study conducted by Warden JC et al\(^14\) documented 11% incidents while in a Zimbabwean study by Madzimbamuto and Chiware reported a 0.92% of intraoperative critical incidents\(^20\). This may be due the different interpretations and guidelines followed in various regions and differences in medical practices. Also the various parameters studied and counted in these studies may differ with each other. There may be a different system of reporting of critical incidents or may be a lack of reporting minor incidents. Also, some major events go unreported for fear of retribution and lack of motivation and a formal reporting system.

Age wise distribution of critical incidents in our study showed highest incidence (26%) in age group 31 to 50 years followed by 51 to 70 years (20%) with least in geriatric age group of more than 71 years (6%). Paediatric population less than 1 year of age showed incidence critical events (10%). Also, majority of the critical incidents occurred in ASA grade III 25 out of 50 (50%). These findings are similar to study done by Ajaj and Pansalovich, where the risk was found high in the patients with ASA physical status III-V compared to ASA I or II 21 but are in contradiction to studies conducted by Gupta S\(^22\) and Khan PA\(^23\) where maximum critical incidents occurred in ASA I while age wise critical incidents reported highest in paediatric patients. These differences may be due to the fact that maximum number of patients undergoing anaesthesia in our setup belonged to ASA III and also patients with ASA IV and V were given anaesthesia meticulously and strictly monitored by consultant anaesthetists, while patients with ASA I, II and III were conducted by junior residents under supervision by consultant anaesthetists\(^23,24\). Also patients belonging to geriatric or paediatric age group had a presence of consultant anaesthetist throughout the operation period, which may be the cause of fewer occurrences of critical events in them as compared to the age group 31 to 50 years which were mostly conducted by resident doctors.

It was seen in our study that maximum critical events were documented in patients undergoing surgery under general surgical department (32 out of 50) as compared to gynecology, obstetrics, orthopaedics, neurology, ophthalmology and ENT department. This may be due to the fact that general surgical department has maximum patient flow in operation theatres in our setup.

We also found that the majority of critical events occurred in patients undergoing anaesthesia with single comorbidity (42%). Number of deaths was also high in patients with single comorbidity (51%). This can be explained with strict vigilance, more preoperative workup and better interdisciplinary management of patients with more than single comorbidity.

Out of all critical events, mortality rate was 54%, which is quite high. This might be due to the fact that ours is a government tertiary hospital and maximum number of patients belongs to lower socio economical class and poor health resources. Also our setup accepts all the
patients which have been rejected and referred by private setups. The patients often present late with poor optimization from the referral hospital.

The highest cause of mortality was related to cardiovascular and respiratory events as its prevalence is high in general population.

Highest number of critical incidents was noted in patients who received general anaesthesia (78%) and occurred most commonly during maintenance phase i.e. 32.8%. This is due to more vigilance during the intubation and extubation period and the anaesthetists are comparatively more relaxed and less alert in the maintenance phase.

In our study, maximum number of critical events was death within 24hrs of giving anaesthesia (35%), followed by cardiovascular (18%) and respiratory (16%). Cardiac events documented were bradycardia (1.3%), hypotension (18.2%) and arrhythmias (3.9%). Respiratory events documented were aspiration (3.9%), laryngospasm/bronchospasm (2.6%), stridor (1.3%), hypoxia (2.6%), hypercarbia (2.6%), pulmonary oedema (2.6%), respiratory distress (1.3%), failed or difficult intubation (3.9%). This finding is similar to the study done by A. O. Amucheazi where most of the critical events were attributed to cardiovascular followed by respiratory morbidity as they had not considered mortality as a different entity of critical events.

Most of the other studies have stated the major cause of critical events related to anaesthesia is human error which is associated with lack of experience, lesser skills and poor judgements of the anaesthetists. Also it depends on the economical condition of the country, availability of proper functioning modern equipments, hospital facilities, availability of anaesthetist staff and also awareness about health and personal hygiene in patients. Therefore, the critical events are more frequent in developing countries than the developed countries.

In our study, 52% of critical incidents occurred in emergency surgeries while 48% incidents occurred in elective surgeries. This result is similar to study conducted by Maaloe et al. and Braz et al. Who also found that there was a slightly higher incidence of critical incidents and mortalities in emergency surgery as compared to elective surgery. Poor optimization of patient's preoperative status, nonavailability of equipments, emergency drugs, investigation facilities and poor operating conditions are all contributory factors in emergency situation in developing countries.

Our study is not free from limitations. This is a retrospective study relying on documentation done in past, so some of the findings may not be accurate as documentation was done by multiple doctors. Chances of underreporting of adverse events are high as ours is a teaching hospital and many cases are conducted by junior doctors who due to fear or ignorance might not report. Also the sample size is small to accurately generalize the results.

In conclusion, morbidity and critical events will always be part of anaesthesia practice. They might be prevented with proper vigilance. It requires prompt diagnosis and timely accurate treatment. It may only happen when critical incidents are documented and reported without any fear of punitive results. Critical events should be studied and analyzed and proper protocols and checklists should be developed according to local guidelines and medical practices. Such studies are important part of medical education process and improve patient care.

REFERENCES
9. Cheney FW. The American Society of Anesthesiologists Closed Claims Project. What have we learned, how has it affected practice, and how will it affect practice in the future? Anesthesiology. 1999;91:552–6. [PubMed]