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Abstract: Presently, digital data gets exponentially raised owing to an increase in number of 

data channels which generate and distribute data, load balancing techniques are developed 

for handling big data in real time. Though the cloud environment offers effectual services, 

it faces some serious issues of load balancing where the improper distribution of load results 

in degraded overall processing performance. This paper presents a novel Cross Entropy with 

Glowworm Swarm Optimization Algorithm based Load Balancing (CEGSO-LB) Technique 

for Distributed Big Data Systems. The aim of the CEGSO-LB model is to reduce the overall 

processing cost and schedule the load on the VMs proficiently. The presented CEGSO 

algorithm incorporates the basic concepts of CE method and GSO algorithm. The CE 

concept is integrated into the GSO algorithm to improve the efficiency in attaining global 

solutions and eliminating local optima problem. The presented model is implemented to 

examine the results under varying sizes of synthetic datasets and varying number of Virtual 

Machines (VMs). The experimental results guaranteed the betterment of the CEGSO-LB 

technique interms of distinct aspects namely Average Load, Average turnaround time, 

Average response time, CPU utilization, memory utilization, reliability, average execution 

time, makespan, and average throughput. 

 

Keywords: Big data, distributed systems, cloud computing, load balancing, virtual machines 

 

1. INTRODUCTION: 

Presently, the exploitation of digital gadgets like tablets, personal computers, smartphones has 

raised the quick development of social media applications namely Twitter and Facebook. It has 

resulted in an enormous generation of digital data in day-to-day lives. Consequently, big data 

technologies have become an effective way of managing and processing huge quantity of data 

which could not be managed in a classical way [1]. Big data has imposed the latest meaning of 

processing and examining massive quantity of data which is not available in the existing data. 

It is commonly employed in distinct domains namely trend analysis, marketing, and decision 

making [2, 3]. Distributed storage processing models namely Hadoop are available for 

processing huge quantity of data outside the computational restricts of the available storage 
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and processing system [4]. Hadoop is an illustrative openly accessible model used for the 

distributed storage and computation of massive quantity of data. Since Hadoop saves and 

computes massive data quantity in the disk of distributed nodes, incessant disk input and output 

happen, resulting in real-time processing incredible [5]. Also, if the inputs and outputs are 

focused on a particular node, the bottleneck happens the total processing speed gets reduced. 

Fig. 1 illustrates the structure of dynamic algorithms of load scheduling [6]. 

 

 

Fig. 1 Structure of Dynamic Algorithms of Load Scheduling 

For addressing these disk input and output issues, distributed in-memory technology has 

developed enabling the way to distribute, store, and process data in the storage to attain quick 

access speed [7]. Distributed in-memory technologies are commonly utilized for application 

areas which process massive quantity of data in real time scenarios. A sample representative 

in-memory processing technique is called Memcached [8]. It is a key based memory caching 

technique commonly used in application areas offering online real time services like Youtube, 

Instagram, etc. It minimizes the memory utilization to the backend database by straightaway 

storing the data request of the user in the distributed in-memory [9]. Since Memcached operates 

works on distributed environment, load imbalance issue exists between the nodes. 

Alternatively, in the distributed in-memory environment, if the requests are focused on a 

particular node or the utilization of specific data is concentrated, the issue of load increase on 

a particular node takes place. This load imbalance problem amongst the node reduces the total 

system response time and network efficiency [10]. 

This paper presents a novel Cross Entropy with Glowworm Swarm Optimization Algorithm 

based Load Balancing (CEGSO-LB) Technique for Distributed Big Data Systems. The aim of 

the CEGSO-LB model is to reduce the overall processing cost and schedule the load on the 

VMs proficiently. The presented CEGSO algorithm incorporates the basic concepts of CE 

method and GSO algorithm. The CE concept is integrated into the GSO algorithm to improve 

the efficiency in attaining global solutions and eliminating local optima problem. The presented 

model is implemented to examine the results under varying sizes of synthetic datasets and 

varying number of VMs. 
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2. LITERATURE REVIEW 

For addressing the load imbalance problem amongst the nodes in the distributed in-memory 

environment, several works have been performed by the use of ring based hashing techniques 

[20-24]. Generally available ring based hashing techniques modify the load by data replication 

process to other nodes or data migration by a hash space modification. [11] computed the load 

on the nodes by the use of hit and usage rates, and carried out the LB process by modifying the 

hash space. When the hot data is not available in the particular node, but, the hit ratio and usage 

rate get increased and several hash spaces should be modified. Alternatively, the existence of 

the hot data considerably enhances the cost of data migration. The works in [12] presented a 

model of load distribution by focusing on only one node by repeating the hot data which results 

in a large load to another node. If LB is carried out by the consideration of hot data, it can be 

impossible to resolve the situation where the load appears on the node with no hot data. In 

addition, in case of heterogeneous platform, LB is carried out without considering the storage 

space, adequate data migration exists in the node. Therefore, it is tedious to employ the 

available LB techniques due to the fact that it performs LB for a particular scenario. 

In [13], Binary Gravitational Search Algorithm (BGSA) is introduced for optimization of the 

scheduling operation generated from distinct environment. A hybridization of GSA is 

presented in [14] by the use of orthogonal crossover as well as patterns search for load 

scheduling in cloud platforms. Besides, two effective GSA optimization algorithms are 

presented in [15] for enhancing the particle diversity and employ the storage models in the 

mathematical computations. It has designed the security parameters based on the behavioral 

graph and defined the focus on LB and service assignment in cloud platform. Some other recent 

works are involved in this area. A study in [16] presented a novel PROUD technique for 

securing the outsource data designcryption process for edge servers to reduce the processing 

overhead on the client end. In addition, a novel CLoud scientific 

wOrkflowSchedUlingalgoRithm based on attack–defensE game model (CLOSURE) [17] is 

presented for scheduling load in cloud environment. 

 

3. THE PROPOSED CEGSO-LB TECHNIQUE 

The presented CEGSO-LB technique follows the idea of GSO algorithm and CE mechanism. 

The aim of the CEGSO-LB model is to reduce the overall processing cost and schedule the 

load on the VMs proficiently. The processing cost contains the transferring and execution cost 

of the cloudlets. It provides effective searching area exploitation and user satisfaction by 

deriving a fitness function. The parameters involved in the fitness function of the cloudlet and 

VM are MIPS, bandwidth, execution cost, and transfer cost. The cloudlet scheduling at the 

VMs is performed. The data center has (𝑉𝑀𝑠)𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝑠 probable methods of executing the 

cloudlets on the respective VMs. In case of implementing 3 cloudlets on 2 VMs, then the 

probability becomes 8. The glowworms 𝑆 undergo initialization at the CloudSim tool as 

represented as follows: 

𝑆𝑖 = (𝑠𝑖
1, 𝑠𝑖

2, … … , 𝑠𝑖
𝑛, … … … , 𝑠𝑖

𝑑) 

∀𝑖 = 1𝑡𝑜 25 𝑎𝑛𝑑 𝑛 = 1 𝑡𝑜 10                                                   (1) 
The fitness function determines the fitness value of the glowworms in the searching area. 

The initial glowworm uses CE next to the choice of subsequent glowworm by the use of 

optimum fitness value. Assume a C𝑡𝑒𝑥𝑒(𝑀)𝑗 is the entire execution cost of all glowworms 

allocated to calculate the VM resources 𝑃C𝑗. It is found by summing the weights assigned to 

the nodes in the mapping of glowworms of all cloudlets allocated to individual resources.   
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𝑑 

Let C𝑡f𝑟𝑜𝑛(𝑀)𝑗 indicates the sum of the transfer cost which existed amongst the cloudlets 

allocated to calculate the VM resource 𝑃C𝑗. The output indicates the product of the output 

file size and transmission cost. The average cost of data amongst a set of two resources of 

transmission is defined by 𝑑(𝑘1), 𝑆(k2) and the glow worms are independent of each other. 

The overall cost is included for every glowworm by the inclusion of the execution and transfer 

cost and then the cost is also reduced for estimating the fitness function. 

 C𝑡𝑒𝑥𝑒𝑐(𝑆)𝑗 = ∑ 𝜔𝑘𝑗
 
𝑘 , ∀𝑆(k) = 𝑗                                             (2) 

C𝑡𝑡𝑟𝑎𝑛𝑠(𝑆)𝑗 = ∑ ∑ 𝑑𝑆(k1),𝑆(k2)

 

k2∈𝑇

 

k1∈𝑇

∗ 𝑒𝑘1,k2,                                  (3) 

∀𝑆(𝑘1) = 𝑗 𝑎𝑛𝑑 𝑆(1〈2) ≠ 𝑗                                              (4) 

C𝑡t𝑜tal(𝑆)𝑗 = C𝑡𝑒𝑥𝑒𝑐(𝑆)𝑗 + C𝑡𝑡𝑟𝑎𝑛𝑠(𝑆)𝑗                                            (5) 

𝐶𝑜𝑠𝑡𝑇𝑜𝑡𝑎𝑙(𝑆) =  max (Cttotal(𝑆)𝑗), ∀𝑗 ∈ 𝑆                               (6) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (C𝑜𝑠𝑡𝑇𝑜𝑡𝑎𝑙(𝑆) , ∀𝑆)                                        (7) 

A. Principle of GSO Algorithm 

In the GSO algorithm, a collective set of glowworms undergo initial random deployment in 

the solution space. Every individual glowworm indicates a solution of objective function in the 

searching space and holds a particular amount of luciferin in it. The amount of luciferin is 

linked to the fitness level of the present position of the agent. The brighter level of the 

glowworm represents an optimal solution. By the use of probability based models, the agents 

are attracted with the adjacent agents whose luciferin intensity exceeds the own inside the local 

decision domain and afterward shift toward it. The density of the glowworm’s neighbor 

influences the effect of the decision radius and computes the size of the local decision domain. 

If the neighboring density is found to be low, then the local decision domain gets enlarged for 

the identification of several neighbors; else, it reduces the enables of the swarm division into a 

smaller set of groups. These processes get iterated till the GSO algorithm reaches the stopping 

criteria. Here, most of the individuals gather over the brighter individuals [18]. In short, a set 

of 5 major stages are involved in the GSO algorithm namely luciferin update, neighborhood 

select, moving probability computer, movement, and the decision radius update. 

The luciferin update stage is mainly based on the fitness value and earlier luciferin value, 

and the rule can be represented as follows 

𝑙(𝑡 + 1) = (1 − 𝜌)𝑙𝑖(𝑡) + 𝛾 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑥𝑗(𝑡 + 1)).                (8) 

where 𝑙𝑖(𝑡) represents the luciferin value of glowworm 𝑖 at time 𝑡, 𝜌 is the luciferin decay 

constant, 𝛾 is the luciferin enhancement constant; 𝑥𝑖(𝑡 + 1) ∈ 𝑅𝑀 is the position of the 

glowworm 𝑖 at time 𝑡 + 1, and Fitness (𝑥𝑗(𝑡 + 1)) denotes the fitness value of the glowworm 

𝑖’s position at time 𝑡 + 1. Fig. 2 demonstrates the flowchart of GSO technique. 

At the neighbor-select stage, the neighbors 𝑁(𝑡) of the glowworm 𝑖 at 𝑡 time comprises of 

brighter individuals and is defined by 

𝑁𝑖(𝑡) = {𝑗: 𝑑𝑖𝑗(𝑡) < 𝑟𝑑
𝑖 (𝑡);  𝑙𝑖(𝑡) < 𝑙𝑗(𝑡)}.             (9) 

where 𝑑𝑖𝑗(𝑡) defines the Euclidean distance among the glowworms 𝑖 and 𝑗 at time 𝑡, and 𝑟𝑖 
(𝑡) signifies the decision radius of glowworms 𝑖 at time 𝑡. 

In the Moving Probability Computer stage, the glowworm utilizes a probability rule for 

moving in the direction of other glowworms with maximum luciferin level. The probability 

𝑃𝑖(𝑡) of glowworm 𝑖 which moves in the direction of the neighbor, 𝑗 can be represented by: 
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𝑃𝑖𝑗(𝑡) =
𝑙𝑗(𝑡) − 𝑙𝑖(𝑡)

∑ 𝑙𝑘
 
𝑘∈𝑁𝑖(𝑡) (𝑡) − 𝑙𝑖(𝑡)

.                       (10) 

 

Fig. 2 Flowchart of GSO algorithm 

At the movement stage, assume the glowworm 𝑖 chooses a glowworm 𝑗 ∈ 𝑁(𝑡) with 𝑃𝑖𝑗(𝑡); 

the discrete time model of the movement of glowworm 𝑖 can be represented by 

𝑥(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑠 (
𝑥𝑗(𝑡) − 𝑥𝑖(𝑡)

‖𝑥𝑗(𝑡) − 𝑥𝑖(𝑡)‖
) .                        (11) 

where, ‖ ⋅ ‖ defines the Euclidean norm operator, and 𝑠 denotes the step size. Finally, under 

the decision radius update stage, the decision radius of the glowworm 𝑖 can be represented 

below: 

𝑟𝑑
𝑖 (𝑡 + 1) = min {𝑟𝑠, max {0, 𝑟𝑑

𝑖 (𝑡) + 𝛽(𝑛𝑡 − |𝑁𝑗(𝑡)|)}}.              (12) 

where, 𝛽 is a constant, 𝑟𝑠 means the sensory radius of glowworm 𝑖, and 𝑛𝑡 is a controlling 

variable of the neighbor number.  

B. Concept of Cross Entropy 
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The CE model considers the benefits of sampling a problem space by producing the 

candidate solutions by the use of the distribution, then it updates the distribution depending 

upon the effective candidate solution exposed. The CE operator not only enlarges the searching 

area; it also ensures that the newly generated solutions are considered from the nearby useful 

details into account. For improving the effectiveness of the classical GSO algorithm to find the 

optimal solution and avoid the local optimum problem, the CEGSO algorithm is developed. 

Here, CE model is used for updating the members and fix a Time-to-Live (TtL) parameter for 

resolving the local optimum issue. The CE technique for optimization is defined below.  
(𝑥∗) = γ∗ = max

𝑥∈𝑋
𝑆(𝑥),                                  (13) 

where γ∗ is the maximum over the assumed set 𝑋, the 𝑥∗ is the utmost 𝑥. 𝑆 is the evaluation 

parameter. If the determined sample instances 𝑋 in an iterative way, a collection of indicator 

functions {𝑆(𝑋)≥γ} are represented. {𝑆(𝑋)≥γ} signifies the 𝑆(𝑥) as above in the level 𝛾 for sample 

instance 𝑥. For a vector 𝑢, 𝑚 of probability density function variables, the optimization issue 

is converted by the estimation of the probability 𝑃(𝑆(𝑋) ≥ 𝛾). In the process of integrating 

with the indicator functions, the probability can be determined as: 

𝑙(𝛾) = 𝑃𝑢(𝑆(𝑋) ≥ 𝛾) = ∑ 𝐼{𝑆(𝑋)≥γ}

 

𝑥

𝑓(𝑥, 𝑢) = E𝑢𝐼{𝑆(𝑋)≥γ},            (14) 

where 𝑃 is the probability linked to the probability density function 𝑓(. , 𝑢), and 𝐸𝑢 defines 

the expectation function. When 𝛾 = 𝛾∗, (𝛾) is determined by 

𝑎𝑟𝑔𝑚𝑎𝑥 
1

𝑁
∑{𝑆(𝑋) ≥ γ}

𝑁

𝑖=1

𝑙𝑛𝑓(𝑋𝑖, 𝑣).                       (15) 

𝑋𝑖 is produced by the use of pdf (. , 𝑣). It is well-intentioned to notice that the CE technique 

determines the well sampling density (. , 𝑣∗) in such a way that the optimum solutions undergo 

sampling [19]. The process of CE is divided into 3 different steps as given below.  

 

1. Generation of arbitrary sample instances takes place from Gaussian distribution with 

mean mu and standard deviation 𝑠. 
2. Choose a certain number of optimal sample instances from the entire sample instances.  

3. Updates mu and 𝑠 depending upon the optimal sample instances with efficient fitness. 

  

Algorithm 1: Steps involved in CE method 

Initialize: mean mu, standard deviation s, size of population pop, the number of best 

samples 

np, terminal condition tmax 
While t < tmax do 

Create sample vectors X as: 

xj = mu + s × randn( )xi , where randn( ) generates a Gaussian distribution random 

number. 

Assess xi 
Choose the np optimal sample instances from pop 
Update the variables mu, s 
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C. Application of CEGSO algorithm for Load Scheduling 

As discussed earlier, the CEGSO-LB model integrates the concepts of GSO and CE, the 

evaluation function is defined in Eq. (16): 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 1 − (𝛼t𝑖 ×
t𝑖 − t min 

𝑡 max −t min 

+ 𝛼𝑐𝑖 ×
𝑐𝑖 − 𝑐 min 

𝑐 max −𝐶 min 

)                (16) 

At this point, each executable process is evaluated to select the optimum order of execution. 

For proficient scheduling of resources, the presented CEGSO-LB technique is applied. In 

addition, distinct tasks are considered as input comprising two parameters namely arrival time 

and run time. At last, the evaluation function is computed by: 

1 − (𝛼t𝑖 ×
𝑡𝑖 − t min 

t𝑚𝑎𝑥 − 𝑡 min 
+ 𝛼𝑐𝑖 ×

𝑐𝑖 − 𝑐 min 

𝑐𝑚𝑎𝑥 − 𝑐 min 
)                              (17) 

where fmin and fmax indicates minimum and maximum run time, 𝑐min and 𝑐𝑚𝑎𝑥 defines the 

minimum and maximum input time respectively. 

 

4. PERFORMANCE VALIDATION 

The performance of the CEGSO-LB model has been validated under varying synthetic 

datasets and varying VM instances. A set of four synthetic datasets is used where the extra-

large has 800-1000 tasks with the size of 100000-200000MI, the large size task has 600-700 

tasks with the size of 70000-100000MI, the medium size task has 400-500 tasks with the size 

of 50000- 70000MI, and the small sized tasks has 100-200 tasks with the size of 30000-

50000MI. In addition, the extra-large VM instances have a CPU capacity of 35000MIPS with 

the memory capacity of 20GB, the large VM instances have a CPU capacity of 25000MIPS 

with a memory capacity of 15GB, the medium VM instances has a CPU capacity of 

20000MIPS with the memory capacity of 10GB, and the small VM instances has a CPU 

capacity of 10000MIPS with the memory capacity of 5GB respectively. 

A detailed comparative results analysis is made with the existing techniques such as Random 

Deployment (RD), Weighted Round Robin (WRR), Dynamic Load Balancing (DLB), Load 

Balancing based on Bayes and Clustering (LB-BC), and Load Balancing Resource Clustering 

(LBRC). 

Fig. 3 shows the results analysis of the CEGSO-LB model with other scheduling techniques 

interms of average load. The figure demonstrated that the SJF algorithm has resulted in an 

insignificant outcome by offering a maximum average load of 0.495ms. Likewise, the FireFly 

(FF) technique has obtained a slightly improved average load of 0.47ms whereas the FCFS 

algorithm has reached an even better average load of 0.46ms. Besides, the IPSO algorithm has 

tried to show moderate outcomes with an average load of 0.457ms whereas even better average 

load of 0.43ms is attained by the RR algorithm. Followed by, the GA has depicted somewhat 

reasonable outcome with an average load of 0.31ms whereas the IPSO-FF algorithm has 

accomplished a certainly acceptable average load of 0.259ms. Though the FIMPSO algorithm 

has exhibited near optimal average load of 0.247ms, the presented CEGSO-LB model has 

demonstrated effective performance by providing a least average load of 0.198ms. 
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Fig. 3 Average load analysis of CEGSO-LB model 

 

Fig. 4 ATT and ART analysis of CEGSO-LB model 

Fig. 4 displays the comparative Average Turnaround Time (ATT) and Average Response 

Time (ART) analysis of the CEGSO-LB with existing methods. The figure showcased that the 

IPSO algorithm has resulted in an insignificant result by offering a higher ATT and ART of 

57.74ms and 49.23ms. Likewise, the FF technique has obtained a slightly reduced ATT and 

ART of 55.54ms and 48.87ms whereas the RR approach has reached an even better ATT and 

ART of 41.98ms and 30.50ms. Also, the FCFS method has tried to illustrate moderate 

outcomes with the ATT and ART of 41.87ms and 30.84ms whereas even better ATT and ART 

of 41.56ms and 30.24ms is reached by the SJF technique. At the same time, the GA has 

portrayed somewhat reasonable outcome with the ATT and ART of 26.57ms and 20.30ms 

whereas the IPSO-FF methodology has accomplished a certainly acceptable ATT and ART of 

22.13ms and 15.21ms. Though the FIMPSO algorithm has exhibited near optimal ATT and 
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ART of 21.09ms and 13.58ms, the proposed CEGSO-LB model has outperformed effective 

performance by providing a least ATT and ART of 17.56ms and 10.28ms. 

Fig. 5 demonstrates the CPU utilization analysis of the CEGSO-LB model with other 

existing algorithms under varying types of tasks. From the figure, it is evident that the RD 

algorithm has shown ineffective performance by offering the least CPU utilization of 59% 

whereas the WRR and DLB algorithms have depicted slightly improved CPU utilization of 

63.5% and 68% respectively. In line with this, the LB-RC model has tried to exhibit moderate 

CPU utilization of 73.25%. Concurrently, the LB-RC, IPSO-FF, and FIMPSO algorithms have 

attained reasonable CPU utilization of 80.5%, 82.5%, and 84.5% respectively. But the 

presented CEGSO-LB model has resulted in an effective CPU utilization of 87.75%. 

 

 

Fig. 5 CPU utilization analysis of CEGSO-LB model 

Fig. 6 illustrates the memory utilization analysis of the CEGSO-LB method with other 

existing techniques under varying types of tasks. From the figure, it is stated that the RD 

algorithm has depicted ineffective performance by offering the least memory utilization of 

55.75% whereas the WRR and DLB approaches have showcased somewhat higher memory 

utilization of 59.5% and 64.5% correspondingly. Similarly, the LB-RC model has tried to show 

moderate memory utilization of 68%. Also, the LB-RC, IPSO-FF, and FIMPSO methods have 

attained reasonable memory utilization of 73%, 75.25%, and 77% respectively. However, the 

proposed CEGSO- LB model has resulted in an effective memory utilization of 82.75%. 

Fig. 7 exhibits the reliability analysis of the CEGSO-LB model with other existing methods 

under varying types of tasks. From the figure, it is revealed that the RD algorithm has 

demonstrated ineffective performance by offering minimum reliability of 55% whereas the 

WRR and DLB models have depicted slightly superior reliability of 60% and 66% respectively. 

In addition, the LB-RC model has tried to portray moderate reliability of 73.5%. Concurrently, 

the LB-RC, IPSO-FF, and FIMPSO algorithms have attained reasonable reliability of 81.25%, 

82.5%, and 84.75% correspondingly. At last, the presented CEGSO-LB model has resulted in 

effective reliability of 90.75%. 
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Fig. 6 Memory utilization analysis of CEGSO-LB model 

 

 

Fig. 7 Reliability load analysis of CEGSO-LB model 

Fig. 8 showcases the average execution time analysis of the CEGSO-LB method with other 

existing models under varying types of tasks. The figure has shown that the RD algorithm has 

resulted in an insignificant result by offering a maximum average execution time of 71ms. 

Simultaneously, the WRR approach has obtained a somewhat reduced average execution time 

of 65.25ms whereas the DLB technique has attained an even better average execution time of 

60.25ms. Besides, the LB-BC approach has tried to show moderate outcomes with an average 

execution time of 53ms whereas even better average execution time of 48.25ms is obtained by 

the LB-RC algorithm. Followed by, the IPSO-FF has depicted somewhat reasonable outcome 

with an average execution time of 46.5ms whereas the FIMPSO algorithm has accomplished a 
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certain acceptable average execution time of 43.75ms. Though, the proposed CEGSO-LB 

model has portrayed effective performance by providing a minimum average execution time 

of 38.75ms. 

 

 

Fig. 8 Average execution time analysis of CEGSO-LB model 

Fig. 9 depicts the makespan analysis of the CEGSO-LB technique with other existing 

algorithms under varying types of tasks. The figure exhibited that the RD methodology has 

resulted in an insignificant result by offering a superior makespan of 168.5. At the same time, 

the WRR algorithm has achieved a slightly reduced makespan of 161.25 whereas the DLB 

algorithm has reached an even better makespan of 154.75. Besides, the LB-BC algorithm has 

tried to illustrate moderate outcome with the makespan of 147.75 whereas even better 

makespan of 117 is attained by the LB-RC algorithm. Additionally, the IPSO-FF has depicted 

somewhat reasonable outcome with the makespan of 114.5 whereas the FIMPSO algorithm 

has accomplished a certainly acceptable makespan of 112. Eventually, the projected CEGSO- 

LB technique has showcased effective performance by providing a minimal makespan of 105.5. 

Fig. 10 showcases the average throughput analysis of the CEGSO-LB model with other 

existing techniques under varying types of tasks. From the figure, it is represented that the RD 

model has depicted ineffective performance by offering a lesser average throughput of 47.75% 

whereas the WRR and DLB methodologies have depicted slightly higher average throughput 

of 54.5% and 62.25% correspondingly. Along with that, the LB-RC model has tried to exhibit 

moderate average throughput of 70.75%. Similarly, the LB-RC, IPSO-FF, and FIMPSO 

algorithms have achieved reasonable average throughput of 79.25%, 80.25%, and 83.5% 

correspondingly. However, the presented CEGSO-LB method has resulted in an effective 

average throughput of 89.75%. 
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Fig. 9 Makespan analysis of CEGSO-LB model 

 

Fig. 20 Average throughput analysis of CEGSO-LB method 

 

5. CONCLUSIONS 

This paper has presented an efficient CEGSO-LB Technique for Distributed Big Data 

Systems. The goal of the CEGSO-LB model is to reduce the overall processing cost and 

schedule the load on the VMs proficiently. For improving the effectiveness of the classical 

GSO algorithm to find the optimal solution and avoid the local optimum problem, the CEGSO 

algorithm is developed. Here, CE model is used for updating the members and fix a TtL 

parameter for resolving the local optimum issue. The overall cost is included for every 
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glowworm by the inclusion of the execution and transfer cost and then the cost is also 

minimized to estimate the fitness function. The presented model is implemented to examine 

the results under varying sizes of synthetic datasets and varying number of VMs. The 

experimental results guaranteed the betterment of the CEGSO-LB technique interms of distinct 

aspects namely Average Load, ATT, ART, CPU utilization, memory utilization, reliability, 

average execution time, makespan, and average throughput. 
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