
 European Journal of Molecular & Clinical Medicine
 ISSN 2515-8260 Volume 07, Issue 07, 2020

4739

Cross Entropy with Glowworm Swarm

Optimization Algorithm based Load

Balancing Technique for Distributed Big Data

Systems
Gurrampally Kumar1, Dr. S. Mohan2

1Department of Computer Science and Engineering, Lords Institute of Engineering and

Technology, Hyderabad, Telangana, India.
2Department of Computer Science and Engineering, Annamalai University, Annamalai

Nagar, Chidambaram, Tamilanadu, India.
1grk.040@gmail.com

2mohancseau@gmail.com

Abstract: Presently, digital data gets exponentially raised owing to an increase in number of

data channels which generate and distribute data, load balancing techniques are developed

for handling big data in real time. Though the cloud environment offers effectual services,

it faces some serious issues of load balancing where the improper distribution of load results

in degraded overall processing performance. This paper presents a novel Cross Entropy with

Glowworm Swarm Optimization Algorithm based Load Balancing (CEGSO-LB) Technique

for Distributed Big Data Systems. The aim of the CEGSO-LB model is to reduce the overall

processing cost and schedule the load on the VMs proficiently. The presented CEGSO

algorithm incorporates the basic concepts of CE method and GSO algorithm. The CE

concept is integrated into the GSO algorithm to improve the efficiency in attaining global

solutions and eliminating local optima problem. The presented model is implemented to

examine the results under varying sizes of synthetic datasets and varying number of Virtual

Machines (VMs). The experimental results guaranteed the betterment of the CEGSO-LB

technique interms of distinct aspects namely Average Load, Average turnaround time,

Average response time, CPU utilization, memory utilization, reliability, average execution

time, makespan, and average throughput.

Keywords: Big data, distributed systems, cloud computing, load balancing, virtual machines

1. INTRODUCTION:

Presently, the exploitation of digital gadgets like tablets, personal computers, smartphones has

raised the quick development of social media applications namely Twitter and Facebook. It has

resulted in an enormous generation of digital data in day-to-day lives. Consequently, big data

technologies have become an effective way of managing and processing huge quantity of data

which could not be managed in a classical way [1]. Big data has imposed the latest meaning of

processing and examining massive quantity of data which is not available in the existing data.

It is commonly employed in distinct domains namely trend analysis, marketing, and decision

making [2, 3]. Distributed storage processing models namely Hadoop are available for

processing huge quantity of data outside the computational restricts of the available storage

mailto:1grk.040@gmail.com
mailto:2mohancseau@gmail.com

 European Journal of Molecular & Clinical Medicine
 ISSN 2515-8260 Volume 07, Issue 07, 2020

4740

and processing system [4]. Hadoop is an illustrative openly accessible model used for the

distributed storage and computation of massive quantity of data. Since Hadoop saves and

computes massive data quantity in the disk of distributed nodes, incessant disk input and output

happen, resulting in real-time processing incredible [5]. Also, if the inputs and outputs are

focused on a particular node, the bottleneck happens the total processing speed gets reduced.

Fig. 1 illustrates the structure of dynamic algorithms of load scheduling [6].

Fig. 1 Structure of Dynamic Algorithms of Load Scheduling

For addressing these disk input and output issues, distributed in-memory technology has

developed enabling the way to distribute, store, and process data in the storage to attain quick

access speed [7]. Distributed in-memory technologies are commonly utilized for application

areas which process massive quantity of data in real time scenarios. A sample representative

in-memory processing technique is called Memcached [8]. It is a key based memory caching

technique commonly used in application areas offering online real time services like Youtube,

Instagram, etc. It minimizes the memory utilization to the backend database by straightaway

storing the data request of the user in the distributed in-memory [9]. Since Memcached operates

works on distributed environment, load imbalance issue exists between the nodes.

Alternatively, in the distributed in-memory environment, if the requests are focused on a

particular node or the utilization of specific data is concentrated, the issue of load increase on

a particular node takes place. This load imbalance problem amongst the node reduces the total

system response time and network efficiency [10].

This paper presents a novel Cross Entropy with Glowworm Swarm Optimization Algorithm

based Load Balancing (CEGSO-LB) Technique for Distributed Big Data Systems. The aim of

the CEGSO-LB model is to reduce the overall processing cost and schedule the load on the

VMs proficiently. The presented CEGSO algorithm incorporates the basic concepts of CE

method and GSO algorithm. The CE concept is integrated into the GSO algorithm to improve

the efficiency in attaining global solutions and eliminating local optima problem. The presented

model is implemented to examine the results under varying sizes of synthetic datasets and

varying number of VMs.

 European Journal of Molecular & Clinical Medicine
 ISSN 2515-8260 Volume 07, Issue 07, 2020

4741

2. LITERATURE REVIEW

For addressing the load imbalance problem amongst the nodes in the distributed in-memory

environment, several works have been performed by the use of ring based hashing techniques

[20-24]. Generally available ring based hashing techniques modify the load by data replication

process to other nodes or data migration by a hash space modification. [11] computed the load

on the nodes by the use of hit and usage rates, and carried out the LB process by modifying the

hash space. When the hot data is not available in the particular node, but, the hit ratio and usage

rate get increased and several hash spaces should be modified. Alternatively, the existence of

the hot data considerably enhances the cost of data migration. The works in [12] presented a

model of load distribution by focusing on only one node by repeating the hot data which results

in a large load to another node. If LB is carried out by the consideration of hot data, it can be

impossible to resolve the situation where the load appears on the node with no hot data. In

addition, in case of heterogeneous platform, LB is carried out without considering the storage

space, adequate data migration exists in the node. Therefore, it is tedious to employ the

available LB techniques due to the fact that it performs LB for a particular scenario.

In [13], Binary Gravitational Search Algorithm (BGSA) is introduced for optimization of the

scheduling operation generated from distinct environment. A hybridization of GSA is

presented in [14] by the use of orthogonal crossover as well as patterns search for load

scheduling in cloud platforms. Besides, two effective GSA optimization algorithms are

presented in [15] for enhancing the particle diversity and employ the storage models in the

mathematical computations. It has designed the security parameters based on the behavioral

graph and defined the focus on LB and service assignment in cloud platform. Some other recent

works are involved in this area. A study in [16] presented a novel PROUD technique for

securing the outsource data designcryption process for edge servers to reduce the processing

overhead on the client end. In addition, a novel CLoud scientific

wOrkflowSchedUlingalgoRithm based on attack–defensE game model (CLOSURE) [17] is

presented for scheduling load in cloud environment.

3. THE PROPOSED CEGSO-LB TECHNIQUE

The presented CEGSO-LB technique follows the idea of GSO algorithm and CE mechanism.

The aim of the CEGSO-LB model is to reduce the overall processing cost and schedule the

load on the VMs proficiently. The processing cost contains the transferring and execution cost

of the cloudlets. It provides effective searching area exploitation and user satisfaction by

deriving a fitness function. The parameters involved in the fitness function of the cloudlet and

VM are MIPS, bandwidth, execution cost, and transfer cost. The cloudlet scheduling at the

VMs is performed. The data center has (𝑉𝑀𝑠)𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝑠 probable methods of executing the

cloudlets on the respective VMs. In case of implementing 3 cloudlets on 2 VMs, then the

probability becomes 8. The glowworms 𝑆 undergo initialization at the CloudSim tool as

represented as follows:

𝑆𝑖 = (𝑠𝑖
1, 𝑠𝑖

2, … … , 𝑠𝑖
𝑛, … … … , 𝑠𝑖

𝑑)

∀𝑖 = 1𝑡𝑜 25 𝑎𝑛𝑑 𝑛 = 1 𝑡𝑜 10 (1)
The fitness function determines the fitness value of the glowworms in the searching area.

The initial glowworm uses CE next to the choice of subsequent glowworm by the use of

optimum fitness value. Assume a C𝑡𝑒𝑥𝑒(𝑀)𝑗 is the entire execution cost of all glowworms

allocated to calculate the VM resources 𝑃C𝑗. It is found by summing the weights assigned to

the nodes in the mapping of glowworms of all cloudlets allocated to individual resources.

 European Journal of Molecular & Clinical Medicine
 ISSN 2515-8260 Volume 07, Issue 07, 2020

4742

𝑑

Let C𝑡f𝑟𝑜𝑛(𝑀)𝑗 indicates the sum of the transfer cost which existed amongst the cloudlets

allocated to calculate the VM resource 𝑃C𝑗. The output indicates the product of the output

file size and transmission cost. The average cost of data amongst a set of two resources of

transmission is defined by 𝑑(𝑘1), 𝑆(k2) and the glow worms are independent of each other.

The overall cost is included for every glowworm by the inclusion of the execution and transfer

cost and then the cost is also reduced for estimating the fitness function.

 C𝑡𝑒𝑥𝑒𝑐(𝑆)𝑗 = ∑ 𝜔𝑘𝑗

𝑘 , ∀𝑆(k) = 𝑗 (2)

C𝑡𝑡𝑟𝑎𝑛𝑠(𝑆)𝑗 = ∑ ∑ 𝑑𝑆(k1),𝑆(k2)

k2∈𝑇

k1∈𝑇

∗ 𝑒𝑘1,k2, (3)

∀𝑆(𝑘1) = 𝑗 𝑎𝑛𝑑 𝑆(1〈2) ≠ 𝑗 (4)

C𝑡t𝑜tal(𝑆)𝑗 = C𝑡𝑒𝑥𝑒𝑐(𝑆)𝑗 + C𝑡𝑡𝑟𝑎𝑛𝑠(𝑆)𝑗 (5)

𝐶𝑜𝑠𝑡𝑇𝑜𝑡𝑎𝑙(𝑆) = max (Cttotal(𝑆)𝑗), ∀𝑗 ∈ 𝑆 (6)

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (C𝑜𝑠𝑡𝑇𝑜𝑡𝑎𝑙(𝑆) , ∀𝑆) (7)

A. Principle of GSO Algorithm

In the GSO algorithm, a collective set of glowworms undergo initial random deployment in

the solution space. Every individual glowworm indicates a solution of objective function in the

searching space and holds a particular amount of luciferin in it. The amount of luciferin is

linked to the fitness level of the present position of the agent. The brighter level of the

glowworm represents an optimal solution. By the use of probability based models, the agents

are attracted with the adjacent agents whose luciferin intensity exceeds the own inside the local

decision domain and afterward shift toward it. The density of the glowworm’s neighbor

influences the effect of the decision radius and computes the size of the local decision domain.

If the neighboring density is found to be low, then the local decision domain gets enlarged for

the identification of several neighbors; else, it reduces the enables of the swarm division into a

smaller set of groups. These processes get iterated till the GSO algorithm reaches the stopping

criteria. Here, most of the individuals gather over the brighter individuals [18]. In short, a set

of 5 major stages are involved in the GSO algorithm namely luciferin update, neighborhood

select, moving probability computer, movement, and the decision radius update.

The luciferin update stage is mainly based on the fitness value and earlier luciferin value,

and the rule can be represented as follows

𝑙(𝑡 + 1) = (1 − 𝜌)𝑙𝑖(𝑡) + 𝛾 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑥𝑗(𝑡 + 1)). (8)

where 𝑙𝑖(𝑡) represents the luciferin value of glowworm 𝑖 at time 𝑡, 𝜌 is the luciferin decay

constant, 𝛾 is the luciferin enhancement constant; 𝑥𝑖(𝑡 + 1) ∈ 𝑅𝑀 is the position of the

glowworm 𝑖 at time 𝑡 + 1, and Fitness (𝑥𝑗(𝑡 + 1)) denotes the fitness value of the glowworm

𝑖’s position at time 𝑡 + 1. Fig. 2 demonstrates the flowchart of GSO technique.

At the neighbor-select stage, the neighbors 𝑁(𝑡) of the glowworm 𝑖 at 𝑡 time comprises of

brighter individuals and is defined by

𝑁𝑖(𝑡) = {𝑗: 𝑑𝑖𝑗(𝑡) < 𝑟𝑑
𝑖 (𝑡); 𝑙𝑖(𝑡) < 𝑙𝑗(𝑡)}. (9)

where 𝑑𝑖𝑗(𝑡) defines the Euclidean distance among the glowworms 𝑖 and 𝑗 at time 𝑡, and 𝑟𝑖
(𝑡) signifies the decision radius of glowworms 𝑖 at time 𝑡.

In the Moving Probability Computer stage, the glowworm utilizes a probability rule for

moving in the direction of other glowworms with maximum luciferin level. The probability

𝑃𝑖(𝑡) of glowworm 𝑖 which moves in the direction of the neighbor, 𝑗 can be represented by:

 European Journal of Molecular & Clinical Medicine
 ISSN 2515-8260 Volume 07, Issue 07, 2020

4743

𝑃𝑖𝑗(𝑡) =
𝑙𝑗(𝑡) − 𝑙𝑖(𝑡)

∑ 𝑙𝑘

𝑘∈𝑁𝑖(𝑡) (𝑡) − 𝑙𝑖(𝑡)

. (10)

Fig. 2 Flowchart of GSO algorithm

At the movement stage, assume the glowworm 𝑖 chooses a glowworm 𝑗 ∈ 𝑁(𝑡) with 𝑃𝑖𝑗(𝑡);

the discrete time model of the movement of glowworm 𝑖 can be represented by

𝑥(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑠 (
𝑥𝑗(𝑡) − 𝑥𝑖(𝑡)

‖𝑥𝑗(𝑡) − 𝑥𝑖(𝑡)‖
) . (11)

where, ‖ ⋅ ‖ defines the Euclidean norm operator, and 𝑠 denotes the step size. Finally, under

the decision radius update stage, the decision radius of the glowworm 𝑖 can be represented

below:

𝑟𝑑
𝑖 (𝑡 + 1) = min {𝑟𝑠, max {0, 𝑟𝑑

𝑖 (𝑡) + 𝛽(𝑛𝑡 − |𝑁𝑗(𝑡)|)}}. (12)

where, 𝛽 is a constant, 𝑟𝑠 means the sensory radius of glowworm 𝑖, and 𝑛𝑡 is a controlling

variable of the neighbor number.

B. Concept of Cross Entropy

 European Journal of Molecular & Clinical Medicine
 ISSN 2515-8260 Volume 07, Issue 07, 2020

4744

The CE model considers the benefits of sampling a problem space by producing the

candidate solutions by the use of the distribution, then it updates the distribution depending

upon the effective candidate solution exposed. The CE operator not only enlarges the searching

area; it also ensures that the newly generated solutions are considered from the nearby useful

details into account. For improving the effectiveness of the classical GSO algorithm to find the

optimal solution and avoid the local optimum problem, the CEGSO algorithm is developed.

Here, CE model is used for updating the members and fix a Time-to-Live (TtL) parameter for

resolving the local optimum issue. The CE technique for optimization is defined below.
(𝑥∗) = γ∗ = max

𝑥∈𝑋
𝑆(𝑥), (13)

where γ∗ is the maximum over the assumed set 𝑋, the 𝑥∗ is the utmost 𝑥. 𝑆 is the evaluation

parameter. If the determined sample instances 𝑋 in an iterative way, a collection of indicator

functions {𝑆(𝑋)≥γ} are represented. {𝑆(𝑋)≥γ} signifies the 𝑆(𝑥) as above in the level 𝛾 for sample

instance 𝑥. For a vector 𝑢, 𝑚 of probability density function variables, the optimization issue

is converted by the estimation of the probability 𝑃(𝑆(𝑋) ≥ 𝛾). In the process of integrating

with the indicator functions, the probability can be determined as:

𝑙(𝛾) = 𝑃𝑢(𝑆(𝑋) ≥ 𝛾) = ∑ 𝐼{𝑆(𝑋)≥γ}

𝑥

𝑓(𝑥, 𝑢) = E𝑢𝐼{𝑆(𝑋)≥γ}, (14)

where 𝑃 is the probability linked to the probability density function 𝑓(. , 𝑢), and 𝐸𝑢 defines

the expectation function. When 𝛾 = 𝛾∗, (𝛾) is determined by

𝑎𝑟𝑔𝑚𝑎𝑥
1

𝑁
∑{𝑆(𝑋) ≥ γ}

𝑁

𝑖=1

𝑙𝑛𝑓(𝑋𝑖, 𝑣). (15)

𝑋𝑖 is produced by the use of pdf (. , 𝑣). It is well-intentioned to notice that the CE technique

determines the well sampling density (. , 𝑣∗) in such a way that the optimum solutions undergo

sampling [19]. The process of CE is divided into 3 different steps as given below.

1. Generation of arbitrary sample instances takes place from Gaussian distribution with

mean mu and standard deviation 𝑠.
2. Choose a certain number of optimal sample instances from the entire sample instances.

3. Updates mu and 𝑠 depending upon the optimal sample instances with efficient fitness.

Algorithm 1: Steps involved in CE method

Initialize: mean mu, standard deviation s, size of population pop, the number of best

samples

np, terminal condition tmax
While t < tmax do

Create sample vectors X as:

xj = mu + s × randn()xi , where randn() generates a Gaussian distribution random

number.

Assess xi
Choose the np optimal sample instances from pop
Update the variables mu, s

 European Journal of Molecular & Clinical Medicine
 ISSN 2515-8260 Volume 07, Issue 07, 2020

4745

C. Application of CEGSO algorithm for Load Scheduling

As discussed earlier, the CEGSO-LB model integrates the concepts of GSO and CE, the

evaluation function is defined in Eq. (16):

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 1 − (𝛼t𝑖 ×
t𝑖 − t min

𝑡 max −t min

+ 𝛼𝑐𝑖 ×
𝑐𝑖 − 𝑐 min

𝑐 max −𝐶 min

) (16)

At this point, each executable process is evaluated to select the optimum order of execution.

For proficient scheduling of resources, the presented CEGSO-LB technique is applied. In

addition, distinct tasks are considered as input comprising two parameters namely arrival time

and run time. At last, the evaluation function is computed by:

1 − (𝛼t𝑖 ×
𝑡𝑖 − t min

t𝑚𝑎𝑥 − 𝑡 min
+ 𝛼𝑐𝑖 ×

𝑐𝑖 − 𝑐 min

𝑐𝑚𝑎𝑥 − 𝑐 min
) (17)

where fmin and fmax indicates minimum and maximum run time, 𝑐min and 𝑐𝑚𝑎𝑥 defines the

minimum and maximum input time respectively.

4. PERFORMANCE VALIDATION

The performance of the CEGSO-LB model has been validated under varying synthetic

datasets and varying VM instances. A set of four synthetic datasets is used where the extra-

large has 800-1000 tasks with the size of 100000-200000MI, the large size task has 600-700

tasks with the size of 70000-100000MI, the medium size task has 400-500 tasks with the size

of 50000- 70000MI, and the small sized tasks has 100-200 tasks with the size of 30000-

50000MI. In addition, the extra-large VM instances have a CPU capacity of 35000MIPS with

the memory capacity of 20GB, the large VM instances have a CPU capacity of 25000MIPS

with a memory capacity of 15GB, the medium VM instances has a CPU capacity of

20000MIPS with the memory capacity of 10GB, and the small VM instances has a CPU

capacity of 10000MIPS with the memory capacity of 5GB respectively.

A detailed comparative results analysis is made with the existing techniques such as Random

Deployment (RD), Weighted Round Robin (WRR), Dynamic Load Balancing (DLB), Load

Balancing based on Bayes and Clustering (LB-BC), and Load Balancing Resource Clustering

(LBRC).

Fig. 3 shows the results analysis of the CEGSO-LB model with other scheduling techniques

interms of average load. The figure demonstrated that the SJF algorithm has resulted in an

insignificant outcome by offering a maximum average load of 0.495ms. Likewise, the FireFly

(FF) technique has obtained a slightly improved average load of 0.47ms whereas the FCFS

algorithm has reached an even better average load of 0.46ms. Besides, the IPSO algorithm has

tried to show moderate outcomes with an average load of 0.457ms whereas even better average

load of 0.43ms is attained by the RR algorithm. Followed by, the GA has depicted somewhat

reasonable outcome with an average load of 0.31ms whereas the IPSO-FF algorithm has

accomplished a certainly acceptable average load of 0.259ms. Though the FIMPSO algorithm

has exhibited near optimal average load of 0.247ms, the presented CEGSO-LB model has

demonstrated effective performance by providing a least average load of 0.198ms.

 European Journal of Molecular & Clinical Medicine
 ISSN 2515-8260 Volume 07, Issue 07, 2020

4746

Fig. 3 Average load analysis of CEGSO-LB model

Fig. 4 ATT and ART analysis of CEGSO-LB model

Fig. 4 displays the comparative Average Turnaround Time (ATT) and Average Response

Time (ART) analysis of the CEGSO-LB with existing methods. The figure showcased that the

IPSO algorithm has resulted in an insignificant result by offering a higher ATT and ART of

57.74ms and 49.23ms. Likewise, the FF technique has obtained a slightly reduced ATT and

ART of 55.54ms and 48.87ms whereas the RR approach has reached an even better ATT and

ART of 41.98ms and 30.50ms. Also, the FCFS method has tried to illustrate moderate

outcomes with the ATT and ART of 41.87ms and 30.84ms whereas even better ATT and ART

of 41.56ms and 30.24ms is reached by the SJF technique. At the same time, the GA has

portrayed somewhat reasonable outcome with the ATT and ART of 26.57ms and 20.30ms

whereas the IPSO-FF methodology has accomplished a certainly acceptable ATT and ART of

22.13ms and 15.21ms. Though the FIMPSO algorithm has exhibited near optimal ATT and

 European Journal of Molecular & Clinical Medicine
 ISSN 2515-8260 Volume 07, Issue 07, 2020

4747

ART of 21.09ms and 13.58ms, the proposed CEGSO-LB model has outperformed effective

performance by providing a least ATT and ART of 17.56ms and 10.28ms.

Fig. 5 demonstrates the CPU utilization analysis of the CEGSO-LB model with other

existing algorithms under varying types of tasks. From the figure, it is evident that the RD

algorithm has shown ineffective performance by offering the least CPU utilization of 59%

whereas the WRR and DLB algorithms have depicted slightly improved CPU utilization of

63.5% and 68% respectively. In line with this, the LB-RC model has tried to exhibit moderate

CPU utilization of 73.25%. Concurrently, the LB-RC, IPSO-FF, and FIMPSO algorithms have

attained reasonable CPU utilization of 80.5%, 82.5%, and 84.5% respectively. But the

presented CEGSO-LB model has resulted in an effective CPU utilization of 87.75%.

Fig. 5 CPU utilization analysis of CEGSO-LB model

Fig. 6 illustrates the memory utilization analysis of the CEGSO-LB method with other

existing techniques under varying types of tasks. From the figure, it is stated that the RD

algorithm has depicted ineffective performance by offering the least memory utilization of

55.75% whereas the WRR and DLB approaches have showcased somewhat higher memory

utilization of 59.5% and 64.5% correspondingly. Similarly, the LB-RC model has tried to show

moderate memory utilization of 68%. Also, the LB-RC, IPSO-FF, and FIMPSO methods have

attained reasonable memory utilization of 73%, 75.25%, and 77% respectively. However, the

proposed CEGSO- LB model has resulted in an effective memory utilization of 82.75%.

Fig. 7 exhibits the reliability analysis of the CEGSO-LB model with other existing methods

under varying types of tasks. From the figure, it is revealed that the RD algorithm has

demonstrated ineffective performance by offering minimum reliability of 55% whereas the

WRR and DLB models have depicted slightly superior reliability of 60% and 66% respectively.

In addition, the LB-RC model has tried to portray moderate reliability of 73.5%. Concurrently,

the LB-RC, IPSO-FF, and FIMPSO algorithms have attained reasonable reliability of 81.25%,

82.5%, and 84.75% correspondingly. At last, the presented CEGSO-LB model has resulted in

effective reliability of 90.75%.

 European Journal of Molecular & Clinical Medicine
 ISSN 2515-8260 Volume 07, Issue 07, 2020

4748

Fig. 6 Memory utilization analysis of CEGSO-LB model

Fig. 7 Reliability load analysis of CEGSO-LB model

Fig. 8 showcases the average execution time analysis of the CEGSO-LB method with other

existing models under varying types of tasks. The figure has shown that the RD algorithm has

resulted in an insignificant result by offering a maximum average execution time of 71ms.

Simultaneously, the WRR approach has obtained a somewhat reduced average execution time

of 65.25ms whereas the DLB technique has attained an even better average execution time of

60.25ms. Besides, the LB-BC approach has tried to show moderate outcomes with an average

execution time of 53ms whereas even better average execution time of 48.25ms is obtained by

the LB-RC algorithm. Followed by, the IPSO-FF has depicted somewhat reasonable outcome

with an average execution time of 46.5ms whereas the FIMPSO algorithm has accomplished a

 European Journal of Molecular & Clinical Medicine
 ISSN 2515-8260 Volume 07, Issue 07, 2020

4749

certain acceptable average execution time of 43.75ms. Though, the proposed CEGSO-LB

model has portrayed effective performance by providing a minimum average execution time

of 38.75ms.

Fig. 8 Average execution time analysis of CEGSO-LB model

Fig. 9 depicts the makespan analysis of the CEGSO-LB technique with other existing

algorithms under varying types of tasks. The figure exhibited that the RD methodology has

resulted in an insignificant result by offering a superior makespan of 168.5. At the same time,

the WRR algorithm has achieved a slightly reduced makespan of 161.25 whereas the DLB

algorithm has reached an even better makespan of 154.75. Besides, the LB-BC algorithm has

tried to illustrate moderate outcome with the makespan of 147.75 whereas even better

makespan of 117 is attained by the LB-RC algorithm. Additionally, the IPSO-FF has depicted

somewhat reasonable outcome with the makespan of 114.5 whereas the FIMPSO algorithm

has accomplished a certainly acceptable makespan of 112. Eventually, the projected CEGSO-

LB technique has showcased effective performance by providing a minimal makespan of 105.5.

Fig. 10 showcases the average throughput analysis of the CEGSO-LB model with other

existing techniques under varying types of tasks. From the figure, it is represented that the RD

model has depicted ineffective performance by offering a lesser average throughput of 47.75%

whereas the WRR and DLB methodologies have depicted slightly higher average throughput

of 54.5% and 62.25% correspondingly. Along with that, the LB-RC model has tried to exhibit

moderate average throughput of 70.75%. Similarly, the LB-RC, IPSO-FF, and FIMPSO

algorithms have achieved reasonable average throughput of 79.25%, 80.25%, and 83.5%

correspondingly. However, the presented CEGSO-LB method has resulted in an effective

average throughput of 89.75%.

 European Journal of Molecular & Clinical Medicine
 ISSN 2515-8260 Volume 07, Issue 07, 2020

4750

Fig. 9 Makespan analysis of CEGSO-LB model

Fig. 20 Average throughput analysis of CEGSO-LB method

5. CONCLUSIONS

This paper has presented an efficient CEGSO-LB Technique for Distributed Big Data

Systems. The goal of the CEGSO-LB model is to reduce the overall processing cost and

schedule the load on the VMs proficiently. For improving the effectiveness of the classical

GSO algorithm to find the optimal solution and avoid the local optimum problem, the CEGSO

algorithm is developed. Here, CE model is used for updating the members and fix a TtL

parameter for resolving the local optimum issue. The overall cost is included for every

 European Journal of Molecular & Clinical Medicine
 ISSN 2515-8260 Volume 07, Issue 07, 2020

4751

glowworm by the inclusion of the execution and transfer cost and then the cost is also

minimized to estimate the fitness function. The presented model is implemented to examine

the results under varying sizes of synthetic datasets and varying number of VMs. The

experimental results guaranteed the betterment of the CEGSO-LB technique interms of distinct

aspects namely Average Load, ATT, ART, CPU utilization, memory utilization, reliability,

average execution time, makespan, and average throughput.

6. REFERENCES

[1] Gandomi, A.; Haider, M. Beyond the hype: Big data concepts, methods, and analytics. Int.

J. Inf. Manag. 2015, 35, 137–144.

[2] Oussous, A.; Benjelloun, F.Z.; Lahcen, A.A.; Belfkih, S. Big Data technologies: A survey.

J. King Saud Univ.-Comput. Inf. Sci. 2018, 30, 431–448.

[3] Lv, Z.; Song, H.; Basanta-Val, P.; Steed, A.; Jo, M. Next-Generation Big Data Analytics:

State of the Art, Challenges, and Future Research Topics. IEEE Trans. Ind. Inform. 2017,

13, 1891–1899.

[4] Azzedin, F. Towards a scalable HDFS architecture. In Proceedings of the International

Conference on Collaboration Technologies and Systems, San Diego, CA, USA, 20–24

May 2013; pp. 155–161.

[5] Inoubli, W.; Aridhi, S.; Mezni, H.; Maddouri, M.; Nguifo, E.M. An experimental survey

on big data frameworks. Future Gener. Comput. Syst. 2018, 86, 546–564.

[6] Golchi, M.M., Saraeian, S. and Heydari, M., 2019. A hybrid of firefly and improved

particle swarm optimization algorithms for load balancing in cloud environments:

Performance evaluation. Computer Networks, 162, p.106860.

[7] Tiwari, D.; Solihin, Y. MapReuse: Reusing Computation in an In-Memory MapReduce

System. In Proceedings of the International Parallel and Distributed Processing

Symposium, Phoenix, AZ, USA, 19–23 May 2014; pp. 61–71.

[8] Cheng, W.; Ren, F.; Jiang, W.; Zhang, T. Modeling and Analyzing Latency in the

Memcached system. In Proceedings of the International Conference on Distributed

Computing Systems, Atlanta, GA, USA, 5–8 June 2017; pp. 538–548.

[9] Nishtala, R.; Fugal, H.; Grimm, S.; Kwiatkowski, M.; Lee, H.; Li, H.C.; McElroy, R.;

Paleczny, M.; Peek, D.; Saab, P.; et al. Scaling Memcache at Facebook. In Proceedings of

the USENIX Symposium on Networked Systems Design and Implementation, Lombard,

IL, USA, 2–5 April 2013; pp. 385–398.

[10] Jyothi, M. Effective Load Balancing Technique and Memory Management in Cloud. Int.

J. Res. Comput. Commun. Technol. 2014, 3, 1246–1251.

[11] Hwang, J.; Wood, T. Adaptive performance-aware distributed memory caching. In

Proceedings of the International Conference on Autonomic Computing, San Jose, CA,

USA, 26–28 June 2013; pp. 33–43.

[12] Lu, Y.; Sun, H.; Wang, X.; Liu, X. R-Memcached: A consistent cache replication scheme

with Memcached. In Proceedings of the Middleware Posters & Demos Session, Bordeaux,

France, 8–12 December 2014; pp. 29–30.

[13] E. Rashedi, A. Zarezadeh, Noise filtering in ultrasound images using Gravitational Search

Algorithm, in: Iranian Conference on Intelligent Systems, ICIS, 2014.

[14] M. Khatibinia, S. Khosravi, A hybrid approach based on an improved gravitational search

algorithm and orthogonal crossover for optimal shape design of concrete gravity dams,

Appl. Soft Comput. J. 16 (2014) 223–233.

 European Journal of Molecular & Clinical Medicine
 ISSN 2515-8260 Volume 07, Issue 07, 2020

4752

[15] G. Sun, A. Zhang, X. Jia, X. Li, S. Ji, Z. Wang, DMMOGSA: Diversity-enhanced and

memory-based multiobjective gravitational search algorithm, Inform. Sci. 363 (2016) 52–

71.

[16] S. Belguith, N. Kaaniche, M. Hammoudeh, T. Dargahi, PROUD: verifiable privacy-

preserving outsourced attribute based signcryption supporting access policy update for

cloud assisted IoT applications, Future Gener. Comput. Syst. (2019).

[17] Y. Wang, Y. Guo, Z. Guo, T. Baker, W. Liu, CLOSURE: A cloud scientific workflow

scheduling algorithm based on attack–defense game model, Future Gener. Comput. Syst.

(2019).

[18] Li, Z. and Huang, X., 2016. Glowworm swarm optimization and its application to blind

signal separation. Mathematical Problems in Engineering, 2016.

[19] Tang, R., Fong, S., Dey, N., Wong, R.K. and Mohammed, S., 2017. Cross entropy method

based hybridization of dynamic group optimization algorithm. Entropy, 19(10), p.533.

[20] A. Muthumari, J. Banumathi, S. Rajasekaran, P. Vijayakarthik, K. Shankar et al., "High

security for de-duplicated big data using optimal simon cipher," Computers, Materials &

Continua, vol. 67, no.2, pp. 1863–1879, 2021.

[21] Lakshmanaprabu, S.K., Shankar, K., Ilayaraja, M. et al. Random forest for big data

classification in the internet of things using optimal features. Int. J. Mach. Learn. & Cyber.

10, 2609–2618 (2019). https://doi.org/10.1007/s13042-018-00916-z

[22] Lakshmanaprabu, S. K., Shankar, K., Khanna, A., Gupta, D., Rodrigues, J. J., Pinheiro, P.

R., & De Albuquerque, V. H. C. (2018). Effective features to classify big data using social

internet of things. IEEE access, 6, 24196-24204.

[23] Lydia, E. L., Moses, G. J., Varadarajan, V., Nonyelu, F., Maseleno, A., Perumal, E., &

Shankar, K. (2020). CLUSTERING AND INDEXING OF MULTIPLE DOCUMENTS

USING FEATURE EXTRACTION THROUGH APACHE HADOOP ON BIG DATA.

Malaysian Journal of Computer Science, 108-123.

[24] Lakshmanaprabu, S. K., Shankar, K., Rani, S. S., Abdulhay, E., Arunkumar, N., Ramirez,

G., & Uthayakumar, J. (2019). An effect of big data technology with ant colony

optimization based routing in vehicular ad hoc networks: Towards smart cities. Journal of

cleaner production, 217, 584-593.

