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ABSTRACT: 

The non-homogeneous ternary quadratic Diophantine equation represented by 

( ) 222 31174 zyxxyyx =+++−+ is studied for finding its non – zero distinct integer 

solutions. 
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INTRODUCTION: 

Ternary quadratic equations are rich in variety [1-4, 17-19]. For an extensive review of sizable 

literature and various problems, one may refer [5-16]. In this communication, we consider yet 

another interesting non-homogeneous ternary quadratic equation 

( ) 222 31174 zyxxyyx =+++−+  and obtain infinitely many non-trivial integral solutions. 

METHOD OF ANALYSIS: 

Let zyx ,,  be any three non-zero distinct integers such that 

( ) 222 31174 zyxxyyx =+++−+                                               (1) 

Introducing the linear transformations 

1,1 −−=−+= vuyvux       (2) 

in  (1), it leads to 
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222 3115 zvu =+                 (3) 

We present below different methods of solving (3) and thus, obtain different patterns of integral 

solutions to (1). 

METHOD-1 

(3) is written in the form of ratio as 
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which is equivalent to the system of equations 

( ) 04 =−++ zvu   

( ) 015415 =++− zuv 
 

Solving the above two equations by cross multiplication method, one obtains 

 30604 22 +−=u  

 815 22 −−=v                 (5) 

22 15 +=z  

Hence, in view of (2) and (5), the non- zero integral solutions of (1) are given by 
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METHOD-2 

In addition to (4), (3) is written in the form of ratio as 
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which is equivalent to the system of equations 

( ) 015415 =−++ zvu   

( ) 04 =++− zuv   

Solving the above two equations by cross multiplication method, one obtains 

 30460 22 +−=u                                        

 815 22 −−=v                                                           (7) 

2215  +=z  
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Hence, in view of (2) and (7), the non- zero integral solutions of (1) are found to be 
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METHOD-3 

Also, (3) is written in the form of ratio as 
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which is equivalent to the system of equations 

( ) 0545 =−++ zvu   

( ) 0343 =++− zuv   

Solving the above two equations by cross multiplication method, one obtains 

 301220 22 +−=u  

 835 22 −−=v                                                        (9) 

22 35  +=z  

Hence, in view of (2) and (9), the non- zero integral solutions of (1) are 
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METHOD-4 

Further, (3) is written in the form of ratio as, 
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which is equivalent to the system of equations 

( ) 0343 =−++ zvu   

( ) 0545 =++− zuv 
 

Solving the above two equations by cross multiplication method, one obtains 

 302012 22 +−=u  

 853 22 −−=v                                                            (10) 

22 53  +=z  
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Hence, in view of (2) and (10), the non- zero integral solutions of (1) are given by    

22

22

22

53

138159

1222515







+=

−+−=

−+−=

z

y

x

 

METHOD-5 

Introduce the linear transformations 

TXvTXzWu 31,15,4 +=+==                        (11) 

Substituting (11) in (3), it reduces to 

222 465 WTX +=                           (12) 

which is satisfied by 

22

22
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2
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+=

=

+=

                                                                        (13) 

Hence, in view of (2), (11) and (13), the non- zero integral solutions of (1) are given by 
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METHOD-6 

Also (3) as  222 3115 zvu =+  

Write z  as  22 15 +=z                                                                  (14) 

Also, 31 is written as ( )( )15415431 ii −+=                                      (15) 

Substituting (14) and (15) in (3) and employing the factorization method, define 

( ) ( )( )21515415  iiviu ++=+  

On equating the real and imaginary parts, we have 

 30604 22 −−=u                                                (16) 

 815 22 +−=v  

Using (16) in (2) we have 
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                                                           (17) 
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Thus (17) and (14) represent the non-zero distinct integer solutions to equation (1). 

METHOD-7 

One may write (3) as 

1*3115 222 zvu =+                                                                     (18) 

Write 1 as  
( )( )

16

151151
1

ii −+
=                                                        (19) 

Substituting (15), (19) and (16) in (18) and employing the factorization method, define 

( ) ( )( ) ( )
4

151
*1515415

2 i
iiviu

+
++=+   

On equating the real and imaginary parts, we have 

( ) 15016511
4

1 22 −+−=u                                               (20) 

( ) 22755
4

1 22 −−=v  

Using (20) in (2), we have 
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                                          (21) 

As our interest is on finding integer solutions, replacing  2=  and  2=  in (21) and (14), 

we have 

1172906 22 −−+−= x  

112824016 22 −−+−= y  

22 604  +=z  

Thus the above values of yx ,  and z  represent the non-zero distinct integer solutions to 

equation (1). 

NOTE: 

It is worth mentioning here that in addition to (19), 

1 may be represented as below: 

(i) 
( )( )

64

157157
1

ii −+
=  
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(ii) 
( )( )
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1

ii −+
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(iii) 
( )( )
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1

ii −+
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(iv) 
( )( )
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1512715127
1

ii −+
=  

Following the procedure presented as above, for simplicity and brevity, we present below the 

integer solutions to (1) for (i) to (iv). 

Solutions for (i):     Solutions for (ii): 
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Solutions for (iii):     Solutions for (iv): 
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METHOD-8 

Write (12) as the system of double equations as shown in Table 1 below: 

 

Table 1: System of double equations 

System 1 2 3 4 5 6 7 8 9 10 

X+W 465 2T  25T  215T  231T  2155T  465T 93T 31T 155T 

X-W 2T  465 93 31 15 3 T 5T 15T 3T 

Solving each of the system of equations in Table 1, the corresponding values of X, W and T are 

obtained.  Substituting the values of X, W and T in (11) and (2), the respective values of x, y and 

z are determined.  For simplicity and brevity, the integer solutions to (1) obtained through 

solving each of the above system of equations are exhibited. 

System :1   System:2   System:3 
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System :4    System:5   System:6 
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System :7   System:8   System:9 
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System :10 

TZ

Ty

Tx
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1194
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=

−=

−=

 

REMARKABLE OBSERVATION :I 

➢ If the non-zero integer triplet ),,( 000 zvu
 is any solution of (3) then each of the following 

three triplets of integer based on 00 ,vu  and 0z  also satisfies (1). 

Triplet: 1 ),,( nnn zyx  
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Triplet: 2 ),,( nnn zyx  
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Triplet: 3 ),,( nnn zyx  
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REMARKABLE OBSERVATION : II 

➢ Consider x and y to be the length and breadth of a Rectangle R, whose Area, Perimeter and 

Length of the diagonal are represented by A, P and L respectively. 
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Then it is noted that 

1. )62mod(2148 2 −+− PAL  

2. ]2148[31 2 ++− PAL  is a perfect square. 

3. }2148{93 2 ++− PAL  is a Nasty number. 

CONCLUSION: 

To conclude, one may search for other patterns of solutions and their corresponding properties. 
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