ON THE TERNARY QUADRATIC DIOPHANTINE EQUATION $4\left(x^{2}+y^{2}\right)-7 x y+x+y+1=31 z^{2}$

E. Premalatha ${ }^{1}$ and M. A. Gopalan ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics, National College, Affiliated to Bharathidasan University, Trichy-620 001, Tamil Nadu, India.
${ }^{2}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.

Abstract

: The non-homogeneous ternary quadratic Diophantine equation represented by $4\left(x^{2}+y^{2}\right)-7 x y+x+y+1=31 z^{2}$ is studied for finding its non - zero distinct integer solutions.

Keywords: Non -homogeneous, Ternary quadratic equation, Integral solutions.

2010 mathematics subject classification: 11D09

INTRODUCTION:

Ternary quadratic equations are rich in variety [1-4, 17-19]. For an extensive review of sizable literature and various problems, one may refer [5-16]. In this communication, we consider yet another interesting non-homogeneous ternary quadratic equation $4\left(x^{2}+y^{2}\right)-7 x y+x+y+1=31 z^{2}$ and obtain infinitely many non-trivial integral solutions.

METHOD OF ANALYSIS:

Let x, y, z be any three non-zero distinct integers such that

$$
\begin{equation*}
4\left(x^{2}+y^{2}\right)-7 x y+x+y+1=31 z^{2} \tag{1}
\end{equation*}
$$

Introducing the linear transformations

$$
\begin{equation*}
x=u+v-1, y=u-v-1 \tag{2}
\end{equation*}
$$

in (1), it leads to

$$
\begin{equation*}
u^{2}+15 v^{2}=31 z^{2} \tag{3}
\end{equation*}
$$

We present below different methods of solving (3) and thus, obtain different patterns of integral solutions to (1).

METHOD-1

(3) is written in the form of ratio as
$\frac{u+4 z}{(z-v)}=\frac{15(z+v)}{u-4 z}=\frac{\alpha}{\beta}, \quad \beta \neq 0$
which is equivalent to the system of equations
$u \beta+v \alpha+(4 \beta-\alpha) z=0$
$15 v \beta-u \alpha+(4 \alpha+15 \beta) z=0$
Solving the above two equations by cross multiplication method, one obtains
$u=4 \alpha^{2}-60 \beta^{2}+30 \alpha \beta$
$v=\alpha^{2}-15 \beta^{2}-8 \alpha \beta$
$z=\alpha^{2}+15 \beta^{2}$
Hence, in view of (2) and (5), the non- zero integral solutions of (1) are given by
$x=5 \alpha^{2}-75 \beta^{2}+22 \alpha \beta-1$
$y=3 \alpha^{2}-45 \beta^{2}+38 \alpha \beta-1$
$z=\alpha^{2}+15 \beta^{2}$

METHOD-2

In addition to (4), (3) is written in the form of ratio as

$$
\begin{equation*}
\frac{u+4 z}{15(z-v)}=\frac{(z+v)}{u-4 z}=\frac{\alpha}{\beta}, \quad \beta \neq 0 \tag{6}
\end{equation*}
$$

which is equivalent to the system of equations

$$
\begin{aligned}
& u \beta+15 v \alpha+(4 \beta-15 \alpha) z=0 \\
& v \beta-u \alpha+(4 \alpha+\beta) z=0
\end{aligned}
$$

Solving the above two equations by cross multiplication method, one obtains

$$
\begin{align*}
& u=60 \alpha^{2}-4 \beta^{2}+30 \alpha \beta \\
& v=15 \alpha^{2}-\beta^{2}-8 \alpha \beta \tag{7}\\
& z=15 \alpha^{2}+\beta^{2}
\end{align*}
$$

Hence, in view of (2) and (7), the non- zero integral solutions of (1) are found to be

$$
\begin{aligned}
& x=75 \alpha^{2}-5 \beta^{2}+22 \alpha \beta-1 \\
& y=45 \alpha^{2}-3 \beta^{2}+38 \alpha \beta-1 \\
& z=15 \alpha^{2}+\beta^{2}
\end{aligned}
$$

METHOD-3

Also, (3) is written in the form of ratio as

$$
\begin{equation*}
\frac{u+4 z}{5(z-v)}=\frac{3(z+v)}{u-4 z}=\frac{\alpha}{\beta}, \quad \beta \neq 0 \tag{8}
\end{equation*}
$$

which is equivalent to the system of equations

$$
\begin{aligned}
& u \beta+5 v \alpha+(4 \beta-5 \alpha) z=0 \\
& 3 v \beta-u \alpha+(4 \alpha+3 \beta) z=0
\end{aligned}
$$

Solving the above two equations by cross multiplication method, one obtains

$$
\begin{align*}
& u=20 \alpha^{2}-12 \beta^{2}+30 \alpha \beta \\
& v=5 \alpha^{2}-3 \beta^{2}-8 \alpha \beta \tag{9}\\
& z=5 \alpha^{2}+3 \beta^{2}
\end{align*}
$$

Hence, in view of (2) and (9), the non- zero integral solutions of (1) are

$$
\left.\begin{array}{l}
x=25 \alpha^{2}-15 \beta^{2}+22 \alpha \beta-1 \\
y=15 \alpha^{2}-9 \beta^{2}+38 \alpha \beta-1
\end{array}\right\}
$$

METHOD-4

Further, (3) is written in the form of ratio as,

$$
\frac{u+4 z}{3(z-v)}=\frac{5(z+v)}{u-4 z}=\frac{\alpha}{\beta}, \quad \beta \neq 0
$$

which is equivalent to the system of equations

$$
\begin{aligned}
& u \beta+3 v \alpha+(4 \beta-3 \alpha) z=0 \\
& 5 v \beta-u \alpha+(4 \alpha+5 \beta) z=0
\end{aligned}
$$

Solving the above two equations by cross multiplication method, one obtains

$$
\begin{align*}
& u=12 \alpha^{2}-20 \beta^{2}+30 \alpha \beta \\
& v=3 \alpha^{2}-5 \beta^{2}-8 \alpha \beta \tag{10}\\
& z=3 \alpha^{2}+5 \beta^{2}
\end{align*}
$$

Hence, in view of (2) and (10), the non- zero integral solutions of (1) are given by $x=15 \alpha^{2}-25 \beta^{2}+22 \alpha \beta-1$
$y=9 \alpha^{2}-15 \beta^{2}+38 \alpha \beta-1$
$z=3 \alpha^{2}+5 \beta^{2}$

METHOD-5

Introduce the linear transformations

$$
\begin{equation*}
u=4 W, z=X+15 T, v=X+31 T \tag{11}
\end{equation*}
$$

Substituting (11) in (3), it reduces to

$$
\begin{equation*}
X^{2}=465 T^{2}+W^{2} \tag{12}
\end{equation*}
$$

which is satisfied by

$$
\begin{align*}
& X=465 r^{2}+s^{2} \\
& T=2 r s \tag{13}\\
& W=465 r^{2}+s^{2}
\end{align*}
$$

Hence, in view of (2), (11) and (13), the non- zero integral solutions of (1) are given by

$$
x=2325 r^{2}-3 s^{2}+62 r s-1
$$

$$
y=1395 r^{2}-5 s^{2}-62 r s-1
$$

$$
z=465 r^{2}+s^{2}+30 r s
$$

METHOD-6

Also (3) as $u^{2}+15 v^{2}=31 z^{2}$
Write z as $z=\alpha^{2}+15 \beta^{2}$
Also, 31 is written as $31=(4+i \sqrt{15})(4-i \sqrt{15})$
Substituting (14) and (15) in (3) and employing the factorization method, define $(u+i \sqrt{15} v)=(4+i \sqrt{15})(\alpha+i \sqrt{15} \beta)^{2}$
On equating the real and imaginary parts, we have

$$
\begin{align*}
& u=4 \alpha^{2}-60 \beta^{2}-30 \alpha \beta \tag{16}\\
& v=\alpha^{2}-15 \beta^{2}+8 \alpha \beta
\end{align*}
$$

Using (16) in (2) we have

$$
\left.\begin{array}{l}
x=5 \alpha^{2}-75 \beta^{2}-22 \alpha \beta-1 \\
y=3 \alpha^{2}-45 \beta^{2}-38 \alpha \beta-1 \tag{17}
\end{array}\right\}
$$

Thus (17) and (14) represent the non-zero distinct integer solutions to equation (1).

METHOD-7

One may write (3) as
$u^{2}+15 v^{2}=31 z^{2} * 1$
Write 1 as $1=\frac{(1+i \sqrt{15})(1-i \sqrt{15})}{16}$
Substituting (15), (19) and (16) in (18) and employing the factorization method, define $(u+i \sqrt{15} v)=(4+i \sqrt{15})(\alpha+i \sqrt{15} \beta)^{2} * \frac{(1+i \sqrt{15})}{4}$

On equating the real and imaginary parts, we have
$u=\frac{1}{4}\left(-11 \alpha^{2}+165 \beta^{2}-150 \alpha \beta\right)$
$v=\frac{1}{4}\left(5 \alpha^{2}-75 \beta^{2}-22 \alpha \beta\right)$
Using (20) in (2), we have
$\left.\begin{array}{l}x=\frac{1}{4}\left(-6 \alpha^{2}+90 \beta^{2}-172 \alpha \beta-4\right) \\ y=\frac{1}{4}\left(-16 \alpha^{2}+240 \beta^{2}-128 \alpha \beta-4\right)\end{array}\right\}$
As our interest is on finding integer solutions, replacing $\alpha=2 \alpha$ and $\beta=2 \beta$ in (21) and (14), we have

$$
\begin{aligned}
& x=-6 \alpha^{2}+90 \beta^{2}-172 \alpha \beta-1 \\
& y=-16 \alpha^{2}+240 \beta^{2}-128 \alpha \beta-1 \\
& z=4 \alpha^{2}+60 \beta^{2}
\end{aligned}
$$

Thus the above values of x, y and z represent the non-zero distinct integer solutions to equation (1).

NOTE:

It is worth mentioning here that in addition to (19),
1 may be represented as below:
(i) $\quad 1=\frac{(7+i \sqrt{15})(7-i \sqrt{15})}{64}$
(ii) $\quad 1=\frac{(7+i 4 \sqrt{15})(7-i 4 \sqrt{15})}{289}$
(iii) $1=\frac{(1+i 8 \sqrt{15})(1-i 8 \sqrt{15})}{961}$
(iv) $1=\frac{(7+i 12 \sqrt{15})(7-i 12 \sqrt{15})}{2209}$

Following the procedure presented as above, for simplicity and brevity, we present below the integer solutions to (1) for (i) to (iv).

Solutions for (i):
$x=12 \alpha^{2}-180 \beta^{2}-152 \alpha \beta-1$
$y=\alpha^{2}-15 \beta^{2}-178 \alpha \beta-1$
$z=4 \alpha^{2}+60 \beta^{2}$
Solutions for (iii):

$$
\begin{aligned}
& x=-2573 \alpha^{2}+38595 \beta^{2}-37882 \alpha \beta-1 \\
& y=-4619 \alpha^{2}+69285 \beta^{2}-23498 \alpha \beta-1 \\
& z=961 \alpha^{2}+14415 \beta^{2}
\end{aligned}
$$

Solutions for (ii):

$$
\begin{aligned}
& x=-153 \alpha^{2}+2295 \beta^{2}-12818 \alpha \beta-1 \\
& y=-935 \alpha^{2}+14025 \beta^{2}-10642 \alpha \beta-1 \\
& z=289 \alpha^{2}+4335 \beta^{2}
\end{aligned}
$$

Solutions for (iv):

$$
\begin{aligned}
& x=-4559 \alpha^{2}+68385 \beta^{2}-91838 \alpha \beta-1 \\
& y=-9729 \alpha^{2}+145935 \beta^{2}-63262 \alpha \beta-1 \\
& z=2209 \alpha^{2}+33135 \beta^{2}
\end{aligned}
$$

METHOD-8

Write (12) as the system of double equations as shown in Table 1 below:

Table 1: System of double equations

System	1	2	3	4	5	6	7	8	9	10
$\mathrm{X}+\mathrm{W}$	465	T^{2}	$5 T^{2}$	$15 T^{2}$	$31 T^{2}$	$155 T^{2}$	465 T	93 T	31 T	155 T
$\mathrm{X}-\mathrm{W}$	T^{2}	465	93	31	15	3	T	5 T	15 T	3 T

Solving each of the system of equations in Table 1 , the corresponding values of X, W and T are obtained. Substituting the values of X, W and T in (11) and (2), the respective values of x, y and z are determined. For simplicity and brevity, the integer solutions to (1) obtained through solving each of the above system of equations are exhibited.

System :1

$$
\begin{aligned}
& x=-6 k^{2}+56 k+1191 \\
& y=-10 k^{2}-72 k+663 \\
& z=2 k^{2}+32 k+248
\end{aligned}
$$

System :4

System:2

$$
\begin{aligned}
& x=10 k^{2}+72 k-665 \\
& y=6 k^{2}-56 k-1193 \\
& z=2 k^{2}+32 k+248
\end{aligned}
$$

System:5

System:3

$$
\begin{aligned}
& x=50 k^{2}+112 k-97 \\
& y=30 k^{2}-32 k-257 \\
& z=10 k^{2}+40 k+64
\end{aligned}
$$

System:6

$$
\begin{array}{ll}
x=150 k^{2}+212 k+21 & x=310 k^{2}+372 k+85 \\
y=90 k^{2}+28 k-87 & y=186 k^{2}+124 k-23 \\
z=30 k^{2}+60 k+38 & z=62 k^{2}+92 k+38
\end{array}
$$

System :7

$$
\begin{aligned}
& x=1192 T-1 \\
& y=664 T-1 \\
& z=248 T
\end{aligned}
$$

System:8

$x=256 T-1$
$y=96 T-1$
$z=64 T$

$$
\begin{aligned}
& x=1550 k^{2}+1612 k+413 \\
& y=930 k^{2}+868 k+193 \\
& z=310 k^{2}+340 k+94
\end{aligned}
$$

System:9

$$
x=86 T-1
$$

$$
y=-22 T-1
$$

$$
z=38 T
$$

System :10

$$
\begin{aligned}
x & =414 T-1 \\
y & =194 T-1 \\
Z & =94 T
\end{aligned}
$$

REMARKABLE OBSERVATION :I

$>$ If the non-zero integer triplet $\left(u_{0}, v_{0}, z_{0}\right)$ is any solution of (3) then each of the following three triplets of integer based on u_{0}, v_{0} and z_{0} also satisfies (1).

Triplet: $1\left(x_{n}, y_{n}, z_{n}\right)$
$x_{n}=16^{n} u_{0}+\left[\left[15(16)^{n-1}+31(-16)^{n-1}\right] v_{0}-31\left[(16)^{n-1}+(-16)^{n-1}\right] z_{0}\right]-1$
$y_{n}=16^{n} u_{0}+\left[\left[15(16)^{n-1}+31(-16)^{n-1}\right] v_{0}-31\left[(16)^{n-1}+(-16)^{n-1}\right] z_{0}\right]-1$,
$z_{n}=15\left[(16)^{n-1}+(-16)^{n-1}\right] v_{0}-\left[31(16)^{n-1}+15(-16)^{n-1}\right] z_{0}$
Triplet: $2\left(x_{n}, y_{n}, z_{n}\right)$
$x_{n}=\left[\left[25(3)^{n}+31(-3)^{n}\right] u_{0}-155\left[(3)^{n}-(-3)^{n}\right] z_{0}\right]+3^{n} v_{0}-1$
$y_{n}=\left[\left[25(3)^{n}+31(-3)^{n}\right] u_{0}-155\left[(3)^{n}-(-3)^{n}\right] z_{0}\right]-3^{n} v_{0}-1$
$z_{n}=5\left[(3)^{n}-(-3)^{n}\right] u_{0}+\left[-31(3)^{n}+25(-3)^{n}\right] z_{0}$
Triplet: $3\left(x_{n}, y_{n}, z_{n}\right)$

$$
\begin{aligned}
& x_{n}=\frac{1}{43} \llbracket\left((-43)(-29)^{n} u_{0}-30\left[(14)^{n}-(-29)^{n}\right] v_{0}\right]+\left[(-4)\left[(14)^{n}-(-29)^{n}\right] u_{0}-43(14)^{n} v_{0} \rrbracket-1\right. \\
& y_{n}=\frac{1}{43} \llbracket\left((-43)(-29)^{n} u_{0}-30\left[(14)^{n}-(-29)^{n}\right] v_{0}\right]+\left[(-4)\left[(14)^{n}-(-29)^{n}\right] u_{0}-43(14)^{n} v_{0}\right]-1 \\
& z_{n}=16^{n} z_{0}
\end{aligned}
$$

REMARKABLE OBSERVATION : II

$>$ Consider x and y to be the length and breadth of a Rectangle R, whose Area, Perimeter and Length of the diagonal are represented by A, P and L respectively.

Then it is noted that

1. $8 L^{2}-14 A+P \equiv-2(\bmod 62)$
2. $31\left[8 L^{2}-14 A+P+2\right]$ is a perfect square.
3. $93\left\{8 L^{2}-14 A+P+2\right\}$ is a Nasty number.

CONCLUSION:

To conclude, one may search for other patterns of solutions and their corresponding properties.

REFERENCE:

[1]. Bert Miller, "Nasty Numbers", The Mathematics Teacher, Vol-73, No.9,p.649, 1980.
[2]. Bhatia .B.L and Supriya Mohanty,"Nasty Numbers and their Characterisation" Mathematical Education, Vol-II, No.1, p.34-37,July-September, 1985.
[3]. Carmichael.R.D.,The theory of numbers and Diophantine Analysis, NewYork, Dover, 1959.
[4]. Dickson.L.E., History of Theory of numbers, vol.2:Diophantine Analysis, New York, Dover, 2005.
[5]. Gopalan M.A.,Manju somnath, and Vanitha.M., Integral Solutions of $k x y+m(x+y)=z^{2}$, Acta Ciencia Indica, Vol 33, No. 4,1287-1290, (2007).
[6]. Gopalan M.A., Manju Somanath and V.Sangeetha,On the Ternary Quadratic Equation $5\left(x^{2}+y^{2}\right)-9 x y=19 z^{2}$,IJIRSET,Vol 2, Issue 6,2008-2010,June 2013.
[7]. Gopalan M.A., and A.Vijayashankar, Integral points on the homogeneous cone $z^{2}=2 x^{2}+8 y^{2}$,IJIRSET, Vol 2(1), 682-685,Jan 2013.
[8]. Gopalan M.A., S.Vidhyalakshmi, and V.Geetha, Lattice points on the homogeneous cone $z^{2}=10 x^{2}-6 y^{2}$, IJESRT, $\operatorname{Vol} 2(2), 775-779$, Feb 2013.
[9]. Gopalan M.A., S.Vidhyalakshmi and E.Premalatha , On the Ternary quadratic Diophantine equation $x^{2}+3 y^{2}=7 z^{2}$,Diophantus.J.Math1(1),51-57,2012.
[10]. Gopalan M.A., S.Vidhyalakshmi and A.Kavitha , Integral points on the homogeneous cone $z^{2}=2 x^{2}-7 y^{2}$,Diophantus.J.Math1(2),127-136,2012.
[11]. M.A.Gopalan and G.Sangeetha, Observations on $y^{2}=3 x^{2}-2 z^{2}$, Antarctica J.Math., 9(4),359-362,(2012).
[12]. Gopalan M.A., Manju Somanath and V.Sangeetha , Observations on the Ternary Quadratic Diophantine Equation $y^{2}=3 x^{2}+z^{2}$,Bessel J.Math., 2(2),101-105,(2012).
[13]. Gopalan M.A., S.Vidhyalakshmi and E.Premalatha, On the Ternary quadratic equation $x^{2}+x y+y^{2}=12 z^{2}$,Diophantus.J.Math1(2),69-76,2012.
[14]. Gopalan M.A., S.Vidhyalakshmi and E.Premalatha, On the homogeneous quadratic equation with three unknowns $x^{2}-x y+y^{2}=\left(k^{2}+3\right) z^{2}$, Bulletin of Mathematics and Statistics Research, Vol 1(1),38-41,2013.
[15]. Meena.K, Gopalan M.A., S.Vidhyalakshmi and N.Thiruniraiselvi, Observations on the quadratic equation $x^{2}+9 y^{2}=50 z^{2}$, International Journal of Applied Research , Vol 1(2),51-53,2015.
[16]. R.Anbuselvi and S.A. Shanmugavadivu, On homogeneous Ternary quadratic
Diophantine equation $z^{2}=45 x^{2}+y^{2}$, IJERA, 7(11), 22-25, Nov 2017.
[17]. Mordell L.J., Diophantine Equations, Academic press, London (1969).
[18]. Nigel,P.Smart,The Algorithmic Resolutions of Diophantine Equations, Cambridge University Press,London 1999.
[19]. Telang, S.G.,Number Theory,Tata Mc Graw-hill publishing company, New Delhi, 1996.

