ORIGINAL RESEARCH

ASSESSMENT OF FREQUENCY ESTIMATE AND ASSESSMENT OF RISK FACTORS IN THIRD MOLAR REMOVAL

¹Ajay Pillai, ²Abhishek Pathak

¹Professor and HOD, Department of Oral and Maxillofacial Surgery, Peoples Dental College, Bhopal, Madhya Pradesh, India

²MDS, Oral and Maxillofacial Surgery, Peoples Dental Academy, Bhopal, Madhya Pradesh, India

Correspondence:

Abhishek Pathak MDS, Oral and Maxillofacial Surgery, Peoples Dental Academy, Bhopal, Madhya Pradesh, India

ABSTRACT

Background: Surgical removal of the third molar is one of the most common surgical procedures performed as a day case or as an inpatient. The present study was conducted to assess frequency estimate and assessment of risk factors in third molar removal.

Materials & Methods: 78 patients undergoing third molar extraction of both genders were recruited. Level of impaction (soft tissue, partial bony, or total bony), angulation, and the presence or absence of an inflammatory condition associated with the impaction, type of anesthesia (local anesthesia alone or local anesthesia and sedation), type of flap (envelop or triangular), bone removal and postoperative complications were recorded.

Results: Out of 78 patients, males were 42 and females were 36. Alveolar osteitis was present in 5, trismus in 8, infection in 4 and paresthesia LN in 7 cases. The difference was significant (P< 0.05). Maximum cases of alveolar osteitis had mesio- angular impaction (2), anesthesia used was LA+ sedation (3), triangular flap (4) and partial bony (3) level of impaction. Maximum cases of trismus had mesio- angular impaction (4), anesthesia used was LA+ sedation (5), triangular flap (5) and partial bony (5) level of impaction. Maximum cases of infection had mesio- angular impaction (4), anesthesia used was LA+ sedation (5), triangular flap (5) level of impaction. Maximum cases of paresthesia LN had mesio- angular impaction (4), anesthesia used was LA+ sedation (5), triangular flap (5) and partial bony (5) level of impaction. Maximum cases of paresthesia LN had mesio- angular impaction (4), anesthesia used was LA+ sedation (5), triangular flap (4) and partial bony (4) level of impaction.

Conclusion: Common complication found were alveolar osteitis, trismus, infection and paresthesia LN. Most commonly mesio- angular impaction, LA+sedation, triangular flap and partial bony level of impaction was the leading cause.

Key words: alveolar osteitis, trismus, infection

INTRODUCTION

Surgical removal of the third molar (M3) is one of the most common surgical procedures performed as a day case or as an inpatient, and continues to be the most frequent surgical procedure performed in the specialty of oral and maxillofacial surgery.¹ The cost of this procedure to health care providers is substantial. Third molars are removed for a variety of reasons, but pericoronitis is the main reason for extraction in most cases.² Postoperative complications after surgical removal of the M3 have been reported in different frequencies and extents, ranging from mild discomfort after the operation to major complications that require further treatment, hospitalization, and may result in permanent damage.³

Damage to the inferior alveolar nerve (IAN) or the lingual nerve during third-molar removal has long been the subject of debate, and the ideal method of nerve protection is yet to be determined.⁴Factors reported to be associated with M3 complications include age; gender; medications such as antibiotics, corticosteroids, or oral contraceptives; smoking; previous infection; periodontitis; poor oral hygiene; surgeon experience; difficulty of extraction; length of extraction; inadequate irrigation; number of teeth extracted; and anesthetic technique. Few studies to date, however, evaluate the multivariate relationships among risk factors and complications.⁵The present study was conducted to assess frequency estimate and assessment of risk factors in third molar removal.

MATERIALS & METHODS

The present study comprised of 78 patients undergoing third molar extraction of both genders. All were enrolled in the study with their written consent.

Data such as name, age, gender etc. was recorded. Level of impaction (soft tissue, partial bony, or total bony), angulation, and the presence or absence of an inflammatory condition associated with the impaction, type of anesthesia (local anesthesia alone or local anesthesia and sedation), type of flap (envelop or triangular), bone removaland postoperative complications were recorded. All patients were reviewed 7 days postoperatively to have their sutures removed and the surgical site inspected. Data thus obtained were subjected to statistical analysis. P value < 0.05 was considered significant.

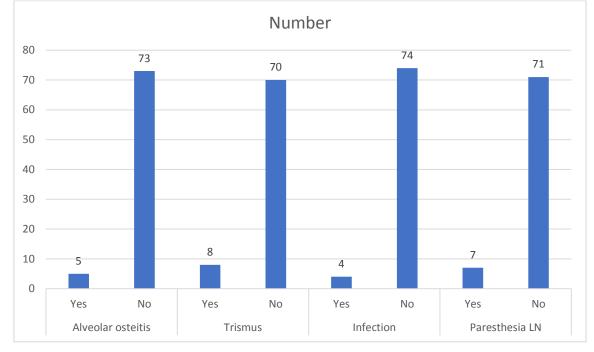
RESULTS

Table I Distribution of patients

Total-78				
Gender	Males	Females		
Number	42	36		

Table I shows that out of 78 patients, males were 42 and females were 36.

Parameters	Variables	Number	P value
Alveolar osteitis	Yes	5	0.04
	No	73	
Trismus	Yes	8	0.03
	No	70	


Table II Assessment of postoperative complications

ISSN 2515-8260 Volume 9, Issue 6, 2022

Infection	Yes	4	0.05
	No	74	
Paresthesia LN	Yes	7	0.01
	No	71	

Table II, graph I shows that alveolar osteitis was present in 5, trismus in 8, infection in 4 and paresthesia LN in 7 cases. The difference was significant (P < 0.05).

Table III Association	between the vari	ous variables and	postoperative	complications
	been een the the		postoperative	comprised

Parameters	Variables	Alveolar osteitis	Trismus	Infection	Paresthesia LN
Angulation	Mesio- angular	2	4	2	4
	Disto- angular	1	2	1	1
	horizontal	1	1	1	1
	vertical	1	1	0	1
Anesthesia	LA	2	3	1	2
	LA+ sedation	3	5	3	5
Type of flap	Envelop	1	3	2	3
	Triangular	4	5	2	4
Level of	Soft tissue	1	1	1	1
impaction	Partial bony	3	5	2	4
	Total bony	1	2	1	2

Table III shows that maximum cases of alveolar osteitis had mesio- angular impaction (2), anesthesia used was LA+ sedation (3), triangular flap (4) and partial bony (3) level of impaction. Maximum cases of trismus had mesio- angular impaction (4), anesthesia used was LA+ sedation (5), triangular flap (5) and partial bony (5) level of impaction. Maximum cases of infection had mesio- angular impaction (4), anesthesia used was LA+ sedation (5),

triangular flap (5) and partial bony (5) level of impaction. Maximum cases of paresthesia LN had mesio- angular impaction (4), anesthesia used was LA+ sedation (5), triangular flap (4) and partial bony (4) level of impaction.

DISCUSSION

The literature reports several factors that have significant effect on the occurrence of complicationsafter the surgical procedure.⁶ There are patientrelatedfactors, including age, gender, smoking, andthe use of oral contraceptives. Anatomic-relatedfactors included the level of impaction, angulation, and pre-existing inflammatory condition.^{7,8} In addition, there are operation-related factors including reflection flap, bone removal, operation time, and seniority of the operator.^{9,10} The present study was conducted to assess frequency estimate and assessment of risk factors in third molar removal.

We found that out of 78 patients, males were 42 and females were 36. Baqain et al¹¹estimated the frequency of postoperative complications aftermandibular third molar (M3) surgery and identify the risk indicators. The study sample was comprised of 149 patients who had 245 extractions. The mean age was21.6 years; 64.9% were females. In the multivariate logistic regression model, age, M3 side in relation to the handedness of the operator and lingual retraction were the variables found as independent predictors for other other other tributes. The level of impaction had a significant association with trismus, and operation timeacted as an independent predictor for pain.

We observed that alveolar osteitis was present in 5, trismus in 8, infection in 4 and paresthesia LN in 7 cases. Janakiraman et al¹²determined the incidence of injury to the inferior alveolar and lingualnerves following surgical removal of impacted mandibular thirdmolars and to evaluate the various factors contributing to the same. A total of 119 patients underwent mandibular third-molar removalduring the period of 11 months. Of 119, 3 inferior alveolar nerveand 5 lingual nerve injuries were encountered. Various factors suchas lingual retraction, surgical time, operator experience, radiologicfindings contributing to the injury were correlated and analyzed.

We found that maximum cases of alveolar osteitis had mesio- angular impaction (2), anesthesia used was LA+ sedation (3), triangular flap (4) and partial bony (3) level of impaction. Maximum cases of trismus had mesio- angular impaction (4), anesthesia used was LA+ sedation (5), triangular flap (5) and partial bony (5) level of impaction. Maximum cases of infection had mesio- angular impaction (4), anesthesia used was LA+ sedation (5), triangular flap (5) and partial bony (5) level of impaction. Maximum cases of paresthesia LN had mesio- angular impaction (4), anesthesia used was LA+ sedation (5), triangular flap (5) and partial bony (5) level of impaction. Maximum cases of paresthesia LN had mesio- angular impaction (4), anesthesia used was LA+ sedation (5), triangular flap (4) and partial bony (4) level of impaction. Alveolar osteitis, a well-known and a common complication f surgical extraction of mandibular M3, has significant morbidity including loss of working days, loss of productivity, and multiple postoperative visitsto the clinic. There is a great variation in its reported incidence: 1% to 45%. This variation is attributed to the differences in diagnostic criteria and the methods assessment.¹³

Peterson et al¹⁴ statedthat mesio-angular impactions are the most common (43%) and havethe highest incidence of lingual paresthesia (30.6%), followed bydisto-angular impactions (19.6%), producing only 6% incidence.Carmichael and McGowan¹⁵ found that dysesthesia of IAN occurredmore often if the tooth was horizontally impacted and less oftenin teeth that

were vertically impacted. In our study, of the 5 lingualnerve injuries, 3 were disto-angular impactions, 1 mesio-angularimpaction, and 1 horizontally impacted. The limitation the study is small sample size.

CONCLUSION

Authors found that common complication found were alveolar osteitis, trismus, infection and paresthesia LN. Most commonly mesio- angular impaction, LA+sedation, triangular flap and partial bony level of impaction was the leading cause.

REFERENCES

- 1. Benediktsdottir IS, Wenzel A, Petersen JK, et al: Mandibularthird molar removal: Risk indicators for extended operationtime, postoperative pain, and complications. Oral Surg OralMed Oral Pathol Oral Radiol Endod 97:438, 2004.
- 2. Sweet JB, Butler DP: The relationship of smoking to localizedosteitis. J Oral Surg 37:732, 1979.
- 3. de Boer MP, Raghoebar GM, Stegenga B, et al: Complicationsafter mandibular third molar extraction. Quintessence Int 26:779, 1995.
- 4. Garcia AG, Grana PM, Sampedro FG, et al: Does oral contraceptiveuse affect the incidence of complications after extractionof a mandibular third molar? Br Dent J 194:453, 2003.
- 5. Sisk AL, Hammer WB, Shelton DW, et al: Complications followingremoval of impacted third molars: The role of the experienceof the surgeon. J Oral Maxillofac Surg 44:855, 1986.
- 6. Lilly GE, Osbon DB, Rael EM, et al: Alveolar osteitis associated with mandibular third molar extractions. J Am Dent Assoc88:802, 1974.
- 7. Renton T, Smeeton N, McGurk M: Factors predictive of difficultyof mandibular third molar surgery. Br Dent J 190:607, 2001.
- 8. Nusair YM, Younis MH: Prevalence, clinical picture, and riskfactors of alveolar osteitis in a Jordanian dental teaching center.J Contemp Dent Pract 8:53, 2007.
- 9. Blum IR: Contemporary views on alveolar osteitis (alveolarosteitis): A clinical appraisal of standardization, aetiopathogenesisand management: A critical review. Int J Oral MaxillofacSurg 31:309, 2002.
- 10. Rozanis J, Schofield ID, Warren BA: Is alveolar osteitis preventable?Dent J 43:233, 1977.
- 11. Baqain ZH, Karaky AA, Sawair F, Khaisat A, Duaibis R, Rajab LD. Frequency estimates and risk factors for postoperative morbidity after third molar removal: a prospective cohort study. Journal of oral and Maxillofacial Surgery. 2008 Nov 1;66(11):2276-83.
- 12. Janakiraman EN, Alexander M, Sanjay P. Prospective analysis of frequency and contributing factors of nerve injuries following third-molar surgery. Journal of Craniofacial Surgery. 2010 May 1;21(3):784-6.
- 13. Schow SR: Evaluation of postoperative localized osteitis inmandibular third molar surgery. Oral Surg Oral Med Oral Pathol38:352, 1974.
- Peterson LJ, et al. Contemporary Oral and Maxillofacial Surgery. St Louis, MO: Mosby, 1993:237

ISSN 2515-8260 Volume 9, Issue 6, 2022

15. Carmichael FA, McGowan DA. Incidence of nerve damage following third molar removal: a west of Scotland Oral Surgery Research Group study. Br J Oral Maxillofac Surg 1992;30:7882.