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 Abstract 

We prove some fixed point theorems using Hardy Roger type contraction in the 

setting of b-metric as well as partial b-metric spaces in order to find the existence 

and uniqueness of the common fixed point. We also provide examples to illustrate 

the existence of fixed point and its uniqueness. 

Keywords: Common fixed point, Hardy roger type contraction,  

                    Partial b-metric 

Mathematics Subject Classification: Primary 47H10; Secondary 54H25 

 

1. Introduction 

Fixed point theory is the most important and unique instrument in the field of Science, 

Engineering and Technological World. The method of fixed point theory is used in 

analysis from 20
th

 Century onwards. It was introduced by Joseph Liouville in 1837 

and by Charles Emile Picard in 1890 based on the method of successive 

approximations and it is relevant in finding the existence of solutions in differential 

equations. 

The pioneering work of Classical Theory was given by Stephan Banach which was 

established in 1922. In point of the historical view, there are some Mathematicians 

who completed the results in Fixed Point Theory, they are L.E.T. Brower, W.A. Kirk, 

Silms, Granas and Dugundiji. 

The concept of b – metric space was introduced by Bakhtin in 1989. Further it was 

worked out and expanded by Czerwik in 1993. Making use of their results as better 

tools, many scholars derived some renowned Banach fixed point theorems in the b - 

metric spaces and partial b-metric spaces. The partial b-metric was introduced by 

O’Neill and it is also known as dualistic partial metric space.   

 

 

mailto:priyairudayam@gmail.com


European Journal of Molecular & Clinical Medicine  

 

ISSN 2515-8260   Volume 07, Issue 09, 2020 

3155 

 

2. Preliminaries 

Definition 2.1: [11] 

Let 𝜒𝑏 be a non-empty set and 𝑞𝑏 ≥ 1 be a given real number and also the 

mapping 𝑑𝑏𝑚: 𝜒𝑏 × 𝜒𝑏 → Ɍ+ (Ɍ+stands for non-negative real) when it satisfies 

following conditions , 

for all 𝑔𝑏 , 𝑖𝑏 , 𝑘𝑏 ∈ 𝜒𝑏 , 
 𝑑𝑏𝑚(𝑔𝑏 , 𝑖𝑏) = 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑔𝑏 = 𝑖𝑏, 

 𝑑𝑏𝑚(𝑔𝑏 , 𝑖𝑏) = (𝑖𝑏 , 𝑔𝑏), 

 𝑑𝑏𝑚(𝑔𝑏 , 𝑘𝑏) ≤  𝑞𝑏[𝑑𝑏𝑚(𝑔𝑏 , 𝑖𝑏) + (𝑖𝑏, 𝑘𝑏)] 
The pair (𝜒𝑏 , 𝑑𝑏𝑚) is called b- metric space.  

It is the extension of usual metric space. 

Definition 2.2: [8] 

Let 𝛷𝑠 be the non-empty set and 𝑝𝑚: 𝛷𝑠 × 𝛷𝑠 → [0,∞) be a mapping, then the 

following conditions are satisfied, for all 𝜏, 𝜑, 𝛾 ∈ 𝛷𝑠 : 

 𝜏 = 𝜑 ⇔ 𝑝𝑚(𝜏, 𝜏) = 𝑝𝑚(𝜑, 𝜑) = 𝑝𝑚(𝜏, 𝜑); 

 𝑝𝑚(𝜏, 𝜏) ≤ 𝑝𝑚(𝜏, 𝜑); 
 𝑝𝑚(𝜏, 𝜑) = 𝑝𝑚(𝜑, 𝜏); 

 𝑝𝑚(𝜏, 𝜑) ≤ 𝑝𝑚(𝜏, 𝛾)+ 𝑝𝑚(𝛾, 𝜑) − 𝑝𝑚(𝛾, 𝛾) 

In which the pair (𝛷𝑠, 𝑝𝑚) is called as partial metric space. 

Definition 2.3: [12] 

Let 𝜒𝑏 be a non-empty set and 𝑞𝑏 ≥ 1 be a given real number and (𝜒𝑏 , 𝑝𝑏𝑚) 

be a partial b-metric space when it fulfills the following conditions for all 𝑔𝑏 , 𝑖𝑏 , 𝑘𝑏 ∈𝜒𝑏 , 
  𝑔𝑏 = 𝑖𝑏 if and only if 𝑝𝑏𝑚(𝑔𝑏, 𝑔𝑏) = 𝑝𝑏𝑚(𝑔𝑏, 𝑖𝑏) = 𝑝𝑏𝑚(𝑖𝑏 , 𝑖𝑏); 
 𝑝𝑏𝑚(𝑔𝑏, 𝑔𝑏) ≤ 𝑝𝑏𝑚(𝑔𝑏, 𝑖𝑏); 

 𝑝𝑏𝑚(𝑔𝑏, 𝑖𝑏) = 𝑝𝑏𝑚(𝑖𝑏, 𝑔𝑏); 

 𝑝𝑏𝑚(𝑔𝑏, 𝑖𝑏) ≤  𝑞𝑏[𝑝𝑏𝑚(𝑔𝑏, 𝑘𝑏) + 𝑝𝑏𝑚(𝑘𝑏,𝑖𝑏) − 𝑝𝑏𝑚(𝑘𝑏,𝑘𝑏)] 
This is known as partial b- metric space.  

The number  𝑞𝑏 ≥ 1 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 (𝜒𝑏 , 𝑝𝑏𝑚). 
Definition 2.4: [12] 

 Let 𝜒𝑏 be a non-empty set and 𝑞𝑏 ≥ 1 be a given real number and (𝜒𝑏 , 𝑝𝑏𝑚 ,  𝑞𝑏) be a partial b-metric space. 𝑔𝑏𝑛 be any sequence in 𝜒𝑏, and 𝑔𝑏 ∈𝜒𝑏 , 𝑡ℎ𝑒𝑛, 
 The sequence { 𝑔𝑏𝑛} is said to be convergent if it converges to 𝑔𝑏  𝑖𝑓 lim𝑛→∞ 𝑝𝑏𝑚( 𝑔𝑏𝑛 , 𝑔𝑏) exists and is finite. 

 The { 𝑔𝑏𝑛} seqeuence is said to be Cauchy sequence in (𝜒𝑏 , 𝑝𝑏𝑚 ,  𝑞𝑏) if  lim𝑛,𝑚→∞ 𝑑𝑏𝑚( 𝑔𝑏𝑛 , 𝑔𝑏𝑚) exists and finite. 
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 (𝜒𝑏 , 𝑝𝑏𝑚 ,  𝑞𝑏) is called as complete partial b-metric space if for all 

Cauchy Sequence  𝑔𝑏𝑛  𝑖𝑛 𝜒𝑏 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠  𝑔𝑏 ∈ 𝜒𝑏 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡,                             lim𝑛,𝑚→∞
𝑑𝑏𝑚( 𝑔𝑏𝑛 , 𝑔𝑏𝑚) = lim𝑛→∞

𝑝𝑏𝑚( 𝑔𝑏𝑛 , 𝑔𝑏) = 𝑝𝑏𝑚(𝑔𝑏 , 𝑔𝑏). 
We should remember that limit of the convergent sequence may not be unique. 

Definition 2.5: [5] 

Given a metric space (𝛷𝑠,𝑑𝑏), the mapping  𝑇𝑏𝑚: 𝛷𝑠 → 𝛷𝑠 is said to be an interpolative 

Kannan contraction mapping if, 

  𝑑𝑏(𝑇𝑏𝑚𝜁𝑚 , 𝑇𝑏𝑚  𝜒𝑚)≤ 𝜂𝑠(𝑑𝑏(𝜁𝑚, 𝑇𝑏𝑚))𝜏′ ∙ 𝑑𝑏(𝜒𝑚, 𝑇𝑏𝑚𝜁𝑚)1−𝜏′
  , 

Then it is called Interpolative Kannan type Contracrion. 

Definition 2.6: [7] 

 Let (𝛷𝑠,𝑑𝑏) be a complete metric space. We can say that the self – mapping 𝑇𝑏𝑚: 𝛷𝑠 →𝛷𝑠 is an 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑣𝑒 𝐻𝑎𝑟𝑑𝑦 𝑅𝑜𝑔𝑒𝑟𝑠 𝑡𝑦𝑝𝑒 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 if there exists 𝜂𝑠 ∈ [0,1) 

and 𝜏´, 𝜎´, 𝜌´ ∈ (0,1) with  𝜏´ + 𝜎´ + 𝜌´ < 1, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡, 𝑑𝑏(𝑇𝑏𝑚𝜁𝑚 , 𝑇𝑏𝑚  𝜒𝑚)                                              ≤  𝜂𝑠  [(𝑑𝑏(𝜁𝑚, 𝜒𝑚))𝜎′ . (𝑑𝑏(𝜁𝑚, 𝑇𝑏𝑚𝜁𝑚))𝜏′ . (𝑑𝑏(𝜒𝑚, 𝑇𝑏𝑚𝜒𝑚))𝜌′] 
                                 ·(1 2⁄ [𝑑𝑏(𝜁𝑚, 𝑇𝑏𝑚𝜒𝑚) + 𝑑𝑏(𝜒𝑚, 𝑇𝑏𝑚𝜁𝑚)])1−𝜏′−𝜎′−𝜌′

 ,    (1)                   

For all 𝜁𝑚, 𝜒𝑚 ∈ 𝜙𝑠\𝐹𝑖𝑥( 𝑇𝑏𝑚). 

 

Main Results 

3. Fixed Point theorems with the Contraction on b-Metric Spaces and Partial b-

Metric Spaces 

 

We begin the chapter by giving the notion of  𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑣𝑒 𝐻𝑎𝑟𝑑𝑦 −  𝑅𝑜𝑔𝑒𝑟𝑠 𝑡𝑦𝑝𝑒 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠. 
Definition: 3.1 

  Let (𝛷𝑠,𝑑𝑏) be a metric space. We can say that the self – mapping 𝑇𝑏𝑚: 𝛷𝑠 →𝛷𝑠 is an 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑣𝑒 𝐻𝑎𝑟𝑑𝑦 𝑅𝑜𝑔𝑒𝑟𝑠 𝑡𝑦𝑝𝑒 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 if there exists 𝜂𝑠 ∈ [0,1) 

and 𝜏´, 𝜎´, 𝜌´ ∈ (0,1) with 𝜏´ + 𝜎´ + 𝜌´ < 1, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡, 𝑑𝑏(𝑇𝑏𝑚𝜁𝑚 , 𝑇𝑏𝑚  𝜒𝑚)                                              ≤  𝜂𝑠  [(𝑑𝑏(𝜁𝑚, 𝜒𝑚))𝜎′ . (𝑑𝑏(𝜁𝑚, 𝑇𝑏𝑚𝜁𝑚))𝜏′ . (𝑑𝑏(𝜒𝑚, 𝑇𝑏𝑚𝜒𝑚))𝜌′] 
               ·(1 2⁄ [𝑑𝑏(𝜁𝑚, 𝑇𝑏𝑚𝜒𝑚) + 𝑑𝑏(𝜒𝑚, 𝑇𝑏𝑚𝜁𝑚)])1−𝜏′−𝜎′−𝜌′

                        (2) 

For all 𝜁𝑚, 𝜒𝑚 ∈ 𝜙𝑠\𝐹𝑖𝑥( 𝑇𝑏𝑚). 

Theorem 3.2 

          Let (𝛷𝑠,𝑑𝑏) a complete b-metric space, 𝑞𝑏 ≥ 1 be a real number and 𝑇𝑏𝑚 be an 

interpolative Hardy Rogers type contraction.  Then 𝑇𝑏𝑚has a unique fixed point in 𝛷𝑠. 
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Proof: 

Given, 

          Let (𝛷𝑠,𝑑𝑏) be a complete b-metric space and 𝑇𝑏𝑚 be an interpolative type 

contraction. 

To prove, 

          𝑇𝑏𝑚 has a fixed point in 𝜙𝑠 . 

           As we start from 𝜁𝑚0 ∈ 𝜙𝑠, considering {𝜁𝑚𝑛 }, given as 

 𝜁𝑚𝑛 = 𝑇𝑏𝑚𝑛(𝜁𝑚0) for each positive integer n. 

          If there exists no such that  𝜁𝑚𝑛0 = 𝜁𝑚𝑛0+1, then𝜁𝑚𝑛0  is a fixed point of 𝑇𝑏𝑚. 

         Let us assume that𝜁𝑚𝑛  ≠ 𝜁𝑚𝑛+1 for all  𝑛 ≥ 0. 

          By substituting the values 𝜁𝑚=𝜁𝑚𝑛 and 𝜒𝑚= 𝜁𝑚𝑛−1 in the notion of interpolative 

Hardy- Rogers type contraction, 𝑑𝑏(𝑇𝑏𝑚𝜁𝑚 , 𝑇𝑏𝑚  𝜒𝑚)                                              ≤  𝜂𝑠  [(𝑑𝑏(𝜁𝑚, 𝜒𝑚))𝜎′ . (𝑑𝑏(𝜁𝑚, 𝑇𝑏𝑚))𝜏′ . (𝑑𝑏(𝜒𝑚, 𝑇𝑏𝑚𝜒𝑚))𝜌′ .] 
 

·(1 2⁄ [𝑑𝑏(𝜁𝑚, 𝑇𝑏𝑚𝜒𝑚) + 𝑑𝑏(𝜒𝑚, 𝑇𝑏𝑚𝜁𝑚)])1−𝜏′−𝜎′−𝜌′     (3) 

We shall consider  𝜁𝑚=𝜁𝑚𝑛 , 𝜒𝑚= 𝜁𝑚𝑛−1, and we get , 𝑑𝑏(𝜁𝑚𝑛+1, 𝜁𝑚𝑛) = 𝑑𝑏(𝑇𝑏𝑚𝜁𝑚𝑛  , 𝑇𝑏𝑚 𝜁𝑚𝑛−1) ≤  𝜂𝑠[𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛−1)]𝜎′ ∙ [𝑑𝑏(𝜁𝑚𝑛 , 𝑇𝑏𝑚𝜁𝑚𝑛)]𝜏′ ∙  [𝑑𝑏(𝜁𝑚𝑛−1, 𝑇𝑏𝑚𝜁𝑚𝑛−1)]𝜌′
               ∙ [1 2⁄ (𝑑𝑏(𝜁𝑚𝑛 , 𝑇𝑏𝑚𝜁𝑚𝑛−1) + 𝑑𝑏(𝜁𝑚𝑛−1, 𝑇𝑏𝑚𝜁𝑚𝑛))]1−𝜏′−𝜎′−𝜌′

 

 ≤  𝜂𝑠[𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛−1)]𝜎′ ∙ [𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1)]𝜏′ ∙ [𝑑𝑏(𝜁𝑚𝑛−1, 𝜁𝑚𝑛)]𝜌′
 

  ∙ [1 2⁄ (𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛) + 𝑑𝑏(𝜁𝑚𝑛−1, 𝜁𝑚𝑛+1))]1−𝜏′−𝜎′−𝜌′

 

Since, 𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛) = 0, we have, ≤  𝜂𝑠[𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛−1)]𝜎′ ∙ [𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1)]𝜏′ ∙ [𝑑𝑏(𝜁𝑚𝑛−1, 𝜁𝑚𝑛)]𝜌′
 

  ∙ [1 2⁄ (𝑑𝑏(𝜁𝑚𝑛−1, 𝜁𝑚𝑛+1))]1−𝜏′−𝜎′−𝜌′

 ≤  𝜂𝑠[𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛−1)]𝜎′ ∙ [𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1)]𝜏′ ∙ [𝑑𝑏(𝜁𝑚𝑛−1, 𝜁𝑚𝑛)]𝜌′
  ∙ [1 2⁄ (𝑑𝑏(𝜁𝑚𝑛−1, 𝜁𝑚𝑛) + 𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1))]1−𝜏′−𝜎′−𝜌′(3) 

Supposing that,  𝑑𝑏(𝜁𝑚𝑛−1, 𝜁𝑚𝑛) < 𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1)  for some 𝑛 ≥ 1, thus we get the result as, 1 2⁄ (𝑑𝑏(𝜁𝑚𝑛−1, 𝜁𝑚𝑛) + 𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1)) ≤  𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1) 

So, the inequality (2) can be written as, 
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≤  𝜂𝑠 [𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛−1)]𝜎′ ∙ [𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1)]𝜏′ ∙ [𝑑𝑏(𝜁𝑚𝑛−1, 𝜁𝑚𝑛)]𝜌′
 ∙ [1 2⁄ (𝑑𝑏(𝜁𝑚𝑛−1, 𝜁𝑚𝑛) + 𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1))]∙ [1 2⁄ (𝑑𝑏(𝜁𝑚𝑛−1, 𝜁𝑚𝑛) + 𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1))]1−(𝜏′+𝜎′+𝜌′)

 𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1) ≤ 𝜂𝑠[𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛−1)]𝜎′ ∙ [𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1)]𝜏′ ∙ [𝑑𝑏(𝜁𝑚𝑛−1, 𝜁𝑚𝑛)]𝜌′
                                        ∙ [𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1))] ∙ [𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1))]−𝜏′−𝜎′−𝜌′

 [𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1))]𝜎′+𝜌′ ≤  𝜂[𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛−1)]𝜎′+𝜌′
, ∀ 𝑛 ≥ 1       (4) 

Now we can conclude that, 

 [𝑑𝑏(, 𝜁𝑚𝑛−1, 𝜁𝑚𝑛)] ≥ [𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1))], This is contradiction to the assumption that 

we had considered already. 

Hence we derive as the conclusion that,  [𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1))] ≤ [𝑑𝑏(𝜁𝑚𝑛−1, 𝜁𝑚𝑛)],    ∀ 𝑛 ≥ 1. 
Thus,   [𝑑𝑏(𝜁𝑚𝑛−1, 𝜁𝑚𝑛)] is a non – increasing sequence with positive terms. 

The set we have, 𝜑 =  lim𝑛→∞
𝑑𝑏(𝜁𝑚𝑛−1,𝜁𝑚𝑛) 

So, we get, [1 2⁄ (𝑑𝑏(𝜁𝑚𝑛−1, 𝜁𝑚𝑛) + 𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1))] ≤ 𝑑𝑏(𝜁𝑚𝑛−1, 𝜁𝑚𝑛), ∀ 𝑛 ≥ 1 

So, the inequality (2) can be changed as 𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1)  ≤  𝜂𝑠[𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛−1)]𝜎′ ∙ [𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1)]𝜏′ ∙                                            [𝑑𝑏(𝜁𝑚𝑛−1, 𝜁𝑚𝑛)]𝜌′ ∙ [𝑑𝑏(𝜁𝑚𝑛−1, 𝜁𝑚𝑛)] ∙                                                                            [𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛−1))]−𝜏′−𝜎′−𝜌′
 𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1)1−𝜏′ ≤ 𝜂𝑠 [𝑑𝑏(𝜁𝑚𝑛−1, 𝜁𝑚𝑛)]1−𝜏′

     ,∀ 𝑛 ≥ 1        (5) 

Now we shall reduce the equation as follows. Hence we derive it as, 𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1) ≤  𝜂𝑠[𝑑𝑏(𝜁𝑚𝑛−1, 𝜁𝑚𝑛)] 
        ≤ 𝜂𝑠2[𝑑𝑏(𝜁𝑚𝑛−2, 𝜁𝑚𝑛−1)] 
                            ≤ 𝜂𝑠3[𝑑𝑏(𝜁𝑚𝑛−3, 𝜁𝑚𝑛−2)] 
   …………………………… 

   …………………………… 𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1) ≤ 𝜂𝑠𝑛[𝑑𝑏(𝜁𝑚𝑛−𝑛, 𝜁𝑚𝑛−(𝑛+1))] 𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1) ≤ 𝜂𝑠𝑛[𝑑𝑏(𝜁𝑚0 , 𝜁𝑚1)] 
From the assumption we derived as 𝑛 < 1 by taking 𝑛 → ∞ the inequality (4),  

We shall derive that  𝜑 = 0, 
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It follows that we can prove that {𝜁𝑚𝑛} is a Cauchy sequence by deriving with the 

standard tools. 

Starting with the triangle inequality we receive the following estimation, making use 

of the following standard results based on the inequality of complete b – metric space. 

Let 𝑞𝑏 ≥ 1 be the coefficient. Considering in the following equations we get, 𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+𝑟) ≤ 𝑞𝑏[(𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1) + 𝑑𝑏(𝜁𝑚𝑛+1, 𝜁𝑚𝑛+𝑟))] 
                           ≤ 𝑞𝑏 [(𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1) + 𝑞𝑏 [ 𝑑𝑏(𝜁𝑚𝑛+1, 𝜁𝑚𝑛+2)+𝑞𝑏[𝑑𝑏(𝜁𝑚𝑛+2, 𝜁𝑚𝑛+𝑟))]]] 

                            ……………………………………… 

                            ……………………………………… ≤ 𝑞𝑏𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1) + 𝑞2𝑏𝑑𝑏(𝜁𝑚𝑛+1, 𝜁𝑚𝑛+2) + 𝑞3𝑏𝑑𝑏(𝜁𝑚𝑛+2, 𝜁𝑚𝑛+3)+   .  . . . + 𝑞𝑟𝑏𝑑𝑏(𝜁𝑚𝑛+𝑟−1, 𝜁𝑚𝑛+𝑟) ≤ 𝑞𝑏𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+1) + 𝑞2𝑏𝑑𝑏(𝜁𝑚𝑛+1, 𝜁𝑚𝑛+2) + 𝑞3𝑏𝑑𝑏(𝜁𝑚𝑛+2, 𝜁𝑚𝑛+3)      +   .  . . . + 𝑞𝑟𝑏𝑑𝑏(𝜁𝑚𝑛+𝑟−1, 𝜁𝑚𝑛+𝑟) ≤ 𝑞𝑏𝜂𝑠𝑛𝑑𝑏(𝜁𝑚0 , 𝜁𝑚1) + 𝑞2𝜂𝑠𝑛+1𝑏𝑑𝑏(𝜁𝑚0 , 𝜁𝑚1) + 𝑞3𝜂𝑠𝑛+2𝑏𝑑𝑏(𝜁𝑚0 , 𝜁𝑚1)      +   .  . . . + 𝑞𝑟𝑏𝜂𝑠𝑛+𝑟−1𝑑𝑏(𝜁𝑚0 , 𝜁𝑚1) ≤ 𝑞𝑏𝜂𝑠𝑛𝑑𝑏(𝜁𝑚0 , 𝜁𝑚1){1 + 𝑞𝑏𝜂𝑠 + 𝑞𝑏2𝜂𝑠2 + ⋯ + 𝑞𝑏𝑟−1𝜂𝑠𝑟−1} ≤ 𝑞𝑏𝜂𝑠𝑛𝑑𝑏(𝜁𝑚0 , 𝜁𝑚1) {1 − 𝑞𝜂}−1
 

                                                                 (Since (1 − 𝑥)−1 = 1 + 𝑥 + 𝑥2 … … )) ≤ 𝑞𝑏𝜂𝑠𝑛𝑑𝑏(𝜁𝑚0 , 𝜁𝑚1) ( 11 − 𝑞𝑏𝜂𝑠) 𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚𝑛+𝑟) ≤ ( 𝑞𝑏𝜂𝑠𝑛1−𝑞𝑏𝜂𝑠) 𝑑𝑏(𝜁𝑚0 , 𝜁𝑚1)                               (7) 

So,{𝜁𝑚𝑛} is a Cauchy sequence in the complete b-metric space (𝜑𝑠, 𝑑𝑏) and so, there 

exists 𝜁𝑚 ∈ 𝜑𝑠 such that lim𝑛→∞ 𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚) = 0 

Supposing that 𝜁𝑚 ≠ 𝑇𝑏𝑚 𝜁𝑚 for each n ≥ 0, by letting  𝜁𝑚 = 𝜁𝑚𝑛 and 𝜒𝑚 in (1) 

Thus we get, 𝑑𝑏(𝜁𝑚𝑛+1 , 𝑇𝑏𝑚 𝜁𝑚𝑛) = 𝑑𝑏(𝑇𝑏𝑚 𝜁𝑚𝑛 , 𝑇𝑏𝑚𝜁𝑚 ) ≤ 𝜂𝑠[𝑑𝑏(𝜁𝑚𝑛 , 𝜁𝑚)]𝜎′ ∙ [𝑑𝑏(𝜁𝑚𝑛 , 𝑇𝑏𝑚𝜁𝑚𝑛)]𝜏′ ∙ [𝑑𝑏(𝜁𝑚, 𝑇𝑏𝑚𝜁𝑚)]𝜌′
                                             ∙ [(𝑑𝑏(𝜁𝑚, 𝑇𝑏𝑚𝜁𝑚))] + [(𝑑𝑏(𝜁𝑚, 𝑇𝑏𝑚𝜁𝑚𝑛))]−𝜏′−𝜎′−𝜌′

(8) 

Let 𝑛 → ∞, in the inequality (7) we conclude that (𝑑𝑏(𝜁𝑚, 𝑇𝑏𝑚𝜁𝑚)) = 0 which 

contradicts our assumption. 

Thus, 𝑇𝑏𝑚𝜁𝑚 = 𝜁𝑚 

Now let us prove its uniqueness. 

If  𝜁𝑚´  be any fixed point of 𝑇𝑏𝑚 such that and apply it in equation (8), 

We consider 𝑑𝑏(𝜁𝑚, 𝜁𝑚´ ) = 𝑑𝑏(𝑇𝑏𝑚𝜁𝑚, 𝑇𝑏𝑚𝜁𝑚´ ) 
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≤ 𝜂𝑠[𝑑𝑏(𝜁𝑚, 𝜁𝑚´ )]𝜎′ ∙ [𝑑𝑏(𝜁𝑚, 𝑇𝑏𝑚𝜁𝑚)]𝜏′ ∙ [𝑑𝑏(𝜁𝑚´ , 𝑇𝑏𝑚𝜁𝑚´ )]𝜌′  ∙ [(𝑑𝑏(𝜁𝑚´ , 𝑇𝑏𝑚𝜁𝑚´ ))] + [(𝑑𝑏(𝜁𝑚´ , 𝑇𝑏𝑚𝜁𝑚))]−𝜏′−𝜎′−𝜌′

 

As 𝑛 → ∞ in this inequality, 𝑑𝑏(𝜁𝑚´ , 𝑇𝑏𝑚𝜁𝑚) = 0, 

It’s a contradiction so we get, 𝑇𝑏𝑚𝜁𝑚 = 𝜁𝑚´  
Therefore,                                         𝜁𝑚´ = 𝜁𝑚 

Hence proved. 

4. We can now derive the analog of the main theorem in the setting of Complete 

Partial b-Metric Spaces.  

As we begin we shall have the lemma which is used in the following theorem. 

Lemma 4.1: 

Let 𝑝𝑏 be a complete partial b-metric on a non-empty set 𝛷𝑠, and 𝜑𝑝𝑏 be the 

corresponding standard metric space on the same set 𝛷𝑠, then, 

 A sequence {𝛹𝑝𝑛} is the fundamental in the framework of a partial b-metric (𝛷𝑠,𝑝𝑏), if and only if it is a fundamental sequence in the setting of the 

corresponding standard metric space (𝛷𝑠,𝜑𝑝𝑏) 

 A partial b-metric space(𝛷𝑠,𝑝𝑏) is complete if and only if the corresponding 

standard metric space (𝛷𝑠,𝜑𝑝𝑏) is complete. 

Moreover,                 lim𝑛→∞ 𝜑𝑝𝑏 ( 𝛹𝑝,  𝛹𝑝𝑛) = 0 ⇔ 𝑝𝑏( 𝛹𝑝,  𝛹𝑝) = lim𝑛→∞ 𝑝𝑏 ( 𝛹𝑝,  𝛹𝑝𝑛)                                                                                       = lim𝑛,𝑚→∞
𝑝𝑏 ( 𝛹𝑝𝑛 ,  𝛹𝑝𝑚) 

 If   𝛹𝑝𝑛 → 𝜏 as 𝑛 → ∞ in a partial b-metric space (𝛷𝑠,𝑝𝑏) with  

 𝑝𝑏(𝜏, 𝜏) = 0, then we have,                                   lim𝑛→∞ 𝑝𝑏 (𝛹𝑝𝑛 , 𝜌𝑝) = 𝑝𝑏(𝜏, 𝜌𝑝) for every 𝜌𝑝 ∈ 𝛷𝑠.’ 
So according to this Lemma, the sequence {𝛹𝑝𝑛} is the fundamental sequence in the 

standard metric (𝛷𝑠,𝜑𝑝𝑏). 
Because, (𝛷𝑠,𝑝𝑏) is complete, (𝛷𝑠,𝜑𝑝𝑏) is also complete. 

 

Theorem: 4.2 

 Let (𝛷𝑠,𝑝𝑏) be a complete partial b-metric space with coefficient 𝑠𝑏 ≥ 1. 

 Let,   𝑇𝑏𝑚: 𝛷𝑠 → 𝛷𝑠 be a given mapping. Suppose there exists  η ∈ [0,1) and 𝜏´, 𝜎´, 𝜌´ ∈ (0,1) with 𝜏´ + 𝜎´ + 𝜌´ < 1, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡, 𝑝𝑏(𝑇𝑏𝑚𝛹𝑝 , 𝑇𝑏𝑚 𝜗𝑝)                           ≤  𝜂 [(𝑝𝑏(𝛹𝑝, 𝜗𝑝))𝜎′ . (𝑝𝑏(𝛹𝑝, 𝑇𝑏𝑚𝜗𝑝))𝜏′ . (𝑝𝑏(𝜗𝑝, 𝑇𝑏𝑚𝜗𝑝))𝜌′] 

   ·(1 2⁄ [𝑝𝑏(𝛹𝑝, 𝑇𝑏𝑚𝜗𝑝) + 𝑝𝑏(𝜗𝑝, 𝑇𝑏𝑚𝛹𝑝)])1−𝜏′−𝜎′−𝜌′
                          (12) 
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For all 𝛹𝑝, 𝜗𝑝 ∈ 𝜙𝑠\𝐹𝑖𝑥( 𝑇𝑏𝑚). 

Proof: 

For any 𝛹𝑝0 ∈ (𝛷𝑠,𝑝𝑏), we form a sequence {𝛹𝑝𝑛} by 𝛹𝑝𝑛 =  𝑇𝑛𝑏𝑚(𝛹𝑝0) for each 

n∈ ℕ. 

If there exists 𝑛0 such that 𝛹𝑝𝑛0  =𝛹𝑝𝑛0+1 , then 𝛹𝑝𝑛0   is a fixed point of 𝑇𝑏𝑚 . 
So the proof gets completed. 

So, now we shall assume that, 𝛹𝑝𝑛 = 𝛹𝑝𝑛+1 for each n ≥ 0. 

Through submitting the values of  𝛹𝑝 = 𝛹𝑝𝑛 and 𝜗𝑝 = 𝛹𝑝𝑛−1 in (12), 

So we get as , 𝑝𝑏(𝛹𝑝𝑛+1 , 𝛹𝑝𝑛) = 𝑝𝑏(𝑇𝑏𝑚𝛹𝑝𝑛  , 𝑇𝑏𝑚  𝛹𝑝𝑛−1) ≤  𝜂 [𝑝𝑏(𝛹𝑝𝑛  , 𝛹𝑝𝑛−1  )]𝜎′ ∙ [𝑝𝑏(𝛹𝑝𝑛  , 𝑇𝑏𝑚𝛹𝑝𝑛  )]𝜏′ ∙  [𝑝𝑏(𝛹𝑝𝑛−1 , 𝑇𝑏𝑚𝛹𝑝𝑛−1)]𝜌′
            ∙ [1 2⁄ (𝑝𝑏(𝛹𝑝𝑛 , 𝑇𝑏𝑚𝛹𝑝𝑛−1) + 𝑝𝑏(𝛹𝑝𝑛−1, 𝑇𝑏𝑚𝛹𝑝𝑛))]1−𝜏′−𝜎′−𝜌′

 ≤  𝜂 [𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛−1)]𝜎′ ∙ [𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛+1)]𝜏′ ∙ [𝑝𝑏(𝛹𝑝𝑛−1, 𝛹𝑝𝑛)]𝜌′
 

  ∙ [1 2⁄ (𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛) + 𝑝𝑏(𝛹𝑝𝑛−1, 𝛹𝑝𝑛+1))]1−𝜏′−𝜎′−𝜌′

 

Since, 𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛) = 0, we have, ≤  𝜂 [𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛−1)]𝜎′ ∙ [𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛+1)]𝜏′ ∙ [𝑝𝑏(𝛹𝑝𝑛−1, 𝛹𝑝𝑛)]𝜌′
 

  ∙ [1 2⁄ (𝑝𝑏(𝛹𝑝𝑛−1, 𝛹𝑝𝑛+1))]1−𝜏′−𝜎′−𝜌′

 ≤  𝜂 [𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛−1)]𝜎′ ∙ [𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛+1)]𝜏′ ∙ [𝑝𝑏(𝛹𝑝𝑛−1, 𝛹𝑝𝑛)]𝜌′
 

 ∙ [1 2⁄ (𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛−1) + 𝑝𝑏(𝛹𝑝𝑛+1 , 𝛹𝑝𝑛))]1−𝜏′−𝜎′−𝜌′               (13)  

Supposing that, 

 [𝑝𝑏(𝛹𝑝𝑛−1, 𝛹𝑝𝑛)] ≤ [𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛+1)], 
So the inequality (13) becomes as, [𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛+1)] ≤ η 𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛+1) 

 This is contradiction since we have considered that η< 1. 

Hence we derive as the conclusion that,  [𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛+1))] ≤ [𝑝𝑏(𝛹𝑝𝑛−1, 𝛹𝑝𝑛)],    ∀ 𝑛 ≥ 1. 
Thus,   [𝑝𝑏(𝛹𝑝𝑛−1, 𝛹𝑝𝑛)] is a non – increasing sequence with positive terms. 

The set we have, [1 2⁄ (𝑝𝑏(𝛹𝑝𝑛−1, 𝛹𝑝𝑛) + 𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛+1))] ≤ 𝑝𝑏(𝛹𝑝𝑛−1, 𝛹𝑝𝑛), ∀ 𝑛 ≥ 1 

So, the inequality (12) can be changed as 
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𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛+1)  ≤  𝜂 [𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛−1)]𝜎′ ∙ [𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛+1)]𝜏′ ∙ [𝑝𝑏(𝛹𝑝𝑛−1, 𝛹𝑝𝑛)]𝜌′

∙ [𝑝𝑏(𝛹𝑝𝑛−1, 𝛹𝑝𝑛)] ∙     [𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛−1))]−𝜏′−𝜎′−𝜌′
 𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛+1)1−𝜏′ ≤ 𝜂 [𝑝𝑏(𝛹𝑝𝑛−1, 𝛹𝑝𝑛)]1−𝜏′

     ,∀ 𝑛 ≥ 1     (14) 

So , there exists a non negative constant 𝑚 such that,  lim𝑛→∞ 𝑝𝑏(𝛹𝑝𝑛−1, 𝛹𝑝𝑛) = 𝑚. Here 𝑚 ≥ 0. 
So, we get in the inequality (14) as, 𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛+1) ≤  𝜂𝛾[𝑝𝑏(𝛹𝑝𝑛−1, 𝛹𝑝𝑛)]                                                     ≤ 𝜂2𝛾[𝑝𝑏(𝛹𝑝𝑛−2, 𝛹𝑝𝑛−1)] 
                         ≤ 𝜂3𝛾[𝑝𝑏(𝛹𝑝𝑛−3, 𝛹𝑝𝑛−2)] 
   …………………………… 

   …………………………… 𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛+1) ≤ 𝜂𝑛𝛾[𝑝𝑏(𝛹𝑝𝑛−𝑛, 𝛹𝑝𝑛−(𝑛+1))] 𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛+1) ≤ 𝜂𝑛𝛾[𝑝𝑏(𝛹𝑝0 , 𝛹𝑝1)]                          (15) 

Since η, 𝛾 < 1we have  𝜂 ̃ = 𝜂𝛾 < 1. 
Thus letting 𝑛 → ∞ in (15), we derive that 𝑚 = 0 

It follows that, we can prove that {𝛹𝑝𝑛} is a fundamental Cauchy sequence by 

deriving with the standard tools. 

Starting with the triangle inequality of the partial b-metric spaces, we receive the 

following estimation, making use of the following standard results based on the 

inequality of complete partial b – metric space. 

Let 𝑞𝑏 ≥ 1 be the coefficient. Considering in the following equations we get, 𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛+𝑟) ≤ 𝑠𝑏[(𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛+1) + 𝑝(𝛹𝑝𝑛+1 , 𝛹𝑝𝑛+𝑟))] 
                            ≤𝑠𝑏 [(𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛+1) +𝑠𝑏 [𝑝𝑏(𝛹𝑝𝑛+1 , 𝛹𝑝𝑛+2) +                                                                      𝑠𝑏[𝑝𝑏(𝛹𝑝𝑛+2 , 𝛹𝑝𝑛+𝑟))]]] 
     …………………… 

     ……………………                     ≤ 𝑠𝑏𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛+1) + 𝑠𝑏2𝑝𝑏(𝛹𝑝𝑛+1 , 𝛹𝑝𝑛+2)      + 𝑠𝑏3𝑝𝑏(𝛹𝑝𝑛+2 , 𝛹𝑝𝑛+3) + ⋯+ 𝑠𝑏𝑟𝑝𝑏(𝛹𝑝𝑛+𝑟−1 , 𝛹𝑝𝑛+𝑟)                                ≤ 𝑠𝑏𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛+1) + 𝑠𝑏2𝑝𝑏(𝛹𝑝𝑛+1 , 𝛹𝑝𝑛+2)       + 𝑠𝑏3𝑝𝑏(𝛹𝑝𝑛+2 , 𝛹𝑝𝑛+3)      + ⋯ . +𝑠𝑏𝑟𝑝𝑏(𝛹𝑝𝑛+𝑟−1 , 𝛹𝑝𝑛+𝑟) 
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                        ≤ 𝑠𝑏𝜂 ̃𝑛𝑝𝑏(𝛹𝑝0 , 𝛹𝑝1) + 𝑠𝑏2𝜂 ̃𝑛+1𝑏𝑝𝑏(𝛹𝑝0 , 𝛹𝑝1)+ 𝑠𝑏3𝜂 ̃𝑛+2𝑏𝑝𝑏(𝛹𝑝0 , 𝛹𝑝1)      + ⋯ + 𝑠𝑏𝑟𝜂 ̃𝑛+𝑟−1𝑝𝑏(𝛹𝑝0 , 𝛹𝑝1)                         ≤ 𝑠𝑏𝜂 ̃𝑛𝑝𝑏(𝛹𝑝0 , 𝛹𝑝1){1 + 𝑠𝑏𝜂 ̃ + 𝑠𝑏2𝜂 ̃2 + ⋯ + 𝑠𝑏𝑟−1𝜂 ̃𝑟−1}                         ≤ 𝑠𝑏𝜂 ̃𝑛𝑝𝑏(𝛹𝑝0 , 𝛹𝑝1) {1 − 𝑠𝑏𝜂}−1
 

                                                                   (Since (1 − 𝑥)−1 = 1 + 𝑥 + 𝑥2 … …) ≤ 𝑠𝑏𝜂 ̃𝑛𝑝𝑏(𝛹𝑝0 , 𝛹𝑝1) ( 11 − 𝑠𝑏𝜂 ̃)               𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛+𝑟) ≤ ( 𝑠𝑏𝜂 ̃𝑛1−𝑠𝑏𝜂 ̃) 𝑝𝑏(𝛹𝑝0 , 𝛹𝑝1)                               (17) 

The sequence {𝛹𝑝𝑛} is the fundamental sequence in (𝛷𝑠,𝑝𝑏), as 𝑛 → ∞ 

So according to the Lemma, the sequence {𝛹𝑝𝑛} is the fundamental sequence in the 

standard metric (𝛷𝑠,𝜑𝑝𝑏). 
Because, (𝛷𝑠,𝑝𝑏) is complete, (𝛷𝑠,𝜑𝑝𝑏) is also complete. 

So there exists,  𝛹𝑝 ∈ 𝛷𝑠 such that, 𝑝𝑏( 𝛹𝑝,  𝛹𝑝) = lim𝑛→∞ 𝑝𝑏 ( 𝛹𝑝,  𝛹𝑝𝑛) = lim𝑛,𝑚→∞ 𝑝𝑏 ( 𝛹𝑝𝑛 ,  𝛹𝑝𝑚) = 0 (18) 

Thus we get, lim𝑛→∞ 𝜑𝑝𝑏 ( 𝛹𝑝,  𝛹𝑝𝑛) = 0       (19) 

Now we shall show that the limit  𝛹𝑝 of the iterative sequence {𝛹𝑝𝑛} is a fixed point 

of the mapping  𝑇𝑏𝑚 . 
Taking it as the assumption is that we get,  𝛹𝑝 ≠ 𝑇𝑏𝑚 𝛹𝑝         (20)  

So that we derive it as, 𝑝𝑏( 𝛹𝑝,  𝑇𝑏𝑚𝛹𝑝) > 0 

We know that,  𝛹𝑝𝑛 ≠ 𝑇𝑏𝑚 𝛹𝑝 for each 𝑛 ≥ 0, 𝑎𝑠 𝑤𝑒 𝑙𝑒𝑡   𝛹𝑝 = 𝛹𝑝𝑛 in (12) we get 

that, 𝑝𝑏( 𝛹𝑝+1,  𝑇𝑏𝑚𝛹𝑝) = 𝑝𝑏(𝑇𝑏𝑚𝛹𝑝𝑛 , 𝑇𝑏𝑚𝛹𝑝) 

             ≤ 𝜂𝑠[𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝)]𝜎′ ∙ [𝑝𝑏(𝛹𝑝𝑛 , 𝑇𝑏𝑚𝛹𝑝𝑛)]𝜏′ ∙ [𝑝𝑏(𝛹𝑝, 𝑇𝑏𝑚𝛹𝑝)]𝜌′
                                          ∙ [12 [𝑝𝑏(𝛹𝑝𝑛 , 𝑇𝑏𝑚𝛹𝑝) + 𝑝𝑏(𝛹𝑝, 𝑇𝑏𝑚𝛹𝑝𝑛)]]1−𝜏′−𝜎′−𝜌′

 

               

= 𝜂𝑠[𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛)]𝜎′ ∙ [𝑝𝑏(𝛹𝑝𝑛 , 𝛹𝑝𝑛+1)]𝜏′ ∙ [𝑝𝑏(𝛹𝑝, 𝑇𝑏𝑚𝛹𝑝)]𝜌′ ∙                                           [12 [𝑝𝑏(𝛹𝑝𝑛 , 𝑇𝑏𝑚𝛹𝑝) + 𝑝𝑏(𝛹𝑝, 𝑇𝑏𝑚𝛹𝑝𝑛)]]1−𝜏′−𝜎′−𝜌′

(21) 

As 𝑛 → ∞ in the inequality (21) we can find that , 𝑝𝑏(𝛹𝑝, 𝑇𝑏𝑚𝛹𝑝) = 0 

So, 𝛹𝑝 = 𝑇𝑏𝑚𝛹𝑝 
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Which contradicts our assumption, so, we find that, 𝑇𝑏𝑚𝛹𝑝 = 𝛹𝑝. 
Hence the theorem. 
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