Title

Outcome and effectiveness of ultrasonically activated irrigation on root canal disinfection and periapical healing. A systematic review.

Authors 1) Suhael Ahmed (Corresponding Author) Riyadh Elm University, Riyadh, Saudi Arabia Email ID- drsuhael@riyadh.edu.sa 2) Sultan Ismail Alshammari Majmaah University, Saudi Arabia 3) Mohammed Abdallah Almana Majmaah University, Saudi Arabia 4) Sultan Khalid Alsuayri Majmaah University, Saudi Arabia 5) Ohoud Hamoud Alshammari Ministry Of Health, Saudi Arabia 6) Shouq Mohammed Aljohani King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia. 7) Renad Mohammed Alasmari King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia. 8) Aljowhara Allaboon Riyadh Elm University, Riyadh, Saudi Arabia 9) Farhan Jassam AlShammary Ministry Of Health, Saudi Arabia

Abstract

Introduction:

Irrigation is an essential part of root canal treatment because it improves the debridement and disinfection of areas that tools are unable to thoroughly clean. Remote parts of the root canal system are frequently difficult to clean using irrigation that is mostly done with a syringe and a needle. As a result, various more complex techniques have been introduced. Ultrasonic irrigant activation is probably the most widely used adjunct method, and it has been compared with syringe irrigation in multiple studies. However, very few attempts have been made to summarize the available evidence.

Aim: The purpose of this study was to compare the effectiveness of ultrasonic irrigant activation during primary root canal treatment of mature permanent teeth to syringe irrigation in terms of cleansing and disinfecting root canals and healing of apical periodontitis.

Methods: An electronic search was conducted of the Cochrane Library, Embase, PubMed, Web of science and Scopus databases using both free-text key words and controlled vocabulary. Additional studies were sought through hand searching of endodontic journals and textbooks.

The retrieved studies were screened by 2 reviewers according to predefined criteria. The included studies were critically appraised, and the extracted data were arranged in tables.

Results: The manual and automated searches turned up 957 titles, out of which 8 articles were selected for the systematic review. This evaluation comprised of randomized trials and in vitro research. In comparison to syringe irrigation, ultrasonic activation did not speed up the healing of apical periodontitis in teeth having a single root canal. The in vitro microbiological research reported a range of contradictory findings. Ultrasonic activation was superior to syringe irrigation in the removal of pulp tissue fragments and hard tissue debris.

Conclusion: As a result of inadequate evidence that was provided, no firm clinical recommendations could be made although ultrasonic activation does provide an alternate debridement mode in curved root canals.

Key Words- cleaning, disinfection Apical periodontitis, irrigation, root canal, ultrasonic activation

INTRODUCTION

The use of ultrasonics to enhance debridement and disinfection of canals has a long history (Martin 1976). Irrigation is an essential part of root canal treatment because it enhances the debridement and disinfection of areas insufficiently cleaned by instruments (1,2). Irrigation mainly performed by a syringe and a needle is often unable to clean remote areas of the root canal system (3). Thus, several more elaborate methods have been developed.

Despite recent improvements in endodontics, cleaning the root canal remains a difficult task. Teeth with periapical lesions have a 50% lower likelihood of success than teeth without periapical lesions, even though endodontic therapy has a success rate between 80 and 95%. This is because periapical injuries, which are caused by bacterial infections in the root canal, are an inflammation in the apical region. (4).

Numerous studies have examined the efficacy of passive ultrasonic irrigation. While some research suggests that churning the irrigating fluid produces better outcomes than traditional irrigation, other research revealed no differences between the methods. (5-8) Given the significance of irrigation in the effectiveness of endodontic therapy, it is necessary to understand which technique guarantees greater root canal disinfection and a higher treatment success rate.

The most popular adjunct technique is undoubtedly ultrasonic irrigant activation, which has been contrasted with syringe irrigation in numerous trials. However, there haven't been many attempts to compile the existing data. A more recent systematic review concentrated primarily on the ultrasonic activation in in vitro antibacterial activity against Enterococcus faecalis in comparison to all other irrigation methods, and several of the included studies made use of questionable experimental designs.

The purpose of this study was to compare the effectiveness of ultrasonic irrigant activation during primary root canal treatment of mature permanent teeth to syringe irrigation in terms of cleansing and disinfecting root canals as well as curing apical periodontitis.

Materials and Methods

This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. PICO question is-Does ultrasonic irrigant activation (I) in comparison to syringe irrigation (C) lead to better healing of apical periodontitis (primary outcome), a stronger antimicrobial effect, or better removal of pulp tissue remnants or hard tissue debris (secondary outcomes) from the root canal system in adult patients with fully formed permanent teeth in need of primary endodontic treatment (P)

Inclusion and exclusion criteria

Inclusion criteria

Studies were included if they utilized a microbiological culture approach, compared the antibacterial impact of UAI with at least one other irrigation technique, and conducted the research on extracted permanent human teeth with fully developed apices (colony forming units). For this review, only English-language articles were included.

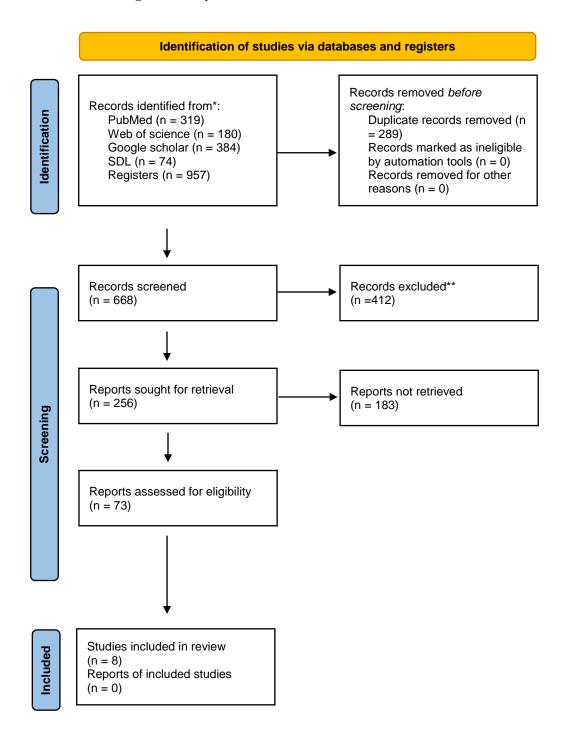
Exclusion criteria

Studies that were conducted in vivo, on animals, or in bovine teeth were disregarded. Studies utilizing techniques other than colony forming units (microbiological culture) were excluded. Additionally, case studies and review articles were not included.

Search strategies

The PRISMA standards were followed in conducting the search strategy for this systematic review. For all studies published up until the end of August 2022, a thorough literature search was conducted utilizing the electronic databases PubMed, Ebsco Host, Embase, Cochrane Library, Science Direct, and Scopus. Figure 1 displays the search method, including the key phrase combinations used and the number of articles found. In addition, the Journal of Endodontics, International Endodontic Journal, Journal of Dentistry, and Australian Endodontic Journal were manually searched up until August 2022 for any potentially pertinent articles. Additional research was done on the chosen publications' references to find pertinent articles.

Quality assessment of included article


The clinical appraisal checklist for experimental studies by the Joanna Briggs Institute was carefully examined and modified to include all pertinent contents relating to the methodology based on the research question and PICO structure to evaluate the methodological quality of each article. Eight criteria were created as a result. The articles were rated independently by two authors, and in the event of a disagreement, a third author assisted in reaching a decision. Each article's degree of evidence was scored using the following points: low (score 0 to 4), moderate (score 5 to 8), and high (score 9 or higher) (score 9 to 12). Cohen's kappa coefficient was used to determine the initial level of agreement between the two examiners.

RESULTS

A flowchart of the article searches, and selection process based on PRISMA 2020 guidelines is shown in Figure 1. All chosen publications are acceptable according to the JBI checklist. A total

of 957 related articles were retrieved from databases and eight articles were deemed suitable to be included in systematic review after quality assessment.

Fig 1-PRISMA 2020 flow diagram for new systematic reviews which included searches of databases and registers only

Discussion

There is widespread agreement that the removal of pulp tissue and dentin debris is more effective with passive ultrasonic irrigation than with traditional syringe and needle irrigation. This difference could be explained by the fact that ultrasound irrigation produces a higher speed and flow volume of the irrigant in the canal, which removes more debris, results in less apical packing, improves access of the chemical product to accessory canals, and even produces a flush effect that manual irrigation does not. The ultrasonic file can travel freely in the canal (10), preventing dentinal damage and the associated issues like perforations or form anomalies. Nevertheless, a PUI operation is required. The cumulative evidence regarding the removal of the smear layer shows that PUI using water as the irrigant does not completely remove the smear layer, while PUI using 3% NaOCl has been reported to completely remove the smear layer (11). These findings were supported by further research utilizing various NaOCl concentrations. The use of an efficient irrigant must therefore be supplemented with a method that facilitates access to the canal's challenging areas. Other research has produced less definite findings regarding the effectiveness of ultrasonic irrigation in eliminating the smear layer. Even though PUI was found to be significantly superior to needle irrigation, a study found that utilizing PUI with 1% NaOCl for 10 seconds did not entirely remove the smear layer (12). To improve smear layer removal when using sonically activated irrigation and PUI, EDTA has been modified (13,14). Numerous studies have demonstrated that the use of PUI, rather than needle and syringe irrigation, dramatically reduces the quantity of bacteria after manual and rotary instrumentation (15-17). These encouraging results may be the consequence of two primary things. First, high power ultrasound causes bacterial biofilms in the root canal to disaggregate due to the impact of the acoustic current. Bacterial biofilms are broken down, resulting in planktonic bacteria that are more vulnerable to the bactericidal effects of NaOCI. The transient weakening of the cell membrane caused by cavitation may also make the bacteria more permeable to NaOCl (18). However, other research indicates that while using ultrasonic activation reduces the number of surviving colonies, no method can guarantee total disinfection (19). Some writers think that the first stage of endodontic therapy, when the irrigant can be sprayed into the pulp chamber, is the ideal time to apply irrigants with PUI to increase flow activity. Using fine files, ultrasonography during this phase allows the irrigation media to flow toward the apical third. However, most authors claim that the final phase of irrigation, after shaping the root system, is the best time for ultrasound activation of the irrigant because this allows the needle to be introduced throughout the working length, increasing irrigation efficacy. As some authors have demonstrated, factors that favor irrigation include needle depth, the ratio of the root canal's radius to the irrigation needle, and the diameter to which the channel is prepared (20)

In a study conducted by Verma et al in 2020 on 69 patients, a significant difference was observed in the radiographic healing rates among three groups ($\chi 2=12.29$, p=0.05). On comparing the final outcome among the three groups (n=19), it was found that 2 (10.5%) cases of group I(Conventional Syringe irrigation), 7 (36.8%) cases of group II (Passive ultrasonic irrigation) and 8 (42.1%) cases of group III(Laser activated irrigation) were healed while under healing category

13 (68.4%) cases of group I, 12 (63.2%) cases of group II and 11 (57.9%) of group III were observed whereas 4 (21.1%) cases were categorised as diseased in group I only(21). A study conducted by Beus et al in 2012 on fifty patients were recruited with a posterior tooth requiring primary endodontic treatment of apical periodontitis, there was no statistical difference between irrigation methods. Each protocol resulted in a high frequency of negative cultures. This high frequency of negative cultures obtained in 1 visit is most likely related to an increased volume and depth of irrigation compared with previously reported protocols (22).

Table 1. Summary of selected articles

Autho	Title	Research	Research	Subject	Result	Conclusio
rs		Design/	Purpose			n
		Year				
Verm	А	Randimi	Aim of	69 patients were	A significant	LAI and
a et al	rando	zed	this trial	randomly divided into	difference was	PUI can
(21)	mized	trial/202	was to	three treatment groups	observed in the	increase
	contro	0	evaluate	(n=23) by allocation	radiographic healing	the
	lled		the	concealment method	rates among three	predictabil
	trial		combine	and irrigation was	groups (χ2=12.29,	ity of the
	of		d clinical	performed in	p=0.05).	endodonti
	endod		and	accordance with the		с
	ontic		radiogra	allocated group. Teeth		treatment
	treatm		phic	were evaluated		success in
	ent		success	clinically and		cases of
	using		rate of	radiographically with		chronic
	ultras		endodont	CBCT after 6 months		apical
	onic		ic	and 12 months of the		periodontit
	irrigat		treatment	treatment.		is
	ion		using			
	and		passive			
	laser		ultrasoni			
	activa		c			
	ted		irrigation			
	irrigat		(PUI)			
	ion to		and laser			
	evalua		activated			
	te		irrigation			
	healin		(LAI) as			
	g in		compare			
	chroni		d to			
	с		conventi			

	• 1		1			
	apical		onal			
	period		syringe			
	ontitis		irrigation			
			•			
Beus	Comp	Randimi	The	Fifty patients were	NAI and PUI rendered	There was
et al	arison	zed	purpose	recruited with a	canals 80% and 84%	no
(22)	of the	trial/201	of this	posterior tooth	bacteria free,	statistical
()	Effect	2	prospecti	requiring primary	respectively, at the	difference
	of	-	ve,	endodontic treatment	end of the first visit.	between
	Two		randomiz	of apical periodontitis.	After CaOH2	irrigation
	Endod		ed	. Teeth were randomly	medication the total	methods.
	ontic		clinical	treated with the NAI	sample (NAI + PUI)	Each
	Irrigat		study	or PUI protocols in	had increased to 87%	protocol
	ion		was to	the first visit after	bacteria free, and the	resulted in
	Protoc				second-visit	
			compare the	complete		a high
	ols on			instrumentation.	instrumentation	frequency
	the		results of	Bacterial cultures	resulted in a total of	of
	Elimi		a	were obtained at 4	91% bacteria free.	negative
	nation		nonactiv	periods during	These differences	cultures.
	of		ated	treatment from the	were not significant (P	This high
	Bacter		single-	canals: (1) before	> .05).	frequency
	ia		irrigation	instrumentation, (2)		of
	from		protocol	after irrigation		negative
	Root		(NAI)	protocol, (3) after		cultures
	Canal		that used	CaOH2 medication,		obtained
	Syste		only 1%	and (4) before		in 1 visit
	m: A		NaOCl	obturation. Statistical		is most
	Prosp		with a	analysis was		likely
	ective,		passive	performed on data by		related to
	Rando		ultrasoni	using the Fisher exact		an
	mized		c multi-	test and multivariate		increased
	Clinic		irrigation	analysis.		volume
	al		protocol			and depth
	Trial		(PUI)			of
			that used			irrigation
			1%			compared

			NaOCl,			with
			17%			
						previously
			ethylene diaminet			reported
						protocols.
			etraaceti			
			c acid,			
			and 2% chlorhexi			
			dine in			
			renderin			
			g canals bacteria			
			free. In			
			addition, the effect			
			of a			
			second-			
			visit			
			instrume			
			ntation			
			after			
			intra-			
			appointm			
			ent			
			calcium			
			hydroxid			
			e			
			(CaOH2)			
			was also			
			evaluate			
			d in			
			bacterial			
			eliminati			
			on			
Midd	Effect	Randimi	То	Seventy mandibular	No significant	А
ha et	of	zed	evaluate	molars with non-vital	difference was	significant
al(23)	Conti	trial/201	via a	pulps and apical	observed in analgesic	difference
		1	· · ·		consumption between	was
1	nuous	6	randomiz	periodonius were	consumption between	was
	nuous Ultras	6	randomiz ed	periodontitis were treated endodontically	the groups $(P > .05)$.	observed

	T		. • 1.4	•• ,• ,••	1 1	
	Irrigat		trial the	irrigation techniques.	revealed a significant	continuous
	ion on		effect of	The patients were	association of mean	ultrasonic
	Posto		continuo	randomly allocated to	post-operative pain at	irrigation
	perati		us	one of two groups,	24 hours with the	and
	ve		ultrasoni	continuous ultrasonic	irrigant protocol (P =	syringe
	Pain		c	irrigation (CUI)	0.017) and pre-	irrigation
	in		irrigation	(n=35) and syringe	operative pain (P =	on the first
	Mandi		on	irrigation (SI) (n=35).	0.000).	postoperat
	bular		postoper			ive day
	Molar		ative			following
	s with		pain in			chemo-
	Non-		mandibul			mechanica
	vital		ar molars			1
	pulps:		with			preparatio
	A		non-vital			n.
	Rando		pulps.			However,
	mized		1 1			the benefit
	Clinic					observed
	al					was not
	Trial					clinically
						relevant.
Haupt	Effect	Randomi	This	Ninety mandibular	Activation of the	No
et al	ivenes	zed	study	molars with a root	irrigant significantly	activation
(24)	s of	trial/201	evaluate	canal curvature	improved smear layer	technique
(21)	differ	9	d the	between 20 and 40	removal ($P < 0.05$).	was able
	ent	,	effective	degrees were assigned	Regarding debris, only	to
	activa		ness of	to 4 groups $(n = 20)$	activation with EA	eliminate
	ted		different	to + groups (ii – 20)	and ED was	debris and
	irrigat		activated		significantly more	smear
	ion		irrigation		effective than SI (P <	layer
	techni		techniqu		0.05).	completel
			es on		0.05).	y from
	ques					curved
	on debris		removal of debris			
						root canals
	and		and			
	smear		smear			
	layer		layer			
	remov		from			
	al		curved			
1	from		root			

	curve		canals]
	d root		Canals			
	canals					
	: a					
	. a SEM					
	evalua					
17	tion	T	T		TT1. 11	T T 1
Kama	The	In	To test	The root canals of 75	Ultrasonically	Ultrasonic
ci et	effect	vitro/201	the	extracted human	activated irrigation	ally
al (25)	of	8	efficacy	canine teeth were	removed significantly	activated
	ultras		of debris	enlarged and bisected	more dentinal debris	irrigation
	onical		removal	longitudinally.	than conventional	was more
	ly		of 5 in	Standardized grooves	irrigation ($p = 0.016$),	effective
	activa		vitro	were prepared	but there were no	than
	ted		irrigation		significant differences	conventio
	irrigat		protocols		between the other	nal
	ion		•		groups.	irrigation
	and		conventi			in the
	laser		onal			removal of
	based		irrigation			apically
	root		,			placed
	canal		irrigation			dentine
	irrigat		activated			debris.
	ion		by			
	metho		ultrasoun			
	ds on		d,			
	debris		Er:YAG			
	remov		laser			
	al		with			
			photon-			
			induced			
			photoaco			
			ustic			
			streamin			
			g (PIPS)			
			tip, and 2			
			diode			
			laser			
			techniqu			
			es.			
				l	l	

Filho	Inter	In	s The	Artificial single-	There was no	PUI with
et	mitten	ni vitro/201	aim of	rooted teeth were		intermitten
		vitro/201 5	this	used. Four lateral	difference among	
al(26)	t or contin	5		canals were made 2	PUI1, PUI2, and CMI1 regarding the	t or continuous
			study		0 0	
	uous		was to	and 7 mm short from	contrast solution	flushing
	ultras		evaluate	the apex	removal from RCS (p	and CMI
	onical		the		> 0.05)	with the
	ly		efficacy			needle
	activa		of two			placed 1
	ted		passive			mm from
	irrigat		ultrasoni			the
	ion:		c			working
	micro		irrigation			length
	-		(PUI)			were
	comp		methods			efficient in
	uted		and			cleaning
	tomog		conventi			the main
	raphic		onal			and lateral
	evalua		manual			root
	tion of		irrigation			canals.
	root		(CMI) in			
	canal		root			
	syste		canal			
	m		system			
	cleani		(RCS)			
	ng		cleaning.			
Rodig	Micro	In	То	Forty mesial roots of	A significant	None of
et	-CT	vitro/201	evaluate	mandibular molars	reduction of AHTD	the final
al(27)	evalua	9	the	with two independent	was achieved after	irrigation
	tion of		efficacy	canals joint apically	final irrigation in all	protocols
	sonica		of	by an isthmus (groups (P < 0.05),	completel
	lly		sonically		ranging from 44.1%-	y removed
	and		and		66.8%. The vol% of	AHTD
	ultras		ultrasoni		debris after irrigation	from
	onical		cally		was $3.7 \pm 1.9\%$ for	mesial
	ly		activated		EA, 3.3 ± 2.3 % for	root canals
	activa		irrigation		ED, 2.1 ± 1.6 % for	systems.
	ted		on		UAI, and 4.4 \pm 2.3 %	Sonically
	irrigat		removal		for MI, with no	and
	ion on		of		significant difference	ultrasonica

	.1	[-		1	11
	the		accumul		between groups (P >	lly
	remov		ated		0.05).	activated
	al of		hard-			irrigation
	hard-		tissue			performed
	tissue		debris			no better
	debris		(AHTD)			compared
	from		in mesial			to manual
	isthm		root			irrigation.
	us-		canal			
	contai		systems			
	ning		of			
	mesial		mandibul			
	root		ar molars			
	canal		using			
	syste		micro-			
	ms of		compute			
	mandi		d			
	bular		tomogra			
	molar		phic			
	S		(micro-			
			CT)			
			analysis			
Hoed	Reduc	In	То	Two hundred and	Sonic activation	In this
ke et	tion of	vitro/202	evaluate	forty extracted human	resulted in	laboratory
al (28)	dual-	1	the	single-rooted	significantly higher	study on
	specie		antibacte	maxillary anterior	LRFs than ultrasonic	extracted
	S		rial	teeth were divided	activation	maxillary
	biofil		effect of	into two main groups		anterior
	m		sonic-			teeth
	after		and			highfreque
	sonic-		ultrasoni			ncy sonic
	or		c-			activation
	ultras		activated			resulted in
	onicac		irrigation			a greater
	tivate		on			bacterialre
	d		bacterial			duction
	irrigat		reduction			compared
	ion		of a			to
	protoc		dual-			ultrasonic
1	ols: A	1	species			activation

labora	biofilm	in groups
tory	in root	receiving
study	canals	solely
	compare	irrigation/
	d to	activation
	nonactiv	protocols
	ated	
	irrigation	
	in a	
	laborator	
	y study	

Conclusion

After thoroughly preparing the root canal system, intermittent passive ultrasonic irrigation should be used as the final step of root canal preparation to augment the initial phase of traditional syringe irrigation. Combining traditional irrigation with ultrasonic irrigation streamlines the process and enhances the removal of germs and the smear layer throughout the canal system, contributing to improved endodontic treatment success rates.

Funding Acknowledgement

No financial assistance was received from any quarters for the study

Author contribution

- 1) Dr Suhael Ahmed conceptualized the study
- Sultan Khalid Alsuayri, Ohoud Hamoud Alshammari, Mohammed Abdallah Almana, Shouq Mohammed Aljohani and Sultan Ismail Alshammari gathered the data from databases.
- 3) Renad Mohammed Alasmari, Suhael Ahmed and wrote the manuscript.
- 4) Farhan Jassam AlShammary and Aljowhara Allaboon prepared the summary of the selected articles.

Conflict Of Interest

'Conflict of interest declared none'

- Renad Mohammed Alasmari King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
- 6) Aljowhara AllaboonRiyadh Elm University, Riyadh, Saudi Arabia
- 7) Farhan Jassam AlShammary Ministry Of Health, Saudi Arabia

REFERENCES

- 1) Iqbal A. Antimicrobial irrigants in the endodontic therapy. International journal of health sciences. 2012 Jul 1;6(2).
- Kandaswamy D, Venkateshbabu N. Root canal irrigants. Journal of conservative dentistry: JCD. 2010 Oct;13(4):256.
- Konstantinidi E, Psimma Z, Chávez de Paz LE, Boutsioukis C. Apical negative pressure irrigation versus syringe irrigation: a systematic review of cleaning and disinfection of the root canal system. International endodontic journal. 2017 Nov;50(11):1034-54
- Ng YL, Mann V, Gulabivala K. A prospective study of the factors affecting outcomes of nonsurgical root canal treatment: part 1: periapical health. Int Endod J. 2011; 44:583–609
- 5) Burleson A, Nusstein J, Reader A, et al. The in vivo evaluation of hand/rotary/ultrasound instrumentation in necrotic, human mandibular molars. J Endod. 2007; 33:782.
- Munoz HR, Camacho-Cuadra K. In vivo efficacy of three different endodontic irrigation systems for irrigant elivery to working length of mesial canals of mandibular molars. J Endod. 2012; 38:445–448.
- Beus C, Safavi K, Stratton J, et al. Comparison of the effect of two endodontic irrigation protocols on the elimination of bacteria from root canal system: a prospective, randomized clinical trial. J Endod. 2012; 38:1479–1483.
- 8) Plotino G, Cortese T, Grande NM, et al. New technologies to improve root canal disinfection. Braz Dent J. 2016; 27:3–8.
- 9) van der Sluis LW, Wu MK, Wesselink PR. A comparison between a smooth wire and a K-file in removing artificially placed dentine debris from root canals in resin blocks during ultrasonic irrigation. Int Endod J. 2005; 38:593-6
- Van der Sluis LW, Versluis M, Wu MK, Wesselink PR. Passive ultrasonic irrigation of the root canal: a review of the literature. International endodontic journal. 2007 Jun;40(6):415-26.
- Plotino G, Colangeli M, Özyürek TA, DeDeus G, Panzetta C, Castagnola R, Grande NM, Marigo L. Evaluation of smear layer and debris removal by stepwise intraoperative activation (SIA) of sodium hypochlorite. Clinical Oral Investigations. 2021 Jan;25(1):237-45

- 12) Mozo S, Llena C, Chieffi N, Forner L, Ferrari M. Effectiveness of passive ultrasonic irrigation in improving elimination of smear layer and opening dentinal tubules. Journal of clinical and experimental dentistry. 2014 Feb;6(1): e47.
- 13) lank-Gonçalves LM, Nabeshima CK, Martins GH, de Lima Machado ME. Qualitative analysis of the removal of the smear layer in the apical third of curved roots: conventional irrigation versus activation systems. Journal of endodontics. 2011 Sep 1;37(9):1268-71.
- 14) Caron G, Nham K, Bronnec F, Machtou P. Effectiveness of different final irrigant activation protocols on smear layer removal in curved canals. Journal of endodontics. 2010 Aug 1;36(8):1361-6.
- 15) Mozo S, Llena C, Forner L. Review of ultrasonic irrigation in endodontics: increasing action of irrigating solutions. Medicina oral, patologia oral y cirugia bucal. 2012 May;17(3):e512.
- 16) Alves FR, Almeida BM, Neves MA, Moreno JO, Rôças IN, Siqueira Jr JF. Disinfecting oval-shaped root canals: effectiveness of different supplementary approaches. Journal of endodontics. 2011 Apr 1;37(4):496-501.
- 17) Capar ID, Ari Aydinbelge H. Effectiveness of various irrigation activation protocols and the self-adjusting file system on smear layer and debris removal. Scanning: The Journal of Scanning Microscopies. 2014 Nov;36(6):640-7.
- 18) Carver K, Nusstein J, Reader A, Beck M. In vivo antibacterial efficacy of ultrasound after hand and rotary instrumentation in human mandibular molars. Journal of endodontics. 2007 Sep 1;33(9):1038-43.
- 19) Haapasalo M, Endal U, Zandi H, Coil JM. Eradication of endodontic infection by instrumentation and irrigation solutions. Endodontic topics. 2005 Mar;10(1):77-102.
- 20) Conard M. A prospective study of fluid pressures of irrigation during root canal therapy (Doctoral dissertation, The Ohio State University).
- 21) Verma A, Yadav RK, Tikku AP, Chandra A, Verma P, Bharti R, Shakya VK. A randomized controlled trial of endodontic treatment using ultrasonic irrigation and laser

activated irrigation to evaluate healing in chronic apical periodontitis. Journal of Clinical and Experimental Dentistry. 2020 Sep;12(9): e821.

- 22) Beus C, Safavi K, Stratton J, Kaufman B. Comparison of the effect of two endodontic irrigation protocols on the elimination of bacteria from root canal system: a prospective, randomized clinical trial. Journal of Endodontics. 2012 Nov 1;38(11):1479-83.
- 23) Middha M, Sangwan P, Tewari S, Duhan J. Effect of continuous ultrasonic irrigation on postoperative pain in mandibular molars with nonvital pulps: a randomized clinical trial. International Endodontic Journal. 2017 Jun;50(6):522-30.
- 24) Haupt F, Meinel M, Gunawardana A, Hülsmann M. Effectiveness of different activated irrigation techniques on debris and smear layer removal from curved root canals: a SEM evaluation. Australian Endodontic Journal. 2020 Apr;46(1):40-6.
- 25) Kamaci A, Aydin B, Erdilek N. The effect of ultrasonically activated irrigation and laser based root canal irrigation methods on debris removal. The International Journal of Artificial Organs. 2018 Feb;41(2):71-5.
- 26) Tanomaru-FIlho M, Torres FF, Chávez-Andrade GM, Miano LM, Guerreiro-Tanomaru JM. Intermittent or continuous ultrasonically activated irrigation: micro-computed tomographic evaluation of root canal system cleaning. Clinical oral investigations. 2016 Sep;20(7):1541-6.
- 27) Rödig T, Koberg C, Baxter S, Konietschke F, Wiegand A, Rizk M. Micro-CT evaluation of sonically and ultrasonically activated irrigation on the removal of hard-tissue debris from isthmus-containing mesial root canal systems of mandibular molars. International endodontic journal. 2019 Aug;52(8):1173-81.
- 28) Hoedke D, Kaulika N, Dommisch H, Schlafer S, Shemesh H, Bitter K. Reduction of dual-species biofilm after sonic-or ultrasonic-activated irrigation protocols: A laboratory study. International Endodontic Journal. 2021 Dec;54(12):2219-28.