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ABSTRACT:  

An earlier detection and diagnosis of lung cancer requires a major task known as lung 

nodule candidate classification. To detect the lung nodule candidate, a Multi-Resolution 3-

Dimensional Convolutional Neural Network and Knowledge Transfer (MR3DCNN-KT) 

model has been designed that can extract the contextual information between multiple 

samples of lung nodule image for increasing the detection accuracy. But, this model was not 

able to classify few types of nodules that may cause the false detection. Also, the training 

data preparation was high difficult due to the manual labeling that consumes more time 

and the label mistakes were introduced while using large scale datasets since 3D-CNN 

requires more number of samples. Hence this article proposes an Iteratively Optimized 

MR3DCNN-KT (IO-MR3DCNN-KT) model that establishes automated weak label 

initialization to classify the large scale lung nodule image datasets. This model is trained on 

dynamically updated training datasets in an iterative manner. A Fast and Automatic Weak 

Labeling(FAWL) scheme is applied to generate the initial training dataset. Nonetheless, the 

computational complexity of 3D-CNN structure is extremely high since it requires the 

significant number of computational resources. As a result, an IO-MR3D Depthwise 

Separable CNN and KT (IO-MR3D-DSCNN-KT) model is proposed that introduces the 

bottleneck-based 3D-DSCNN structure to reduce the computational complexity. This 

model can extract both spatial and temporal features using basic depthwise convolution 

(𝐜𝐨𝐧𝐯)and pointwise 𝐜𝐨𝐧𝐯, accordingly. Based on this model, the number of parameters 

used in the 3D-CNN structure is significantly reduced to automatically classify the lung 

nodule candidates. Finally, the experimental outcomes show that the IO-MR3D-DSCNN-

KT model promises increased accuracy and robustness compared to the IO-MR3DCNN-

KT and MR3DCNN-KT models. 

 

Keywords— Bottleneck-based CNN, depthwise convolution, lung nodule candidate 

detection, MR3DCNN-KT, pointwise convolution, weak label initialization. 

 

I. INTRODUCTION 

Lung carcinoma is actually major causes of death and is stated to have poor levels of post-

diagnosis survival in developing and undeveloped nations. Nevertheless, lung cancer may have a 

greater possibility of being recovered successfully if it is diagnosed immediately instead of later. 

The prognosis of this carcinoma is on the basis of pulmonary or lung nodule classification.An 

essential means of successful medical treatment and avoidance of lung cancer is early lung 

nodule classification. The key recommendation for the classification of lung nodules will also be 

the Computed Tomography (CT) scans [1]. In fact, spatial analysis of CT images is a long-term 
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method for radiological experts, since hundreds of samples are usually present on a specific scan 

and fewer than 100 voxels are available on a given nodule. 

Modern Computer-Aided Detection (CAD) technologies have also beeninnovated to identify tiny 

nodules of the lung. This can be separated into CADe (Detection system) and CADs (Diagnostic 

system) [2-3]. CADe's primary objective is to identify Region-Of-Interests (ROIs) in the image, 

which may reveal different changes while the CADs's objective is to diagnose observed changes 

by category, volume, level and progress of epidemics. Two methods include the treatment of 

pulmonary nodules via CADs: raw nodule classification and nodule candidate detection [4].The 

detection is important to the specific choice of lung nodules. The detection of a nodule candidate 

does also pose many difficulties such as radiological fluctuation and may lead some nodules to 

be invisible, while other non-nodules are termed as lung nodules that vary in scales and structure. 

To avoid these limitations, an MRCNN-KT model was suggested in which standard 2D-CNN 

algorithm was enhanced as the new MR model via transferring its knowledge [5]. In this model, 

the knowledge was transferred from the source training processes and thus each side-output 

branch were taken for analyzing the features of different scales and resolutions from different 

depth layers in the CNN that classifies the lung nodule candidates. Moreover, objective and loss 

functions were developedas image-wise instead of pixel-wise representations. Further, samples 

creation and data augmentationwere achieved for both training and testing the adapted classifier 

for identifying pulmonary nodule candidates. Though the absolute lung nodule was often 

scattered on many samples, this 2D-CNN framework was restricted to extract the context 

features between multiple samples. 

So, an MR3DCNN-KT model was introduced [6] to extract the context features between many 

samples. In this model, 3D𝑐𝑜𝑛𝑣 were utilized for extracting the spatial and temporal features so 

that the context features encoded in the many neighboring samples were discovered. Based on 

this model, many channels of data were created from the input frames and the data from all the 

channels was combined for defining the final feature vector. Moreover, the outputs of high-level 

features were regularized and variety of outputs from CNN models was fused for increasing the 

detection accuracy. On the contrary, few types of nodules were not completely defined or 

classified which may lead to the false detection of lung nodule candidates.Although 3D-CNN for 

lung nodule candidate classification has high accuracy with an acceptable error for 

incorrectlylabeled training networks, the training data preparation has high complexity since 

manual labeling was time-consuming and may introduce label errors in large scale datasets.Also, 

3D-CNN needs more amount of samples than the 2D-CNN structure.  

Therefore in this paper, an Iteratively Optimized MR3DCNN-KT (IO-MR3DCNN-KT) model is 

proposed that introduces automated weak label initialization for classifying the largescale 

datasets. This proposed IO-MR3DCNN-KT model is iteratively trained on dynamically updated 

training datasets. Particularly, the preliminary training dataset is created based on the FAWL 

scheme that utilizes the highest rate of spatial overlap method. On the other hand, the 3D-CNN 

algorithm has high computational complexity due to its significant amount of computational 

resources.Hence, an IO-MR3D Depthwise Separable CNN and KT (IO-MR3D-DSCNN-KT) 

model is proposed for reducing the computational complexity. In this model, a bottleneck-based 

3D-DSCNN structure is introduced wherein the CT scan (lung nodule) image slices is split into 

spatial and temporal information. For learning spatial information, a fundamental 

depthwise𝑐𝑜𝑛𝑣notion is applied to each lung image whereas the 3D pointwise 𝑐𝑜𝑛𝑣is applied for 

learning the temporal information i.e, the linear combination among sequential lung nodule 

image slices. This 𝑐𝑜𝑛𝑣is modified for reducing the parameter sizes of the 3D-CNN and 

efficiently achieving the lung nodule candidate detection. Thus, this model can reduce the 

computational complexity of 3D-CNN structure and learn the large scale lung nodule image 

datasets with labbeling weak labels automatically. 

II. Literature Survey 

A multi-kernel based method [7] was proposed for selecting the features and learning the 

imbalanced data of pulmonary nodule. In this method, a multi-kernel feature choice was carried 
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out to learn the imbalanced data on the basis of pairwise similarities from the feature level and a 

multi-kernel over-sampling. However, it has high computational complexity. 

A newlung nodule identification scheme [8] was proposed by means of Deep CNN (DCNN). 

Initially, a deconvolutionalframework was presented to Faster Region-based CNN (Faster R-

CNN) for detecting lung nodule candidates on axial slices. After that, a 3D-DCNN was proposed 

with the aid of dropout scheme for reducing the false positive in candidate detection. However, 

the data between the small patches was not considered. 

A novel approach was proposed using 3D-CNN [9] to minimize the False Positive (FP) in 

identifying the lung nodule automatically. In this approach, more affluent spatial features were 

encoded and more representative features were extracted by their hierarchical structure trained 

with 3D samples. Also, an effective method was applied to encode the multilevel context 

information. Then, the finalized outcomes were acquired via merging the likelihood outcomes of 

CNN. But, the variances between huge variants of lung nodules and the restricted training dataset 

were not resolved. 

A novel multi-view multi-scale CNN [10] was proposed for classifying the types of lung nodules 

from CT images. Initially, the spherical surface centred at nodules was approximated by 

icosahedra and the normalized sampling was captured for CT scores on every spherical view at 

the highest radius. Then, intensity evaluation was performed by means of the sampled values for 

measuring each nodule’s radius. After that, the re-sampling was built followed by the high-

frequency data analysis for choosing which views were richer in information. At last, the nodule 

at ranked scales and views were constructed for pre-training the view independent CNNs and 

training the multi-view CNNs with the max-pooling. However, it cannot detect the tiny nodules 

and juxta-pleural nodules effectively. 

A new Multi-scale Gradual Integration CNN (MGI-CNN) algorithm [11] was suggested to learn 

the feature representations of multi-scale inputs. In this algorithm, three major schemes were 

applied such as exploiting multi-scale inputs including various levels of context features, 

employing abstract information feature in various inputs scales with GI and training multi-stream 

feature fusion. Nonetheless, this algorithm has high FP rate. 

A fusion algorithm [12] was introduced by fusing handcrafting features and the features trained 

at the 3D-CNN’s output layers. Originally, various handcrafted features were extracted along 

with the intensity, geometric and texture features via the gray-level co-occurrence matrix. 

Afterwards, 3D-CNNs were trained for extracting the CNN features trained at the output layer. 

For every 3D-CNN, the CNN features integrated with the handcrafted features were given as the 

input to the SVM with the sequential forward feature choice algorithm to elect the best feature 

subset and built the classifiers. But, it has less robustness. 

III. Proposed Methodology 

Initially, an IO-MR3DCNN-KT model is described using automated weak label initialization 

scheme. Then, an IO-MR3DSCNN-KT model is explained.The block diagram of this proposed 

pulmonary nodule candidate identification models is 

portrayed in Figure 1. 

 
Figure 1. Block Diagram for Proposed Lung Nodule Detection Model 
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3.1 An Iterative Optimization Of MR3DCNN-KT With Automated Weak Label 

Initialization For Lung Nodule Candidate Detection 

Initially, the lung images are acquired from the Kaggle’s Data Science Bowl 2017 (KDSB17) 

dataset. This dataset provides CT scan images of patients including their cancer status. But, it 

does not offer the positions or sizes of lung nodules. It comprises 2101 axial scans of patient 

chest cavities. Of the 2101, 1261 are belonging to the training set and 840 are belonging to the 

testing set. Each CT scan is labeled as “with cancer” if the related patient is diagnosed with 

cancer within 1 year of the scan; or else, labeled as “without cancer”. 

Pre-processing 

Every scan is comprised of manifold 2D axial scans taken in sequence with pixel values in the 

range (−1024,3071) respective to Hounsfield radiodensity units. The amount of slices, their 

thickness and scales are varied between each scan. Also, noise removal, spatial smoothing, 

temporal pre-whitening and linear registration to the lung template space are performed by the 

FSL FLIRT and FEAT commands.Once pre-processing is completed, the dictionary learning and 

sparse coding methods are used for functional lung networks restoration for all patients. The 

dictionary learning input is a matrix 𝑋 ∈ ℜ𝑡×𝑛 with 𝑡 rows and 𝑛 columns having normalized 

image pixels from 𝑛 lung voxels of a patient. 

The outcome has a learned dictionary 𝐷 and a sparse coefficient matrix 𝑎 ∈ ℜ𝑚×𝑛 with respect 

to 𝑋 = 𝐷 × 𝑎 + 𝜀 where 𝜀 denotes the error and 𝑚 denotes the fixed dictionary size. After that, a 

3D spatial map of functional lung network is mapped with every row of the output coefficient 

matrix 𝑎. 

IO-MR3DCNN-KT 

This novel IO-MR3DCNN-KT is iteratively trained on dynamically updated training datasets. In 

particular, the preliminary training dataset is created by FAWL scheme that uses the maximal 

spatial overlap rate scheme for increasing the accuracy on detection with adequate training 

initialization. The classification labels are generated from KDSB17 dataset via clustering method 

according to the spatial overlap rate. Based on the classification labels, the KDSB17 dataset is 

used for detecting the lung nodule candidates.  

According to the classification labels from KDSB17 dataset and the separate functional networks 

resulting from KDSB17 dataset, the preliminary network labels are instinctively and 

approximately allocated to every network by computing the spatial overlap rate similarity matrix. 

The spatial overlap rate is computed as: 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑟𝑎𝑡𝑒 = ∑
𝑚𝑖𝑛(𝑉𝑘,𝑊𝑘)

𝑉𝑘+𝑊𝑘
2⁄

|𝑉|
𝑘=1          (1) 

In Eq. (1), 𝑉𝑘 and 𝑊𝑘 are the activation scores of voxel 𝑘 in network volume maps 𝑉and 𝑊, 

accordingly. The empirical thresholding process is applied on the similarity matrix for ensuring 

the accurateness of the preliminary label assignment. For every separate network map, the label 

is allocated as classification labels whose spatial overlap rate is the highest amid each 

classification label. If not any similarity is higher than 0.2, then the label 0 is allocated to the 

respective network map and this label is not used for training.The IO-MR3DCNN-KT training 

can iterate over 𝑙 input 3D network maps for the highest 𝐼 iterations, initiating with the 

preliminary weak labels according to the spatial overlap rate. This spatial overlap rate-based 

classification achieves higher accuracy on detection while the CNN is able to correct the label 

for detection with increased accurateness.  

This label alteration ability is adopted in this IO-MR3DCNN-KT model for increasing the 

previously allocated training labels in every iteration and so applying the alterations between 

labels after and before training. Once the iterative optimization is completed, a trade-off is 

ensured by IO-MR3DCNN-KT model while no significant changes happens; thus providing the 

optimized and efficiently trained MR3DCNN-KT for identifying the functional lung nodules.  

Algorithm: IO-MR3DCNN-KT Training Process 
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Input: KDSB17 dataset 

1. Compute pairwise overlap rate between separate functional networks and functional labels → 𝑙 ×
𝑛 similarity matrix 𝑆0; 

2. Set threshold overlap rate value in 𝑆 less than 0.2 to be 0; 

 𝒇𝒐𝒓(𝑒𝑎𝑐ℎ 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑟𝑜𝑤 𝑆𝑖
0 𝑖𝑛 𝑆0) 

  𝒊𝒇(𝑆𝑖
0 = 0) 

   𝑙𝑎𝑏𝑒𝑙𝑖 = 0; 

  𝒆𝒍𝒔𝒆 

   𝑙𝑎𝑏𝑒𝑙𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑆𝑖
0); 

   {𝑎𝑟𝑔𝑚𝑎𝑥(𝑆𝑖
0) ∈ 𝑁|1 ≤ 𝑎𝑟𝑔𝑚𝑎𝑥(𝑆𝑖

0) ≤ 𝑛}; 

  𝒆𝒏𝒅 𝒊𝒇 

 𝒆𝒏𝒅 𝒇𝒐𝒓 

 Return 𝑙𝑎𝑏𝑒𝑙0 

//MR3DCNN-KT Training: using non-zero labeledseparate functional networks and 𝑙𝑎𝑏𝑒𝑙0 as 

preliminary training sets 

 𝒇𝒐𝒓(𝑖 ∈ {0,1,2, … , 𝑚𝑎𝑥𝐼𝑡𝑒𝑟}) 
  Train MR3DCNN-KT on 

   [𝑛𝑜 𝑧𝑒𝑟𝑜 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑠, 𝑙𝑎𝑏𝑒𝑙𝑖] 

  𝑙𝑎𝑏𝑒𝑙𝑖+1 = 𝑀𝑅3𝐷𝐶𝑁𝑁 − 𝐾𝑇𝑚𝑜𝑑𝑒𝑙classify on all functional networks; 

  𝑙𝑎𝑏𝑒𝑙_𝑣𝑎𝑟 = 𝑣𝑎𝑟(𝑙𝑎𝑏𝑒𝑙𝑖, 𝑙𝑎𝑏𝑒𝑙𝑖+1) 

  𝒊𝒇(|𝑙𝑎𝑏𝑒𝑙𝑣𝑎𝑟|/𝑙 < 0.4%) 

   Break 

  𝒆𝒏𝒅 𝒊𝒇 

 𝒆𝒏𝒅 𝒇𝒐𝒓 

 Return𝑀𝑅3𝐷𝐶𝑁𝑁 − 𝐾𝑇𝑚𝑜𝑑𝑒𝑙 
Though it achieves better accuracy on detection of lung nodules, this 3D-CNN has high 

computational complexity due to the requirement of amount of parameters in 3D-CNN model. 

The 3D-CNN parameter is computed as: 

𝑃3𝐷 = 𝑛 × 𝑐 × 𝑑(𝑘 × 𝑘 + 1)                    (2) 

In Eq. (2), 𝑛 denotes the amount of filters, 𝑘 represents the spatial size of the 𝑐𝑜𝑛𝑣kernel, 𝑑 

denotes the amount of temporal images and 𝑐 indicates the amount of channels. When the input 

channels increase, the amount of parameter also increases. To tackle this problem, IO-MR3D-

DSCNN-KT model is proposed which is explained below. 

 

3.2 Effective Lung Nodule Candidate Detection Using Iteratively Optimized Multi-

Resolution 3D-Depthwise Separable CNN And Knowledge Transfer 

A novel IO-MR3D-DSCNN-KT model is proposed for effectively understanding the haptic force 

from lung images. For this purpose, the image is split as spatial and temporal details which are 

trainedindividually and consecutively. The processes performed in this model are: 

1. Spatial feature extraction: The 2D depthwise𝑐𝑜𝑛𝑣 is performed on every slice of the input image 

i.e., the task of training the spatial data free of the channel is performed on every slice. 

2. Temporal feature extraction: The 3D pointwise𝑐𝑜𝑛𝑣 is used for learning the linear mixture of 

channels among the channels of neighborslices. 

Initially, the spatial data is extracted by this 3D-DSCNN structure that applies the 2D 

depthwise𝑐𝑜𝑛𝑣filters in the images. In this model, the shared weight parameters are used and the 

amount of these parameters is significantly reduced compared to the standard 3D-CNN model. 

Similarly, the 3D pointwise 𝑐𝑜𝑛𝑣filters are applied for extracting the temporal feature extraction. 

The concept of proposed IO-MR3D-DSCNN-KT model is shown in Figure 2. 

The depthwise𝑐𝑜𝑛𝑣filters 𝐹𝑑𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒 ∈ ℜ𝑘×𝑘 are trained separately based on their respective 

channels. This filter is fused with the pointwise 𝑐𝑜𝑛𝑣filter 𝐹𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 ∈ ℜ1×1 for training the 

relationshipbetween the channels in each layer. While increasing the input channels, only the 

respective amount of filters is increased whereas the amount of parameters used in the standard 



European Journal of Molecular & Clinical Medicine 

ISSN 2515-8260              Volume 07, Issue 08, 2020  
 

 

2019 
 

3D-CNN model is not increased. Therefore, the dimensions of the weight parameters are also 

calculated as: 

𝑃3𝐷 = 𝑛 × (𝑐 × 𝑑 + 1) + 𝑐 × (𝑘 × 𝑘 + 1)                    (3) 

 
 

Figure 2. Concept of Proposed IO-MR3D-DSCNN-KT Model 

This bottleneck 3D module is illustrated in Figure 3for the inverted residual and fundamental 

linear block-based units. The primary layer of this unit to enlarge the amount of channels is the 

pointwise 𝑐𝑜𝑛𝑣. The secondary layer is the depthwise𝑐𝑜𝑛𝑣filter with a 𝑎 × 𝑎 kernel and the 3D 

pointwise 𝑐𝑜𝑛𝑣is applied in the last layer to train the temporal data. Also, the 

depthwise𝑐𝑜𝑛𝑣filters are stacked perfectly for converting the temporal data to the salient data for 

detecting the lung nodules.The specifications of the IO-MR3D-DSCNN-KT network structure 

are given in Table 1. 

 

Table 1. Details of Network Structure of the IO-MR3D-DSCNN-KT Model 

Layers 

Expan

d 

Chan

nels 

Outpu

t 

Chann

els 

Spatia
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Stride 

Kerne

l 

Depth 

Dept

h 

Strid

e 

Conv2D 3 × 3 - 32 1 1 1 

Bottleneck 3D 3 × 3 (a) 32 16 1 1 1 

Bottleneck 3D 3 × 3 (a) 64 24 1 1 1 

Bottleneck 3D 3 × 3 (a) 96 32 1 1 1 

Bottleneck 3D 3 × 3 

(b) 
128 64 2 3 2 

Bottleneck 3D 3 × 3 

(b) 
192 92 2 3 2 

Bottleneck 3D 3 × 3 

(b) 
384 128 2 3 2 

Bottleneck 3D 3 × 3 

(b) 
448 192 2 3 2 

Conv2D 1 × 1 - 1280 2 2 2 

Avg. Pool. 4 × 4 - - 1 1 - 

Fully Connected (FC) 1 - 1 - - - 
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Figure 3. IO-MR3D-DSCNN-KT Model on the basis of (a) Inverted Residual Block and (b) 

Linear Block (Depthwise𝒄𝒐𝒏𝒗Filter) 

IV. EXPERIMENTAL RESULTS 

The performance of IO-MR3DCNN-KT and IO-MR3D-DSCNN-KT models is evaluated as well 

as compared with the MR3DCNN-KT model using MATLAB 2018a. Given a KDSB17 dataset, 

1261 data are used for training and 840 data are used for testing process. This comparative 

analysis is performed based on different metrics such as precision, recall, f-measure, accuracy, 

error rate and separability. Figure 4 portrays the results of detected nodules usingIO-

MR3DCNN-KT and existing MR3DCNN-KT models. Similarly, Figure 5 illustrates the 

outcomes of detected nodules using IO-MR3D-DSCNN-KT and IO-MR3DCNN-KT models.
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(a)    (b)    (c) 

Figure 4. Results of Lung Nodule CandidateDetection Models: (a) Input Image (b) Detected 

Nodules using MR3DCNN–KT (c) Detected Nodules using IO-MR3DCNN–KT 

 
(a)    (b)     (c) 

Figure 5. Results of Lung Nodule Candidate Detection Models: (a) Input Image (b) 

Detected Nodules using IO-MR3DCNN–KT (c) Detected Nodules using IO-MR3D-

DSCNN–KT 
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4.1 PRECISION 

It is a measure computed based on the detection of lung nodules at True Positive (TP) and False 

Positive (FP) rates. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                      (4) 

 
Figure 6. Comparison of Precision 

In Figure 6, the precision values for IO-MR3D-DSCNN-KT, IO-MR3DCNN-KT and 

MR3DCNN-KT models are illustrated. Through this analysis, it is recognized that the precision 

of IO-MR3D-DSCNN-KT is 1.84% higher than the IO-MR3DCNN-KT and 4.52% higher than 

MR3DCNN-KT models. 

 

4.2 Recall 

It is calculated on the basis of detecting the lung nodules at TP and False Negative (FN) rates.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
          (5) 

 
Figure 7. Comparison of Recall 

Figure 7 shows the recall values for IO-MR3D-DSCNN-KT, IO-MR3DCNN-KT and 

MR3DCNN-KT models. By using this analysis, it is noticed that the recall of IO-MR3D-

DSCNN-KT is 2.68% higher than the IO-MR3DCNN-KT and 4.53% higher than MR3DCNN-

KT models. 

 

4.3 F-Measure 

It is the harmonic mean of both precision and recall. 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2∙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                (6) 



European Journal of Molecular & Clinical Medicine 

ISSN 2515-8260              Volume 07, Issue 08, 2020  
 

 

2023 
 

 
Figure 8. Comparison of F-measure 

In Figure 8, the f-measure values for IO-MR3D-DSCNN-KT, IO-MR3DCNN-KT and 

MR3DCNN-KT models are illustrated. From this analysis, it is observed that the f-measure of 

IO-MR3D-DSCNN-KT is 2.18% higher than the IO-MR3DCNN-KT and 4.53% higher than 

MR3DCNN-KT models. 

 

4.4 Accuracy 

It is the ratio of accurate lung nodule detection over the total amount of instances evaluated. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                 (7) 

 
Figure 9. Comparison of Accuracy 

Figure 9 shows the accuracy values for IO-MR3D-DSCNN-KT, IO-MR3DCNN-KT and 

MR3DCNN-KT models. From this analysis, it is addressed that the accuracy of IO-MR3D-

DSCNN-KT is 1.06% higher than the IO-MR3DCNN-KT and 4.4% higher than MR3DCNN-KT 

models. 
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4.5 Error Rate 

It is measured as: 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                (8) 

 
Figure 10. Comparison of Error Rate 

 

In Figure 10, the error rate values for IO-MR3D-DSCNN-KT, IO-MR3DCNN-KT and 

MR3DCNN-KT models are shown. From this analysis, it is observed that the error rate of IO-

MR3D-DSCNN-KT is 27.12% less than the IO-MR3DCNN-KT and 28.57% less than 

MR3DCNN-KT models while considering 500 training epochs. 

 

4.6 Separability 

It is the separability of the data representation in different layers and computed as follows: 

𝑆𝑒𝑝𝑎𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
∑ (𝑥𝑖̅̅ ̅−�̅�)

2
𝑖

∑ 1
𝑛𝑖−1

⁄𝑖 ∑ (𝑥𝑗
𝑖−𝑥𝑖̅̅ ̅)

2

𝑗

                 (9) 

 
Figure 11. Comparison of Separability 

Figure 11 shows the separability values of IO-MR3D-DSCNN-KT, IO-MR3DCNN-KT and 

MR3DCNN-KT models for different layers in CNN architecture. In case of softmaxlayer, the 

separability of IO-MR3D-DSCNN-KT is 7.69% higher than IO-MR3DCNN-KT and 14.29% 

higher than MR3DCNN-KT models. 

V. CONCLUSION 

In this article, an IO-MR3DCNN-KT model is proposed for achieving training initialization 

using automated weak labeling process. This model is mainly applied for generating the initial 

training dataset which is trained in an iterative manner. Thus, an IO-MR3D-DSCNN-KT model 

is proposed that comprises the bottleneck-based 3D-DSCNN architecture for minimizing the 

computational complexity of 3D-CNN structure. In this model, both spatial and temporal 

features are extracted via fundamental depthwise𝑐𝑜𝑛𝑣 and pointwise𝑐𝑜𝑛𝑣, correspondingly, for 

classifying the lung nodule candidates with reduced amount of parameters in the 3D-CNN 

structure. Finally, the experimental results proved that the IO-MR3D-DSCNN-KT model 

achieves better performance than the both IO-MR3DCNN-KT and MR3DCNN-KT models. 
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