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Abstract- If  ( )zp  is a polynomial of degree n such that ( ) 0zp in kz  , 1k , then 

Govil [ Proc. Nat. Acad. Sci., Vol. 50, pp. 50-52, 1980. ] proved 
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provided ( )zp  and ( )zq  attain their maxima at the same point on the circle 1=z , where 

( ) 







=

z
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. 

Equality in the above inequality holds for ( ) nn kzzp += . 

In this paper, we extend the above inequality and an improved version of this into polar 

derivative of a polynomial.   
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I. INTRODUCTION 

It was for the first time, Bernstein [10, 11] investigated an upper bound for the maximum 

modulus of the first derivative of a complex polynomial on the unit circle in terms the maximum 

modulus of the polynomial on the same circle and proved  the following famous result known as 

Bernstein’s inequality that if ( )p z  is a polynomial of degree n , then                                            

 

                                            ( ) ( )
1 1

max max
z z

p z n p z
= =

  .                                               (1.1) 

Inequality (1.1) is best possible and equality occurs for ( ) np z z= , 0  , is any complex 

number. 

If we restrict to the class of polynomials having no zero in 1z  , then inequality (1.1) can be 

sharpened as 

                                          ( ) ( )max max
21 1

n
p z p z

z z
 

= =
 .                                            (1.2)                                                            

The result is sharp and equality holds in (1.2) for ( ) np z z = + , where  = . 

Inequality (1.2) was conjectured by Erdös and later proved by Lax [8]. 

Simple proofs of this theorem were later given by de-Bruijn [5], and Aziz and Mohammad [2]. 
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It was asked by R.P. Boas that if ( )p z  is a polynomial of degree n not vanishing in z k , 

0k  , then how large can 
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 be ?                                                     (1.3) 

A partial answer to this problem was given by Malik [9], who proved 

Theorem A. If ( )p z  is a polynomial of degree n having no zero in the disc z k , 1k  ,then 

                                          ( ) ( )
1 1

max max
1z z

n
p z p z

k= =
 

+
.                                            (1.4)                                                       

The result is best possible and equality holds for ( ) ( )
n

p z z k= + . 

For the class of polynomials not vanishing in , 1z k k  , the precise estimate for maximum of 

( )p z on 1z = , in general, does not seem to be easily obtainable. 

For quite some time, it was believed that if ( ) 0p z  in ,z k 1k  , then the inequality 

analogous to (1.4) should be 
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till E.B. Saff gave the example ( )
1 1

2 3
p z z z

   
= − +   
   

to counter this belief. 

Govil [6] obtained inequality (1.5) with extra condition. More precisely, he proved the following 

Theorem B. If  ( )zp  is a polynomial of degree n such that ( ) 0zp in kz  , 1k , then 
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provided ( )zp  and ( )zq  attain their maxima at the same point on the circle 1=z , where 

( ) 







=

z
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. 

Equality in (1.6) holds for ( ) nn kzzp += . 

Aziz and Rather [3] further improved the bound of (1.6) by involving ( )min
z k

p z
=

. 

Theorem C. If  ( )zp  is a polynomial of degree n such that ( ) 0zp in kz  , 1k , then 
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provided ( )zp  and ( )zq  attain their maxima at the same point on the circle 1=z , where 
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. 

As in Theorem B, equality in (1.6) occurs for ( ) nn kzzp += . 
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Let ( )zp  be a polynomial of degree n and  be any real or complex number, the polar 

derivative of ( )zp , denoted by ( )zpD , is defined as 

                    ( ) ( ) ( ) ( )zpzznpzpD −+=  .                                                    (1.8)      

The polynomial ( )zpD  is of degree at most 1−n and it generalizes the ordinary derivative 

( )zp  of  ( )zp  in the sense that 

                                
( )

( )zp
zpD

=
→ 




lim .                                                            (1.9) 

It is of interest to extend ordinary derivative inequalities into polar derivative of a polynomial, 

for the later version is a generalization of the first. In this direction, Aziz and Shah [4] for the 

first time extended (1.1) to polar derivative by proving 

Theorem D. If ( )p z  is a polynomial of degree n then for every real or complex number   with 

1  , 

                               ( ) ( )
1 1

max max
z z

D p z n p z 
= =

 .                                                  (1.10) 

Inequality (1.10) becomes equality for ( ) np z a z= , 0a  . 

Further, Aziz [1] extended inequality (1.2) to polar derivative. 

Theorem E. If ( )p z  is a polynomial of degree n having no zero in the disc 1z  , then for every 

real or complex number  with 1  , 

                         ( ) ( ) ( )
1 1

max 1 max
2z z

n
D p z p z 

= =
 + .                                              (1.11)   

The result is best possible and extremal  polynomial is  ( ) 1np z z= + . 

For the class of polynomials not vanishing in the disc z k , 1k  , Aziz [1] obtained the 

extension of Theorem A to polar derivative of ( )p z .   

Theorem F. If ( )p z  is a polynomial of degree n having no zero in the disc z k , 1k  , then 

for every real or complex number  with 1  , 
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The result is best possible and equality in (1.12) holds for the polynomial   ( ) ( )n
kzzp += , 

with 1 . 

In this paper, we extend both the Theorems B and C into polar derivative of a polynomial. More 

precisely, we prove 

Theorem 1. If  ( )zp  is a polynomial of degree n such that ( ) 0zp in kz  , 1k , then for 

every real or complex number   with 1 , 
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,                                            (1.13)           

provided ( )zp  and ( )zq  attain their maxima at the same point on the circle 1=z , where 

( ) 
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z
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. 

Dividing both sides of (1.13) by   and making limit as  → , we obtain inequality (1.6). 

Next, we prove the polar derivative form of Theorem C. 

 Theorem 2. If  ( )zp  is a polynomial of degree n such that ( ) 0zp in kz  , 1k , then for 

every real or complex number   with 1 , 

                ( ) ( ) ( ) ( ) ( ) 1 1
max max 1 min

1
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n z kz z
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,                     (1.14)           

provided ( )zp  and ( )zq  attain their maxima at the same point on the circle 1=z , where 

( ) 
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z
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. 

Dividing both sides of (1.14) by   and making limit as  → , we get inequality (1.7).  

 II LEMMA 

The following lemma is needed for the proofs of the theorems. 

Lemma 2.1. If ( )zp  is a polynomial of degree n, then on 1=z , 

                          ( ) ( ) ( )zpnzqzp
z 1

max
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where  
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. 

The above lemma is a special case of a result due to Govil and Rahman [7]. 
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III. PROOF OF THE THEOREM 

Proof of Theorem 1. We omit the proof as it follows on the same lines as that of Theorem 2 by 

using Theorem B, instead of Theorem C. 

Proof of Theorem 2. Let ( ) 







=

z
pzzq n 1

. Then it is easy to verify that for 1=z , 

                                              ( ) ( ) ( )zpzznpzq −=  .                                             (3.1) 

Now, for every real or complex number , the polar derivative of ( )zp with respect to   is    

                          ( ) ( ) ( ) ( )zpzznpzpD −+=  . 

This implies for 1=z , 

           ( ) ( ) ( ) ( )zpzpzznpzpD +−   

                              = ( ) + zq ( )zp     (by (3.1))                                                    (3.2) 

                              ( ) ( ) ( ) ( )zpzpzpzq +−+=  . 

                              ( ) ( ) ( )zpzpn
z

−+
=

1max
1

   (Lemma 2.1)  

Since 1 , the above inequality when combined with inequality (1.7) of Theorem C gives                                               
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max max 1 max min
1 n z kz z z
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This completes the proof of Theorem 2. 
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