Microbiological profile of Diabetic Foot Ulcers and its AntimicrobialSusceptibility Pattern at Tertiary Care HospitalValsad. India.

*Dr. Hiral Patel, Assistant Professor, Department of Microbiology, GMERS Medical College Navsari

**** Dr. Payal Soni,** Assistant Professor, Department of Microbiology, GMERS Medical College Navsari

***** Dr. Parimal Patel,** Associate Professor, Department of Microbiology, GMERS Medical College Valsad

****Dr. Vicky Gandhi, Associate Professor, Department of Microbiology, GMERS Medical College Navsari

Introduction: Diabetic foot ulcer and infections are one of the major complications in diabetic patients leading to frequent hospitalization and increased mortality.

Aim: To evaluate microbiological profile of diabetic foot ulcers and their antibioticsusceptibility pattern.

Method: A total number of 173 patients with Diabetic foot infections were included in this studyfor the period of two year. The samples were processed by using standard microbiological methods. The modified Kirby-Bauer's disc diffusion method was used for antimicrobial susceptibility testing. The isolates of *Enterobacteriaceae family* were initially screened for ESBL production and were further confirmed by double disk synergy test as per Clinical and Laboratory Standards Istitute (CLSI) guidelines. Reference strains of *E. coli* (ATCC 25922), *P. aeruginosa* (ATCC-27853), *S. aureus* (ATCC 25923) and *Klebsiella* 700603 were used as control.

Results: A total of 307 organisms, an average 1.26 organisms per lesion were isolated from 244 specimen. Gram negative bacteria (95.77%) were the most frequently isolated pathogen, including *Pseudomonas aeruginosa* (35.83%) followed by*Klebsiella spp*(23.12%), *Proteus* spp.(15.53%), E. coli (12.05%), Acinetobacter spp(5.53%), Citrobacter spp(1.30%), Morganella morganii (0.65%). Gram positive accounted for (4.23%) includes Staphylococcus aureus (2.60%), Enterococcusspp(1.30%), and Streptococcus spp (0.32%). Polymyxin B, Meropenem, Imipenem, Piperacillin -Tazobactam and levofloxacin were found to be more susceptible Gram negative organisms.Linezolid, Vancomycin, for Levofloxacin, Chloramphenicol, Amikacin, Gentamicin seems to be more susceptible for Gram positive organisms.50% Methicillin resistant Staphylococcus aureusstrains were isolated and 41.91% ESBL production was seen amongEnterobacteriaceae family.

Conclusion: The study showed a preponderance of gram-negative organisms from the diabetic foot ulcers. It is recommended that antimicrobial sensitivity testing is necessary for initiating appropriate antibiotic regimen which will help to reduce the drug resistance and minimize the healthcarecosts.

Keywords: Diabetic foot ulcer, antibiotic susceptibility, bacterial isolates

Introduction

We are in the era where more people are dying due to the non-communicable diseases like diabetes, cardiovasculardiseases, stroke, cancer, chronic lung diseases than from the infectious diseases.¹ The global prevalence of diabetes and its complication is continuously growing and becoming the most significant cause of morbidity and mortality. Diabetic foot is the one of the key areas of morbidity associated with diabetes.²Approximately one-fourth of people with diabetes will develop an ulcer during their lifetime, and as many as half of these ulcers will become infected³.If interventionsare not taken at proper time, it can progress to systemic infection, septicaemia, amputation or even death⁴.

Hyperglycaemia, neuropathy, peripheral arterial disease,trauma, impaired immunity and infections are the major predisposing factors responsible for diabetic foot ulcer.² Increasing incidence of multidrug-resistant organisms from diabetic foot ulcers have created a big health care problem among hospitalised patient². The distributions of causative organisms and the antibiotic susceptibility patterns also show variations in diverse geographical regions⁵.

Therefore, early diagnosis and prompt initiation of appropriate antimicrobial therapy is essential for controlling the infection and preventing complication and improving the quality of life. The appropriate selection of antibiotics based on the antibiograms of isolates from diabetic foot infections is extremely critical for the proper management of these infections. Therefore, the aim of the present study is to evaluate the microbiological profile of diabetic foot ulcers in order to determine the relative frequencies of microbial isolates cultured from diabetic foot infections and to assess the *in vitro* antimicrobial susceptibility pattern of these isolates.

Materials and Methods

This cross-sectional study was conducted in the Department of Microbiology, GMERS Medical college and Hospital Valsad for the period of two year from May 2017 to April 2019.Ethical clearance was obtained from Institutional Human Ethics Committee. A total number of 173 patients with Diabetic foot infections hospitalised in surgical wards were included in this study. Detailed history of the patients regarding age, sex, site of lesion, occupation, and associated illness were collected on predesigned proforma.

Sample Processing

After admission to the hospital, specimens (Pus swabs, wound swabs and debrided necrotic tissue) were obtained from diabetic patients at the time of admission before starting antibiotic therapy. In those cases when significant improvement was not seen after >7 days of antibiotic treatment another specimen was collected for culture.

Criteria for obtaining the specimens for culture were as follows:

1) 1st Culture- Specimens were collected at the time of admission before starting antibiotic therapy.

2) 2nd Culture- Specimen were collected at the time of debridement (weekly).

 $3)3^{rd}$ Culture-Specimen were collected at the time of subsequent debridement. (As and when done).

To avoid contamination of colonising flora, the wound was cleaned with normal saline thoroughly, after that samples were collected from deeper pockets and immediately

Variables	Isolates per culture	Total			
transported to the microbiology l	aboratory. These specimens were pa	rocessed for direct			
microscopy, aerobic/anaerobic culture and sensitivity as per the standard protocol. The					
samples were inoculated on Nutrie	nt agar (NA), Mac Conkey Agar (MA	A) and Blood Agar			
(BA) plates in two sets. One set	was incubated aerobically at 37°C for	or 18-24 hours and			
another anaerobically. After incub	ation, identification of different micr	obes from positive			
cultures was done with a standard	microbiological technique which ind	cludes studying the			
colonial morphology, gram stain an	d biochemical reactions. ⁶ The antibiot	c sensitivity testing			
of all isolates was performed b	by modified KirbyBauer's disc dif	fusion method on			
MuellerHinton agar using antibiot	ics as per CLSI guidelines ⁷ . Gram-n	egativebacilli from			
Enterobacteriaceae family were te	ested for Extended spectrum β lactan	nase production by			
using double disk synergy test by u	using ceftazidime $(30 \ \mu g)$ and ceftazid	ime-clavulanic acid			
$(30 \ \mu g/10 \ \mu g)$. Staphylococcus spe	cies were tested for methicillin resista	nce by using 30 µg			
cefoxitin disk. ⁷ Reference strains of	E. coli (ATCC 25922), P. aeruginosa	e (ATCC-27853), S.			
aureus (ATCC 25923) and Klebsiel	la 700603 were tested as control.				

Statistical Analysis

Statistical analysis was done in Microsoft Excel 2010.

<u>Result</u>

A total number of 173 patients with Diabetic foot infections were included in this study for the period of 2year. Among these 137 (79.19%)were male and 36 (20.81%) were female. Most common age groups involved in this study was 51-60 years (34.68%) with the mean age of 54.01 years.

Age	Male	Female	Total	Percentage N=173
<30 years	7	1	8	4.62
31-40 year	18	2	20	11.56
41-50	24	11	35	20.23
51-60	50	10	60	34.68
61-70	33	11	44	25.43
>71	5	1	6	3.46
Total	137	36	173	100

 Table 1- Age and Sex distribution among patients with Diabetic foot infections

Table:2 Different Variables of this study

ISSN 2515-8260 Volume 10, Issue 06, 2023

	1 st	2 nd	3 rd	
	culture	culture	culture	
Specimen	173	56	12	241
No growth	23	6	0	29 (12.03%)
Growth	150	50	12	212(87.97%)
Monomicrobial growth	97	29	4	130(53.94%)
Polymicrobial growth	53	21	8	82(34.03%)
Organisms	211	74	22	307 (n)
GPC	9	4	0	13 (4.23%)
GNB	202	70	22	294 (95.77%)
Staphylococcus aureus	4	4	0	8 (2.60%)
Streptococcus spp.	1	0	0	1 (0.32%)
Enterococcus spp.	4	0	0	4 (1.30%)
Pseudomonas spp.	74	28	8	110 (35.83%)
Acinetobacter spp.	16	1	0	17 (5.53%)
Klebsiella spp.	44	20	7	71 (23.12%)
Escherichia coli	27	8	2	37 (12.05%)
Proteus mirabilis	28	11	4	43(14%)
Proteus vulgaris	5	0	0	5(1.62%)
Morganella morganii	2	0	0	2(0.65%)
Citrobacter spp.	4	0	0	4(1.30%)
Providencia spp.	2	2	1	5(1.62%)
ESBL- Klebsiella spp.	22	6	3	31(18.56%)
ESBL- Escherichia coli	16	4	2	22(13.17%)
ESBL- Proteus mirabilis	7	2	2	11(6.58%)
ESBL- Proteus vulgaris	1	0	0	1 (0.59%)
ESBL- Citrobacter spp.	2	0	0	2(1.20%)
ESBL- Providencia spp.	1	1	1	3 (1.79%)
(n=167)				70(41.91%)
			-	· · · · · · · · · · · · · · · · · · ·
MRSA	2	2	0	4(50%)

¹⁷³ specimens were received as first culture at the time of admission before starting of antibiotic treatment.56 specimens were processed as a 2^{nd} culture and 12 specimens were processed as 3^{rd} Culture. Overall241 samples were received from 173 patients. Among these29(12.08%) samples werehaving no growth and total 212 samples were showing growth. The monomicrobial growth was seen among130 samples(53.94%) and polymicrobial growth was observed among 82 samples (34.02%).

ISSN 2515-8260 Volume 10, Issue 06, 2023

Total 307 organisms were isolated. Among them 294 were Gram negative (95.77%), only 13 were Gram positive (4.23%).

Amongstthe microbes, *Pseudomonas spp*.was the most frequentisolated (35.83%) followed by*Klebsiella spp*.(23.12%), *Proteus spp*. (15.53%), *E. coli* (12.05%), *Acinetobacter spp*.(5.53%),*Staphylococcus aureus* (2.60%),*Providencia spp*(1.62%), *Citrobacter spp*.(1.30%),*Enterococcus spp* (1.30%),*Morganella morganii* (0.65%) and *Streptococcus spp*. (0.32%).

ANTIMICROBIAL SUSCEPTIBILITY PATTERN

Tuble et innubione subceptionity puttern of non termenter

	Pseudomonas spp.(n=110) Sensitivity percentage (%)	Acinetobacter spp.(n=17) Sensitivity percentage (%)
Piperacillin -Tazobactam	55	6
Amikacin	45	18
Gentamycin	38	18
Ciprofloxacin	26	29
Levofloxacin	35	47
Ceftazidime	29	6
Cefepime	38	6
Imipenem	38	24
Meropenem	50	24
Polymyxin B	90	82
Tetracycline	35	41

Looking to the sensitivity pattern, Polymyxin B,Piperacillin -Tazobactam and Meropenem were found to be more susceptible than the other drugs in case of *pseudomonasspp*., While Polymyxin B, levofloxacin, ciprofloxacin and tetracycline were found to be more susceptible than the other drugs for *Acinetobacter spp*,9(8.18%) strains of *Pseudomonas aeruginosa*,4 (23.52%) strains of *Acinetobacter spp*.were resistant to all drugs tested for antimicrobial susceptibility.

Table 4- Antibiotic susceptibility pattern of Enterobacteriaceae

	Klebsiella spp Sensitivity percentage (%) N=71	E. coli Sensitivity percentage (%) N=39	Proteus spp. Sensitivity percentage (%) N=48	Morgenella spp. Sensitivity percentage (%) N=2	Providencia spp. Sensitivity percentage (%) N=6	Citrobacter spp. Sensitivity percentage (%) N=3
		3	8	0	0	0
Ampicillin						
Amoxycillin -	4	10	15	0	0	0
clavulanic acid						
Piperacillin -	51	59	85	100	33	33
Tazobactam						
Amikacin	65	72	69	100	83	33
Gentamicin	59	56	60	100	33	33
Ciprofloxacin	52	18	69	100	33	33
Levofloxacin	58	41	77	100	33	33
Cefotaxime	27	13	29	100	33	33
Ceftazidime	28	13	48	100	33	33
Cefepime	44	33	65	100	33	33
Imipenem	51	59	81	100	100	100
Meropenem	59	85	90	100	100	100
Tetracycline	59	36	33	100	33	33

Table 5-Antibiotic susceptibility pattern of Gram-Positive Organisms

	Staphylococcus aureus Sensitivity percentage (%) (n=8)	Streptococcus spp. Sensitivity percentage (%) (n=1)	Enterococcus spp. Sensitivity percentage (%) (n=4)
Penicillin	0	100	25
Amoxycillin-Clavulanic			
acid	25	-	-
Vancomycin	100	100	100
*Gentamycin			
High Level Gentamycin			
tested for Enterococcus			
spp.	25	-	75
Azithromycin	25	-	-
Erythromycin	25	-	-

ISSN 2515-8260 Volume 10, Issue 06, 2023

Clindamycin	25	100	-
Tetracycline	100	-	-
Ciprofloxacin	50	-	-
Levofloxacin	50	100	-
Linezolid	100	100	100
Chloramphenicol	100	100	100
Ampicillin	-	100	25
Imipenem	-	100	-
Cotrimoxazole	75	100	-

Among 167 total *Enterobacteriaceae* 70 were ESBL producer (41.91%). ESBL production was seen among 22 strains of *E. coli* (13.71%),31 strains of *Klebsiella pneumoniae*(18.56%) and 12 strains of *Proteus spp.*(7.17%).

Gram-positive organismswere found to be 100% susceptible to Linezolid, Vancomycin, and Chloramphenicol.50 % MRSA strains were isolated in this study.

Discussion:

Studies on Microbiological profile of diabetic foot infection is widely done all over the world and also differ in different region of the world.In the present study 79.19% males were affected which was similar to the most of the studies done from different parts of world.Male population is involved in hard work with greater risk of trauma is the major reason behind this. More common age groups involved in this study was 50-60 years which was also similar to so many studies where elder patients are more commonly affected due to the burden of life and exercise habits. Table6 and 7 shows the comparison of the present study with recent studies from India as well as from the different part of the world.

In this study monomicrobial growth was observed in 53.94% specimens which is similar to other studies done by Shareef J^8 , Wu M⁹. But contrary to study by Belefquih B¹⁰, and Saseedharan S.¹¹in their studiespolymicrobial infection was predominates.

In microbiological evaluation of this study showed preponderance of Gram- negative organisms 95.77% overGram- positive organisms 4.23% which is similar to recent studies done in India by Shareef J⁸, Saseedharan S¹¹, Khare J¹², Jain S¹³ and also similar to study done by Wu M⁹ at China. But contrary to Indian study done by Malepati S¹⁴ and Korean study done by Son T¹⁵.

In Present study, Amongst the microbes, *Pseudomonas spp*.was the most frequentisolated (35.83%)organismfollowed by*Klebsiella spp*. (23.12%), *Proteus mirabilis* (14%), *E. coli* (12.05%).*Pseudomonas aeruginosa* was the most common isolated organism in Shareef J^8 , Malepati S¹⁴ but*Staphylococcus aureus* was the most common organism the other studies done bySaseedharan S¹¹, Jain S¹³, Wu M⁹, Belefquih B¹⁰, Son T¹⁵.Table 8 shows the comparison of different microorganisms isolated from diabetic foot infections from recent studies done in India as well as studies done in China and Korea. We can find the huge diversity of organisms. *P. aeruginosa* is more common in developingcountries especially in Asia and Africa.While in Western developed countries *S.aureus* is more common. Thereasons for this are not clear but the environmental factors, footwear, personal hygiene, antimicrobialpre-treatment, or other factors may be related to this.

Multi-drug resistant (MDR) Gram-negative microorganisms, including extended-spectrum beta-lactamase (ESBL) or carbapenemase-producing Enterobacteriaceae and MDR non-fermenters, are becoming a serious concern in tertiary referral hospitalsin developing countries. Looking to the sensitivity pattern of the non -fermenter, among all isolates, 19 (27.14%) strains of *Pseudomonas aeruginosa*, 2 (18.18%) strains of *Acinetobacter baumanii* were resistant to all drugs tested for antimicrobial susceptibility. Observing the susceptibility pattern of non -fermenter, Polymyxin B, Meropenem, Imipenem, Piperacillin -Tazobactam and levofloxacin were found to be more susceptible than the other drugswere the better choice as an empirical treatment for these organisms.

In the present study from 167 total *Enterobacteriaceae* 70 were ESBL producer (41.91%). ESBL production was seen among 22 strains of *E. coli* (13.71%),31 strains of *Klebsiella pneumoniae*(18.56%) and 12 strains of *Proteus spp.* (7.17%).Which was higher than the

study of Wu M⁹ reported 10.6% ESBL in China. While in Indian study there was a much higher incidence of ESBL were noted by Jain S¹³ (77.67%). With the emergence of ESBL- producing bacteria, the woundcondition deteriorates and treatment becomes difficult resultingin a poor outcome. Meropenem, Imipenem, Piperacillin -Tazobactam Amikacin, Gentamicin and levofloxacin, Cefepime were found to be more susceptible than the other drugs among the *Enterobacteriaceae* family which will be the choice of drugs according to susceptibility pattern.

In present study two strains of MRSA was isolated that was from 2^{nd} Culture Most probably due long duration of wound or due to antibiotic treatment. Previous study suggests that Methicillin-resistant *S. aureus* (MRSA) is more often isolated from patients who have recently received antibiotic therapy, have been previously hospitalized, have nasal carriage of MRSAor osteomyelitis, or have a long-wound duration (≥ 4 weeks).Looking to the sensitivity pattern Gram positive organisms are found to be 100% susceptible to Linezolid, Vancomycin, Teicoplanine, Levofloxacin, Chloramphenicol, Amikacin, Gentamycin, Rifampin and Cotrimoxazole even MRSA Strain was also susceptible to these drugs. So, these drugs seem to be effective as empirical treatment for Gram positive organisms.

	Prosont	Sharoof i ⁸	Sacadharan	Join SK ¹³	Malanati ¹⁴
	study	Shareer j	Sasceunar an S ¹¹		Maicpati
Study Poriod	May 2017-April	Δυσ 2016	$\frac{1}{100} \text{ June } 2014$	Feb 2015 Jan	Ian Dec
Study I eriou	2019	Aug 2010- March 2017	Jan-June 2014	2015-Jan 2016	2015
Country	India	India	India	2010 India	India
Country	Illula Cuionot	Illula Kana stalas			
State	Gujarat	Karnataka	Manarashtra	Assam	Andnra
m	150		0.61	1.50	Pradesh
Total Cases	173	71	261	150	346
M: F Ratio	3.80:1	1.86:1	1.48:1	-	2.53:1
Commonest Age	51-60 years	60-69 years	58 years	60-65 Years	46-55 years
group involved	(34.68%)	(39.43%)			(42.8%)
Specimen	241	71	216	150	346
No growth	29	0	38	11	0
	(12.03%)		(17.6%)	(7.3%)	
Growth	212	71	178	139	346
	(87.97%)	(100%)	(82.4%)	(92.67)	(100%)
Monomicrobial	130	38	79	96	286
growth	(53.94%)	(53.5%)	(44.3%)	(64%)	(82.7%)
Polymicrobial	82	33	99	43	60
growth	(34.03%)	(46.47%)	(55.7%)	(28.6%)	(17.3%)
Organisms	307 (n)	122	289	185	438
GPC	13	43	117	73	224
	(4.23%)	(35.24%)	(41.5%)	(39%)	(51.1%)
	, , , , , , , , , , , , , , , , , , ,	``´´			
GNB	294	79	165	112	214
	(95.77%)	(64.79%)	(58.5%)	(61%)	(48.9%)
					``´´
Commonest	Pseudomonas	Pseudomonas	Staphylococcus	Staphylococcus	Pseudomonas
organism isolated	aeruginosa	aeruginosa	aureus	aureus	aeruginosa.
0	(35.83%)	(18.03%)	(26.9%)	(24.86%)	MRSA

Table 6: Comparisonof present study with otherIndian studies

ISSN 2515-8260 Volume 10, Issue 06, 2023

		(19.2%)

Table 7: Comparison of present study with otherstudies done in different countries.

	Present	Belefquih B ¹⁰	Wu M ⁹	Son T ¹⁵
	study			
Study Period	May 2017-April	Jan 2009-June	Jan 2014-	Jan 2011-Dec
	2019	2014	June2017	2015
Country	India	Morocco	China	Korea
Total Cases	173	157	428	745
M: F Ratio	3.80:1	4.06:1	1.56:1	2.63:1
Commonest Age	51-60 years	>50 years	>70 years	-
group involved	(34.68%)	(80%)	(39.8%)	
Specimen	241	199	428	745
No growth	29	23	74	132
	(12.03%)	(11.55%)	(17.28%)	17.72%
Growth	212	176	354	613
	(87.97%)	(88.44%)	(82.71%)	(82.28%)
			, , ,	` '
Monomicrobial	130	69	201	-
growth	(53.94%)	(34.67%)	(56.8%)	
Polymicrobial	82	107	153	-
growth	(34.03%)	(53.76%)	(43.2%)	
Organisms	307 (n)	307	555	
GPC	13	138	205	478
	(4.23%)	(45%)	(36.9%)	(57.75%)
GNB	294	150	283	333
	(95.77%)	(48.8%)	(51.0%)	(40%)
GPB	-	19	-	-
		(6.2%)		
Fungi	-	-	67	9
0			(12.1%)	(1.1)
ANAEROBES	-	-	-	12
				(1.4%)
Commonest	Pseudomonas	Staphylococcus	Staphylococcus	Methicillin
organism isolated	aeruginosa	aureus	aureus	Resistant
	(35.83%)	(12.6%)	(41.5%)	Staphylococcus
				aureus (13.7%)

Table 8: Comparison of microorganisms with other studies

	Present	Shareef j ⁸	Jain SK ¹³	Wu M ⁹	Son T ¹⁵
	study				
Country	India	India	India	China	Korea
Staphylococcus	8	15	46	85	218
aureus	(2.60%)	(12.29%)	(24.86%)	(41.5%)	(26.2%)
Streptococcus spp.	1	-	-	-	-
	(0.32%)				

Enterococcus spp.	4	13	27	36	105
	(1.30%)	(10.65%)	(14.59%)	(17.6%)	(12.6%)
Pseudomonas spp.	110	22	22	39	78
	(35.83%)	(18.03%)	(11.89%)	(13.8%)	(9.4%)
Acinetobacter spp	17	10	7	15	13
	(5.53%)	(8.19%)	(9.78%)	(5.3%)	(1.6%)
Klebsiella spp.	71	18	22	35	27
	(23.12%)	(14.75%)	(11.89%)	(12.4%)	(3.2%)
Escherichia coli	37	12	37	33	60
	(12.05%)	(9.83%)	(20%)	(11.7%)	(7.2%)
Proteus spp.	48	12	9	32	13
	(15.53%)	(9.83%)	(4.86%)	(11.3%)	(2.0%)
Morganella	2	3	4	26	12
morganii	(0.65%)	(2.45%)	(2.16%)	(9.2%)	(1.4%)
Citrobacter spp.	4	2	1(0.54%)	12	13
	(1.30%)	(1.63%)		(4.2%)	(1.6%)
Providencia spp.	5	-	3(1.62%)	-	54
	(1.62%)				(6.5%)
ESBL production	41.91%	-	61.44%	47.1%	10.6%
MRSA	50%	-	48.14%	40%	13.7%

ISSN 2515-8260 Volume 10, Issue 06, 2023

Conclusion:

This study showed the predominance of gram-negativeorganisms over grampositiveorganisms with the majority of the infections to be monomicrobial in nature. It isnecessary to evaluate the culture sensitivity test from the infected wound and the knowledge on the antibiotic sensitivity pattern of the isolates helps in planning treatment with the appropriate antibiotic regimen. This, in turn, helps prevent the emergence of drug-resistant organisms and minimizing healthcare costs.

References

- World Health Organization. Assessing national capacity for the prevention and control of noncommunicable diseases. Report of the 2015 global survey. Geneva: WHO. 2015
- **2.** IDF Clinical Practice Recommendations on the Diabetic Foot 2017. https://www.idf.org.
- **3.** Singh N, Armstrong DG, Lipsky BA. Preventing foot ulcers in patients with diabetes.JAMA 2005;293:217–28.
- **4.** Tamali M, Gamal MB, Alghazal MA. Common aerobic bacterial isolatesfrom diabetic foot ulcer and their antibiotic susceptibility testing. WorldJ Pharm Pharm Sci 2015; 4:260-66.
- **5.** Uckay I, Gariani K, Pataky Z, Lipsky BA. Diabetic foot infections:state-of-the-art. Diabetes Obes Metab 2014; 16:305-16.
- **6.** JG, Fraser AG, Marmion BP, Simmons A, editors.Mackie and McCartney Practical Medical Microbiology. 14th ed., Ch. 4. New Delhi: Elsevier 2007;53-94.
- **7.** Clinical and Laboratory Standard Institute. Performancestandards for antimicrobial susceptibility testing; twenty- seventh Informational supplements. CLSI M100–S27.

- **8.** Shareef J, Sunny S, Bhagavan KR. Study onbacteriological profile and antibiotic susceptibility pattern in patients withdiabetic foot ulcers in a tertiary care teaching hospital. J Soc Health Diabetes2018; 6:40-7.
- **9.** Wu M, Pan H, Leng W, Lei X, Chen L, and Liang Z. Distribution of Microbes and Drug Susceptibility in Patients withDiabetic Foot Infections in Southwest China. Journal of Diabetes Research Volume 2018, Article ID 9817308, 9 pages.
- Belefquih B ,Frikh M,Benlahlou Y, Maleb A, Jadid L, Bssaibis F, Ghazouani M, Chagar B, Lamsaouri J, LemnouerA,Elouennass M.Diabetic Foot Infection in Morocco: Microbiological Profile.Wounds.2016 Mar ;28(3):89-98
- 11. Saseedharan S,Sahu M,Chaddha R,Pathrose E,Bal A,Bhalekar P,Sekar P,Krisnan P.Epidemiology of diabetic foot infections in a reference tertiary care hospital in India.Braz J Microbiol.2018 Apr-June;49(2):401-406
- **12.** Khare J, Srivastava P, Khare J, et al. Microbiological Profile of Diabetic Foot UlcersExperience from a Tertiary care centre in South India. Int J Gen Med Surg 2017; 1: 109.
- **13.** Jain SK, Barman R. Bacteriological profile ofdiabetic foot ulcer with special reference to drug-resistant strains in a tertiarycare center in North-East India. Indian J Endocr Metab 2017; 21:688-94.
- 14. Malepati S, Vakamudi S, Kandati J, Satish S.Bacteriological study of diabetic foot ulcer according to Wagner's classification: a one-year study Int Surg J. 2018 Jan;5(1):98-104
- **15.** Son T,Han K, Lee Y,Namgoong S, Dhong S. The Microbiology of Diabetic Foot Infections in Korea.J Wound Management Res 2017 May;13(1):8-12.