A SURVEY ON CRYPTOGRAPHIC ALGORITHM FOR DATA SECURITY IN CLOUD STORAGE ENVIRONMENT

¹ B.UMAPATHY

Research Scholar Dept. of Computer Science College of Science and Humanities SRM Institute of Science and Technology Kattankulathur Chennai

² DR. G. KALPANA

Associate Professor & Head Dept. of Computer Science College of Science and Humanities SRM Institute of Science and Technology Kattankulathur Chennai

Abstract

People are using lot of cloud storage service (CSs) to store documents. The cloud storage services are used to conserve people personal data and facilitate data transferable. The computer which connected via internet is adequate to access the data anywhere without carrying any physical drives like Pen drive, CD, etc. In existing techniques like, CSs providers are using 256-bit Advanced Encryption Standard (AES) and 128-bit (AES) encryption algorithm. This is one of the best techniques to secure data, but once the intruder gets encrypted data, there is possibility for data insecurity by means of applying brute force attacking technique in future increasing the speed performance of computer. The objective of this paper to analysis cryptographic algorithm which perfume on various data formats and data security attacks and threads in cloud storage environment. The aim to overcome this kind of attacks and key tampering technique, the key generation and maintain process handover to user's itself. It makes cloud storage service provider to maintain data only, with high efficient encryption technique that provides strong protection for data.

KEYWORDS: cloud storage services, cryptography, security, multifactor authentication

1. INTRODUCTION TO CLOUD COMPUTING IN DATA SECURITY

In cloud storage and computing environment data privacy and its security are the major concern. To overcome this concern, we fuse cryptography concepts into cloud computing. Cryptography help in data encryption and decryption procedure is use to protect the data in cloud. To ensure privacy, data encryption is done by the user. The user share the file through cloud but person who knows the key only can decrypts the file [21]. The intruder get the file but they can't decrypt. In evolution process, intruder try to crack the key using look up table technique, brute force technique etc.

The traditional security methods are not masterly enough to manage the cloud specific threats. The enhancement of the key building concepts which plays vital role in data security in cloud computing. By generating type of keys are public key and private key [32]. In later part technology developed and advance concepts make the encryption process with hashing techniques. Using hashing techniques the key was hashed with salt, now users itself don't the key after the hashing. On go through process user enter the key for decrypting the file. Initiation decryption, first key was hashed with salt in background process. The output of hashed key will be executed in the decryption process. Finally, the evolution process of encryption algorithm: algorithm itself generate the round keys in fusion of master key which given by the user. These techniques are used to secure data in cloud environment.

FIGURE 1: Cloud storage data security threads

In above figure illustrating that what are the threads and issues are facing by the cloud storage. Here clearly defining the internal threats, external threats, shared technology

vulnerability, etc. that says whatever the data stockpile in cloud storage by people is already in high risk state [31].

This paper is summarized follows through as: In Section 2, literature review for cloud data security. In Section 3, the comparison of methodology with defining problem, implication, merits and demerits. In Section 4, concluded the summarization of whole paper.

2. LITERATURE REVIEW FOR CLOUD DATA SECURITY

S. Atiewi et al., (2020) abstracted an IOT based multifactor authentication and light weight cryptography encryption scheme in cloud storage environment. IOT device are organize as follow of sensitive data and non-sensitive data. The sensitive data is split in two and each part encrypted by separated encryption algorithms (RC6, Fiestel) and data deposit on private cloud storage to ensure the high security. Non-sensitive data is encrypted by single algorithm (AES) as stored in the public cloud. Multifactor authentication ensure through the trusted authority. Using the identification of user's such as IP, password and biometricsin [1].X. Wang and Y. Su (2020) proposed a new encryption method for audio which dispense reliability state high. Preliminary value that presents in chaotic controlled by hash value on the audio and then making unpredictable chaotic trajectory, DNA coding is used tomystifying and scatter the data (audio). Encryption scheme is used for single and dual format audio [2].D. Changet al., (2020) illustrated a cancelable multi-biometric approach by fusion of fuzzy extractor with a novel bit-wise encryption scheme to engender cancelable biometric templates. The protection scheme for biometric template framed as irreversibility, renewability and accurate recognition of biometric scenes. The scheme that safeguard without supplementary noise that means of bit errors is executed in preserved template [3].

F. Shahidet al., (2020) stated new scheme for data Security with less complexity. Proficient security our distributed storage concept divided the data as sensitive along with normal part. The data specified as normal, separately encrypted after saved insingle storage cloud but the sensitive in seriated asdual portion, the encryption process done separately and stored in different cloud. This proposed method is used to secure against following attack, related key attack, man-in middle attack, pollution attackin [4].

J. Zheng and L. Liu (2020) proposed 2D chaotic system is fusion of sine mapsalong withlogistic map. The sine map makes on combination of two chaotic maps. Now, new encryption design for a dynamic DNA encoding and decoding. Using this algorithm achieved security test, they are key sensitive, histogram and correlation analysis. It makes difficult for most successful attacks in [5]. Y. Zhang and B. Li (2020) conducted neuron-like scheme, masking operation, flipping operation for image cryptographic algorithm. The neuron-like based learning scheme makes to identify a catchy scattered scheme and execute the plaintext based image encryption algorithm. The process gets input and weights of the neuron through the

feedback operation to regulate the information of image. Finally, the encryption algorithm which makes to scatter the image data. It results high security and adaptive characteristicsin [6].

H. Hu, et al., (2019) Identified intruder can intrude any important information on mode of transfer. To rectify an issues by encryption process done before the transmit data for cloud storage. For protection of hidden encryption password, designed hidden transmit mode along with multi authority factor. First user split a hidden password which makes encrypt important file splits trivial parts. Then user use the own key along with biometrics to conceal a hidden password parts [7].Y. Song et al., (2019) evolved novel based key substitution encryption algorithm purpose a progressing key for upgrade the commencing keys implement plain image and evolve another substitution scheme that encrypting different category images. It helps to overcome the low security and low computational that apply uses single round encryption only. The proposed substitution method which establish on s-boxes to different categories image encryption [8].W. I. Khedr et al., (2019) CAPDP allows storage user to do data integrity verification infinite. The verification process is self-reliant of the count of blocks being checked in [9]. W. Feng, et al., (2019) [10] enhance the hash value which used in the plain image during encryption activity makes unworkable for intruder to deploy of special plain-image attack. DNA encoding and decoding schemes invoke plain image correlated DNA order progress further dependent on hashed data.

H. T. Poon and A. Miri (2019) abstracted technique used phrase search based Bloom filters in [11]. It uses services of n-gram filters to adopt functionality. It allows phrase search to execute self-sustain without initial progression of conjunctive keyword based search that detect user files. H. Lin (2019) discusses pre-authentication and post authentication of user to avoid anonymity. In this scheme administrator assist the user to generate the pseudo identity which is known to the user. Using the pseudo identity administrator registering in cloud servers and it help to verify user's authentication of requesting client. This technique is very useful trace the illegal user. This protection support fast error detection or offline password update [12].

A. A. Pammu et al., (2019) Proposed matrix transformation based on authentication and parallel encryption implemented on multi-core processor. It helps to active high through put, comprehension performance and secure AES construct on counter with chaining mode [13]. W. Luo et al., (2019) Introduced new password protect which desires from plaintext password to hashing password, hashing password, to negative password and finally using symmetric-key algorithm for creation encrypted negative password. They conclude technique is secure from lookup table attack as dictionary attacks [14].

Q. Zhang et al., (2019) presented algorithm used image hashed data to frequentative progressing aspect of matrix to enhance parameterized value of chaotic maps, it increases the association of key along with original image. The generation of any-order by chen's chaotic structure is processed for any-order encryption process the DNA coding and decoding process.

Finally, they achieve solution for problem of counter statistical attacks, noise attack and robustness of cropping, plaintext sensitivity and differential attacks at [15].

H. Tang et al., (2018) proposed three layered dynamic encryption process depend upon DES along with network coding. The encryption process depends on the partial key update work done in low complexity and which strengthen the adaptability of different cyber conditions in [16].J. Howe et al., (2018) address that Asymmetric cryptography is required large amount of computation and storage. The elliptic curve cryptography is used to decreases power consumption, increases devices performance and it have strong enforcement to conform secure communication especially when the message is encoding in elliptic curve. Proposed the Secure and Efficient Encoding scheme to address the encoding part, eventually important to secure the mapping of the message and it benefits by resisting to several attacks [17].

Y. Liu, Q. Zhong et al., (2017) designed user dependent data backup scheme using multifactor authentication. User using a symmetrical key and divided it into three shares. Finally delete the key. To access the data, key can reconstruct easily by combining the shares in user's smart card, pen drive, laptop etc. For laptop and smart card lost or damage they use, the password and biometric for recovery process [18].Y. Zhang et al., (2017) proposed scheme to work or reinforce batch validation along with process of data dynamic operation. In proposed method audition at most required to evaluate message validity code tag for validation. It is self-sustained with number of validation works. This method attain light weight verification in auditor side [19]. K. Bai and C. Wu (2016) stated AES like Cipher, protecting encryption key during the execution of the AES algorithm in open sources devices. It is depend upon key-relaying S-boxes key expansion. S-boxes works as a key expansion and these S-boxes is applied to all the round keys. The S-boxes is used to preventing the known white-box attacks [20].

J. K. Liuet al., (2016) discusses two factor authentication for data safety prospection process with aspect volatile cloud storage environment. Here encrypted data transfer through the cloud from sender to receiver but decryption process is done by two keys, first is secret key and another one is unique key. When both key are valid only the decryption process executes [21].H. D. Nguyen and K. Turitsyn (2016) stated the judgment a small- signed stability of operating points with new proposed novel mathematical "robust stability" criterion. It helps to provides mathematical promise stability of the operation point at any multiple connection of the loads. RSA prosper to confirm the solidity the ability without making any speculation on the multiple response for load [22].

C. J. Mitchell (2016) criticized the van oorstch-wiener attack which is executed with both cipher text and plaintext sets produce utilizing a variety keys. They suggest 80 bits of security key is better than 56 bits of securities. The objectives are identified in [23]. The key change in regular interval helps to limits the impact of successful attacks but it don't minimal the attack's triumph possibility [24]. F. Guoet al., (2016) introduced new encryption notion and its construct such a distance driven encryption for the internal outcome encryption which is admissible for

size of private key and cipher texts. Here the new encryption notion works, In encryption phase biometric scanned a private key to get encrypted cipher ,in key generation phase with another biometric scanned private key can decode a encrypt key. When the algorithm realize that two biometric transits that identical [25].

J. Hong et al., (2015) analyze DAC-MACS is handling the attribute repudiation the main constructing progress has certify safe. The excluded user are allowed acquire unapproved file, the attack algorithm wants conversion cipher-text existing-version to older-version. Excluded user can manipulate the cloud storage provider obtain adequate cipher test upgraded keys. This bugs will be prevented effectively in DAC-MACS scheme [25]. Artificial intelligent techniques are developed in [26] P. Roberto de Oliveira et al., (2014) quoted that energy consumption between the key generation of ECC Algorithm and RSA algorithm. Cryptographic keys are used to the authenticate procedures within entities broadcasting that improve safety of transfer. They tested the feasible connection within energy utilization along with runtime process. Finally concluded that the ECC algorithm stated low energy utilization than the RSA algorithm [27].

J. Niet al., (2014) proposed most effective multiple verifying protocol transaction depend upon distributed along with parallel system. They manifest protocol are timid, some active adversary is penetrable in cloud storage. Auditor can detected arbitrarily modified cloud data in auditing process [28].L. Zhouet al., (2013) Proposed method which incorporate cryptographic concepts, where pole based access control is named as role based encryption (RBE), they presents a safe RBE-based combination of cloud storage environment permit a concern to save records assumed on public storage and storing confidential data in private cloud storage [28]. Problem formulation is discussed in [29].

3. COMPARISIONS OF METHODOLOGY

SI. NO	METHODOL OGY	PROBLEM DEFINITION	IMPLICATION	MERITS	DEMERITS
1	Scalable and	In current cloud	The	The sensitive	Trusted
	Secure Big	integrated IoT	classification of	data are more	authority plays
	Data IoT	clearly suffer	sensitive and	secured then	major role in
	System Based	by limitations	Non-sensitive	existing	multifactor
	on Multifactor	in secure	data helps to uses	encryption	authentication
	Authentication	authentication	separate	technique	that allows the
	and	and encryption	encryption		trusted authority
	Lightweight	schemes	scheme for		to manipulate
	Cryptography		different file type		the data or
			along with		owner ship

 TABLE 1. Comparison of methodology

			different cloud		
			storage to secure		
			the data with		
			multifactor		
			authentication		
2	Audio	In audio	Preliminary	New audio	Encryption
	Encryption	encryption	value that	encryption	process used
	Algorithm	process DNA	presents in	method offer	only for single
	Based on	coding confess	chaotic	very high	and dual audio
	DNA Coding	having	controlled by	standard	format
	and Chaotic	problems they	hash value on the	terms in	
	System	are high	audio and then	security	
		association and	making		
		encryption	unpredictable		
		speed become	chaotic		
		slow	trajectory, DNA		
			coding is used to		
			mystifying and		
			scatter the data		
			(audio).		
3	Cancelable	Biometric	Approach by	The scheme	Metamorphic
	Multi-	template	fusion of fuzzy	that	fuzzy extractor
	Biometric	existing	extractor with a	safeguard	takes enormous
	Approach	safeguard	novel bit-wise	without	vast repository
	Using Fuzzy	schemes may	encryption	supplementar	
	Extractor and	downgrade	scheme to	y noise that	
	Novel Bit-	granting	engender	means of bit	
	Wise	capability or	cancelable	errors is	
	Encryption	problem based	biometric	executed in	
		on speed and	templates	preserved	
		security		template	
4	PSDS-	Data security	Sensitive are	Proposed	The processing
	Proficient	problems over	divide into two	method is	time and
	Security Over	multi cloud	parts, it	used to	complexity for
	Distributed	such as	encrypted	secure	encryption
	Storage: A	vulnerable to	separately and	against	authentication is
	Method for	numerous	stored in	following	very high
	Data	attacks.	different cloud	attack,	
	Transmission		storage	related key	
	11ansinission		storage	Terated Rey	

	1		r		
				in middle attack, pollution	
				attack	
5	Image	Single	2D chaotic	Algorithm	Algorithm has
	encryption by	dimensional	system is fusion	achieved they	limitation is that
	combining	chaotic	of sine maps	are key	only diffusion is
	dynamic DNA	encryption	along with	sensitive	used during the
	sequence	algorithm has	logistic man The	histogram	encryption
	operation and	descent	sino mon moleos	and	process
	the improved		sine map makes	anu	process
	2D logistic	huge problem is	of two chaotic	analysis. It	
	sine map	too small space	maps combining	makes	
		for key	encryption	difficult for	
			design for a	most	
			multiple DNA	successful	
			encode and	attack	
			decode.		
6	Memorable	Image	Neuron-like	It results high	Secret key used
	Image	cryptographic	based learning	security and	in the encryption
	Encryption	algorithm	scheme makes to	adaptive	process is 512-
	Algorithm	facing	identify a catchy	characteristic	bit long
	Based on	problems,	scattered scheme	s	
	Neuron-Like	makes lead to	and execute the		
	Scheme	data	plaintext based		
		insensitivity in	image encryption		
		system for	algorithm. The		
		equivalent keys	process get input		
		- 1	and weights of		
			the neuron		
			through the		
			feedback		
			operation to		
			regulate the		
			information of		
			image		
7	Enhanced	Intruder con	Encryption	Multifactor	Process of
/	soouro doto	intrudo ony	process done	authonticatic	hiding the key is
	beeluur	immontant	before the		mong the key is
	раскир	important	before the	n is provided	more complex

	achomo using	information on	transmit data for	soouro doto	and healtun
	scheme using	mode of	aland stars as	secure data	
	muni-racior	mode of	The design	with	process have to
	authentication	transfer	The design	ennanced	ennance
			hidden sharing	data backup	
			method and	process using	
			multi-factor	own	
			authentication	password and	
			provide data	biometric	
			protection		
8	Image	Existing image	Encryption	Proposed	Algorithm have
	Encryption	encryption	architecture	substitution	very complex
	Algorithm	allows lack of	(KSA)	method	throughput
	Using a Novel	safety and	progressing key	which	process
	Key-	encryption	for upgrade the	establish on	
	Substitution	capability has	commencing	s-boxes to	
	Architecture	below the par	keys implement	different	
			plain image and	categories	
			evolve another	image	
			substitution	encryption	
			scheme that		
			encrypting		
			different		
			category images		
9	Cryptographic	Random data	CAPDP allows	The	Data owner
	Accumulator-	blocks that	storage user to	verification	must store
	Based Scheme	verify data	do data integrity	process is	accumulator and
	for Critical	integrity	verification	self-reliant of	tag record table.
	Data Integrity	inadequate	infinite	the count of	
	Verification in	involve highly		blocks being	
	Cloud Storage	sensitive data		checked	
10	Plain-Image-	Recent chaotic	DNA encoding	Makes	Algorithm have
	Related	image	and decoding	unworkable	low encryption
	Chaotic Image	encryption	schemes invoke	for intruder	efficiency
	Encryption	algorithm	plain image	to deploy of	
	Algorithm	unable to block	correlated DNA	special plain-	
	Based on	chosen	order progress	image attack	
	DNA	plaintext attack	further		
	Sequence		dependent on		
	Operation and		hashed data		
	Discrete				

	Logarithm				
11	Fast Phrase Search for Encrypted Cloud Storage	Identifying with keywords search may causes bugs named fuzzy keywords	Phrase search based Bloom filters uses services of n- gram filters to adopt functionality and it allows phrase search to execute self-sustain without initial progression of conjunctive keyword based search that detect user files	Algorithm is modified to enhance topmost speed or topmost speed along a adoptable repository cost	Phrase search based encryption for cloud storage is not explored ate.
12	Traceable Anonymous Authentication and Key Exchange Protocol for Privacy- Aware Cloud Environments	Anonymous ID-theft attacks is block	Pre- authentication and post authentication of user to avoid anonymity.	Protection support quick bug identifying or offline security upgrade to trace illegal users.	User registration phase system authority has to identify suspected user.
13	High Throughput and Secure Authentication -Encryption AES-CCM Algorithm on Asynchronous Multi core Processor	Analysis of AES-CCM algorithm in asynchronous multi core processer	Matrix transformation based on authentication and parallel encrypting process established on multi-core processor	Helps active high through put, comprehensi on performance and secure AES based on counter with chaining mode	Processing speed of same algorithm is differs due to multi core
14	Authentication by Encrypted Negative	Authentication techniques are despite some	Plaintext password to hashing	Technique is secure from lookup table	Hashing technique is used but still

European Journal of Molecular & Clinical Medicine

Password	security flaws	password, hashing password to negative password and finally using symmetric-key algorithm for creation encrypted negative	attack as dictionary attacks	have improve the password security
Image encryption algorithm based on image hashing, improved chaotic mapping and DNA coding	Image encryption progress with the simple structure	passwordImage hasheddata tofrequentativeprogressingaspect of matrixto enhanceparameterizedvalue of chaoticmaps, itincreases theassociation ofkey along withoriginal image.The generationof any-order bychen's chaoticstructure isprocessed forany-orderencryptionprocess the DNAcoding anddecoding process	Achieve solution for problem of counter statistical attacks, noise attack and robustness of cropping, plaintext sensitivity and differential attacks	Algorithm is too much complicated even it ensure the security
Network Coding and DES Based Dynamic Encryption	Protection in multiple defense in cyber security	Three layered dynamic encryption process depend	Low complexity and strengthen the	Proposed algorithm is rather not up to the mark on equivalent of

	Scheme for Moving Target Defense		with network coding, encryption process depends on the partial key update work	adaptability of different cyber conditions	triple DES
17	Practical Discrete Gaussian Samplers for Lattice-Based Cryptography	Asymmetric cryptographic are required large amount of computation and storage	The elliptic curve cryptography is used to decreases power consumption, increases devices performance. Secure and Efficient Encoding scheme to address the encoding part, eventually important to secure the mapping of the message and it benefits by resisting to several attacks	Have strong enforcement to conform secure communicati on especially when the message is encoding in elliptic curve	Algorithm is focus mostly in side channel time attacks
18	secure data backup scheme using multi-factor authentication	Intruder can intrude any important information on mode of transfer	User using a symmetrical key and divided it into three shares, save the shares and delete the key. To access the data, key can reconstruct easily by combining the shares in user's	Smart devices lost and damage they use, the password and biometric for recovery process	Purpose of deleting the key is duplicate by weak security backup

			smart devices.		
19	Efficient Public Verification of Data Integrity for Cloud Storage Systems from In distinguishabil ity Obfuscation	The outsourcing the date is the problem for Data integrity	Audition at most required to evaluate message validity code tag for validation. It is self-sustained with number of validation works	Achieves light weight verification in auditor side	Auditor is playing major role in this algorithm. There are more possibilities due to human errors
20	AES-Like Cipher and Its White-Box Implementatio n	Providing more protection in round execution process in AES	AES-Like Cipher, protecting encryption key during the execution of the AES algorithm in open sources devices. It is depend on key- driven S-boxes key expansion. The S-boxes works as a key expansion and these S-boxes is applied to all the round keys.	The S-boxes is used to preventing the known white-box attacks	S-boxes is very efficient in protection of data but still execution is long
21	Two-Factor Data Security Protection Mechanism for Cloud Storage System	Increasing authentication to protect our data in cloud storage	Two-factor authentication for data security prospection process with element mutable in cloud storage environment	Encrypted data transfer through the cloud from sender to receiver but decryption process is done by two keys, first is	Two-factor authentication is not enough to secure data in current environment

				secret key and another	
				one is unique	
				key.	
22	Robust	Dynamic	Judgment of a	RSA prosper	Theft constancy
	Stability	response of	little- signed	to confirm	regime can be
	Assessment in	loads inherent	constancy of	the solidity	executed in
	the Presence	uncertainty and	operating points	the ability	designing and
	of Load	natural	with new	without	operations
	Dynamics	variability	proposed novel	making any	absence of
	Uncertainty	makes difficult	mathematical	speculation	differentiate
		and	"robust stability"	on the	efficiency and
		compromise the	criterion. It helps	multiple	economic
		security	to provides	response for	factors
			mathematical	load	
			promise stability		
			of the operation		
			point for any		
			multiple		
			connection of		
			loads		
23	On the	Reconsiders the	Suggest 80 bits	van oorstch-	The key change
	Security of 2-	safety offered	of security key is	wiener attack	in regular
	Key Triple	by two key	better than 56	which is	interval helps to
	DES	triple DES	bits of securities.	executed with	minimum the
				both cipher	impact of
				text and	successful
				plaintext sets	attacks but it
				produce	does not
				utilizing a	attack's guagass
				variety keys	nrobability
24	Distance-	Encryption	Encryption phase	Both	Providing same
	Based	algorithm is	biometric	encrypted	biometric
	Encryption	executed by	scanned a private	chipper and	authentication
	Fuzziness in	value of	key to get	decrypt	for both chipper
	Biometric-	biometric as	encrypted cipher	chipper key	test and key
	Based	encryption key	,in key	get after the	make monopoly
	Encryption		generation phase	biometric	
			with another	authenticatio	

			biometric	n process and	
			scanned a private	executes	
			key can decrypt a	normal	
			sipher leav	anomunition	
25	Committee of on	The	Draw and most		Anditonia
23	Security of an		Proposed most		
	Efficient	outsourcing the	effective	detected	playing major
	Dynamic	date is the	multiple	arbitrarily	role in this
	Auditing	problem for	verifying	modified	algorithm. There
	Protocol in	Data integrity	protocol	cloud data in	are more
	Cloud Storage		transaction	auditing	possibilities due
			depend upon	process	to human errors
			distributed along		
			with parallel		
			system		
26	Role-Based	Control and	Incorporate the	safe RBE-	No separate
	Access	prevent of	cryptographic	based	encryption
	Control on	unauthorized	techniques with	combination	algorithm of
	Encrypted	access in cloud	pole based	of cloud	sensitive data
	Data in cloud	storage	access control is	storage	
	storage		named as role	environment	
			based encryption	permit a	
				concern to	
				save records	
				assumed on	
				public	
				storage and	
				storing	
				confidential	
				data in	
				private cloud	
				storage	

4. CONCLUSION

The analysis of the following literatures and comparisons of methodology, problem definition, implication, merits and demerits. Thus, the motivation of cryptographic encryption and decryption process is common for image, audio, video and text to secure these types of data. But the existing methodology differs depend upon the types of data. According to the observation conclude to propose new encryption and decryption algorithm scheme that generalized for all types of data with high efficient and secure technique without storing secret keys in database. To design and develop new algorithm scheme to get the credentials that based on the user unique and credentials not stored and maintained in cloud storage.

REFERENCES

- S. Atiewi et al., "Scalable and Secure Big Data IoT System Based on Multifactor Authentication and Lightweight Cryptography," in IEEE Access, vol. 8, pp. 113498-113511, 2020, doi: 10.1109/ACCESS.2020.3002815.
- [2]. X. Wang and Y. Su, "An Audio Encryption Algorithm Based on DNA Coding and Chaotic System," in *IEEE Access*, vol. 8, pp. 9260-9270, 2020, doi: 10.1109/ACCESS.2019.2963329.
- [3]. D. Chang, S. Garg, M. Hasan and S. Mishra, "Cancelable Multi-Biometric Approach Using Fuzzy Extractor and Novel Bit-Wise Encryption," in IEEE Transactions on Information Forensics and Security, vol. 15, pp. 3152-3167, 2020, doi: 10.1109/TIFS.2020.2983250.
- [4]. F. Shahid, H. Ashraf, A. Ghani, S. A. K. Ghayyur, S. Shamshirband and E. Salwana, "PSDS– Proficient Security Over Distributed Storage: A Method for Data Transmission in Cloud," in IEEE Access, vol. 8, pp. 118285-118298, 2020, doi: 10.1109/ACCESS.2020.3004433.
- [5]. J. Zheng and L. Liu, "Novel image encryption by combining dynamic DNA sequence encryption and the improved 2D logistic sine map," in *IET Image Processing*, vol. 14, no. 11, pp. 2310-2320, 18 9 2020, doi: 10.1049/iet-ipr.2019.1340.
- [6]. Y. Zhang and B. Li, "The Memorable Image Encryption Algorithm Based on Neuron-Like Scheme," in *IEEE Access*, vol. 8, pp. 114807-114821, 2020, doi: 10.1109/ACCESS.2020.3004379.
- [7]. H. Hu, C. Lin, C. Chang and L. Chen, "Enhanced secure data backup scheme using multifactor authentication," in IET Information Security, vol. 13, no. 6, pp. 649-658, 11 2019, doi: 10.1049/iet-ifs.2018.5380.
- [8]. Y. Song, Z. Zhu, W. Zhang, H. Yu and Y. Zhao, "Efficient and Secure Image Encryption Algorithm Using a Novel Key-Substitution Architecture," in *IEEE Access*, vol. 7, pp. 84386-84400, 2019, doi: 10.1109/ACCESS.2019.2923018.
- [9]. W. I. Khedr, H. M. Khater and E. R. Mohamed, "Cryptographic Accumulator-Based Scheme for Critical Data Integrity Verification in Cloud Storage," in IEEE Access, vol. 7, pp. 65635-65651, 2019, doi: 10.1109/ACCESS.2019.2917628.
- [10]. W. Feng, Y. He, H. Li and C. Li, "A Plain-Image-Related Chaotic Image Encryption Algorithm Based on DNA Sequence Operation and Discrete Logarithm," in *IEEE Access*, vol. 7, pp. 181589-181609, 2019, doi: 10.1109/ACCESS.2019.2959137.

- [11]. H. T. Poon and A. Miri, "Fast Phrase Search for Encrypted Cloud Storage," in IEEE Transactions on Cloud Computing, vol. 7, no. 4, pp. 1002-1012, 1 Oct.-Dec. 2019, doi: 10.1109/TCC.2017.2709316.
- [12]. H. Lin, "Traceable Anonymous Authentication and Key Exchange Protocol for Privacy-Aware Cloud Environments," in IEEE Systems Journal, vol. 13, no. 2, pp. 1608-1617, June 2019, doi: 10.1109/JSYST.2018.2828022.
- [13]. A.A. Pammu, W. Ho, N. K. Z. Lwin, K. Chong and B. Gwee, "A High Throughput and Secure Authentication-Encryption AES-CCM Algorithm on Asynchronous Multicore Processor," in IEEE Transactions on Information Forensics and Security, vol. 14, no. 4, pp. 1023-1036, April 2019, doi: 10.1109/TIFS.2018.2869344.
- [14]. W. Luo, Y. Hu, H. Jiang and J. Wang, "Authentication by Encrypted Negative Password," in IEEE Transactions on Information Forensics and Security, vol. 14, no. 1, pp. 114-128, Jan. 2019, doi: 10.1109/TIFS.2018.2844854.
- [15]. Q. Zhang, J. Han and Y. Ye, "Image encryption algorithm based on image hashing, improved chaotic mapping and DNA coding," in *IET Image Processing*, vol. 13, no. 14, pp. 2905-2915, 12 12 2019, doi: 10.1049/iet-ipr.2019.0667.
- [16]. H. Tang, Q. T. Sun, X. Yang and K. Long, "A Network Coding and DES Based Dynamic Encryption Scheme for Moving Target Defense," in IEEE Access, vol. 6, pp. 26059-26068, 2018, doi: 10.1109/ACCESS.2018.2832854.
- [17]. J. Howe, A. Khalid, C. Rafferty, F. Regazzoni and M. O'Neill, "On Practical Discrete Gaussian Samplers for Lattice-Based Cryptography," in *IEEE Transactions on Computers*, vol. 67, no. 3, pp. 322-334, 1 March 2018, doi: 10.1109/TC.2016.2642962.
- [18]. Y. Liu, Q. Zhong, L. Chang, Z. Xia, D. He and C. Cheng, "A secure data backup scheme using multi-factor authentication," in IET Information Security, vol. 11, no. 5, pp. 250-255, 9 2017, doi: 10.1049/iet-ifs.2016.0103.
- [19]. Y. Zhang, C. Xu, X. Liang, H. Li, Y. Mu and X. Zhang, "Efficient Public Verification of Data Integrity for Cloud Storage Systems from Indistinguishability Obfuscation," in IEEE Transactions on Information Forensics and Security, vol. 12, no. 3, pp. 676-688, March 2017, doi: 10.1109/TIFS.2016.2631951.
- [20]. K. Bai and C. Wu, "An AES-Like Cipher and Its White-Box Implementation," in The Computer Journal, vol. 59, no. 7, pp. 1054-1065, July 2016, doi: 10.1093/comjnl/bxv119.
- [21]. J. K. Liu, K. Liang, W. Susilo, J. Liu and Y. Xiang, "Two-Factor Data Security Protection Mechanism for Cloud Storage System," in IEEE Transactions on Computers, vol. 65, no. 6, pp. 1992-2004, 1 June 2016, doi: 10.1109/TC.2015.2462840.
- [22]. H. D. Nguyen and K. Turitsyn, "Robust Stability Assessment in the Presence of Load Dynamics Uncertainty," in *IEEE Transactions on Power Systems*, vol. 31, no. 2, pp. 1579-1594, March 2016, doi: 10.1109/TPWRS.2015.2423293.
- [23]. D.Godwin Immanuel, Dayana D.S, Sindarsingh Jebaseelan S.D "Hybrid Genetic Algorithm Assisted Artificial Bee Colony Approach for Voltage Stability Improvement" International

Journal of Applied Engineering Research ISSN No.0973-4562 Research India Publications, Volume 10, Number 59 (2015) pp.534-541.

- [24]. C. J. Mitchell, "On the Security of 2-Key Triple DES," in *IEEE Transactions on Information Theory*, vol. 62, no. 11, pp. 6260-6267, Nov. 2016, doi: 10.1109/TIT.2016.2611003.
- [25]. F. Guo, W. Susilo and Y. Mu, "Distance-Based Encryption: How to Embed Fuzziness in Biometric-Based Encryption," in IEEE Transactions on Information Forensics and Security, vol. 11, no. 2, pp. 247-257, Feb. 2016, doi: 10.1109/TIFS.2015.2489179.
- [26]. D. Godwin Immanuel and C. Chritober Asir Rajan, "An Genetic Algorithm approach for reactive power control problem," 2013 International Conference on Circuits, Power and Computing Technologies (ICCPCT), Nagercoil, 2013, pp. 74-78, doi: 10.1109/ICCPCT.2013.6528940.
- [27]. J. Hong, K. Xue and W. Li, "Comments on "DAC-MACS: Effective Data Access Control for Multiauthority Cloud Storage Systems"/Security Analysis of Attribute Revocation in Multiauthority Data Access Control for Cloud Storage Systems," in IEEE Transactions on Information Forensics and Security, vol. 10, no. 6, pp. 1315-1317, June 2015, doi: 10.1109/TIFS.2015.2407327.
- [28]. P. Roberto de Oliveira, V. Delisandra Feltrim, L. Andreia Fondazzi Martimiano and G. Brasilino Marcal Zanoni, "Energy Consumption Analysis of the Cryptographic Key Generation Process of RSA and ECC Algorithms in Embedded Systems," in *IEEE Latin America Transactions*, vol. 12, no. 6, pp. 1141-1148, Sept. 2014, doi: 10.1109/TLA.2014.6894012.
- [29]. Godwin Immanuel, D., Dayana, D.S, Solar water pumping system using enhanced DC–DC converter, Journal of Advanced Research in Dynamical and Control Systems, vol.10,2018,1609-1614.
- [30]. J. Ni, Y. Yu, Y. Mu and Q. Xia, "On the Security of an Efficient Dynamic Auditing Protocol in Cloud Storage," in IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 10, pp. 2760-2761, Oct. 2014, doi: 10.1109/TPDS.2013.199.
- [31]. L. Zhou, V. Varadharajan and M. Hitchens, "Achieving Secure Role-Based Access Control on Encrypted Data in Cloud Storage," in IEEE Transactions on Information Forensics and Security, vol. 8, no. 12, pp. 1947-1960, Dec. 2013, doi: 10.1109/TIFS.2013.2286456.
- [32]. Cryptography and Network Security 3rd Edition, authored by Atul Kahate, is a comprehensive book.

European Journal of Molecular & Clinical Medicine