Fibonacci Triple Sequence

Vipin Verma
Department of Mathematics, School of Chemical Engineering and Physical Sciences Lovely Professional University, Phagwara 144411, Punjab (INDIA)
E-mail: vipin_verma2406@rediffmail.com, vipin.21837@lpu.co.in

Abstract: In this paper a we have established some new generalised identities on one of the schemes of multiplicative Triple Fibonacci sequence.

Keywords: Multiplicative Triple Fibonacci sequence

1.1 Introduction

Sequence and series are eternal parts of mathematics. Many mathematicians have generalised many properties on well-known Fibonacci sequence, but the concept of Fibonacci triple sequence is less known to us. It was first introduced by Jin-Zai Lee \& Jia-Sheng Lee [1] in 1987. There are different schemes possible for Fibonacci triple sequence, in this paper we have established some new results of multiplicative triple Fibonacci Sequences of the one of the schemes [2-4].

1.2 Multiplicative Triple Fibonacci sequence

The Multiplicative Triple Fibonacci sequence is defined by the recurrence relation

$$
\begin{equation*}
\alpha_{n+2}=\gamma_{n+1} \gamma_{n}, \quad \beta_{n+2}=\alpha_{n+1} \alpha_{n}, \quad \gamma_{n+2}=\beta_{n+1} \beta_{n} \tag{1.2.1}
\end{equation*}
$$

for all integer $n \geq 0$, with initial conditions

$$
\alpha_{0}=a, \quad \alpha_{1}=d, \quad \beta_{0}=b, \quad \beta_{1}=e, \quad \gamma_{0}=c, \quad \gamma_{1}=f
$$

Where a, d, b, e, c and f are real numbers
Theorem 1 If α_{n} and γ_{n} are define by equation (1.2.1) then (for $n>1$)

$$
\begin{equation*}
\alpha_{n+8}=\prod_{i=n}^{n+4} \gamma_{i}\left(\prod_{j=n+1}^{n+3} \gamma_{j}\right)^{3} \gamma_{n+2}^{2} \tag{1.2.2}
\end{equation*}
$$

Proof: Theorem can be proved by mathematical induction method on n
For $n=1$ by equations (1.2.1) and (1.2.2)

$$
\prod_{i=2}^{6} \gamma_{i}\left(\prod_{j=3}^{5} \gamma_{j}\right)^{3} \gamma_{4}^{2}=\gamma_{2} \gamma_{3} \gamma_{4} \gamma_{5} \gamma_{6}\left(\gamma_{3} \gamma_{4} \gamma_{5}\right)^{3} \gamma_{4}^{2}
$$

by using equation (1.1) repeatedly we have

$$
\prod_{i=2}^{6} \gamma_{i}\left(\prod_{j=3}^{5} \gamma_{j}\right)^{3} \gamma_{4}^{2}=\alpha_{10}
$$

which proves for $n=1$
Suppose the theorem is true for $n=k$, so by equation (1.2.2)
$\alpha_{k+8}=\prod_{i=k}^{k+4} \gamma_{i}\left(\prod_{j=k+1}^{k+3} \gamma_{j}\right)^{3} \gamma_{k+2}^{2}$
Now to prove for $n=k+1$, by using equation (1.2.1) and (1.2.2)

$$
\prod_{i=k+1}^{(k+1)+4} \gamma_{i}\left(\prod_{j=(k+1)+1}^{(k+1)+3} \gamma_{j}\right)^{3} \gamma_{(k+1)+2}^{2}=\gamma_{k+1} \gamma_{k+2} \gamma_{k+3} \gamma_{k+4} \gamma_{k+5}\left(\gamma_{k+2} \gamma_{k+3} \gamma_{k+4}\right)^{3} \gamma_{k+3}^{2}
$$

by using equation (1.2.1) repeatedly we have

$$
\prod_{i=k+1}^{(k+1)+4} \gamma_{i}\left(\prod_{j=(k+1)+1}^{(k+1)+3} \gamma_{j}\right)^{3} \gamma_{(k+1)+2}^{2}=\alpha_{(m+1)+8}
$$

which proves the theorem.
Theorem 2 If α_{n} and β_{n} are define by equation (1.2.1) then (for $n>1$)

$$
\begin{equation*}
\beta_{n+8}=\prod_{i=n}^{n+4} \alpha_{i}\left(\prod_{j=n+1}^{n+3} \alpha_{j}\right)^{3} \alpha_{n+2}^{2} \tag{1.2.4}
\end{equation*}
$$

Proof: Theorem can be proved by mathematical induction method on n
For $n=1$ by equations (1.2.1) and (1.2.4)

$$
\prod_{i=2}^{6} \alpha_{i}\left(\prod_{j=3}^{5} \alpha_{j}\right)^{3} \alpha_{4}^{2}=\alpha_{2} \alpha_{3} \alpha_{4} \alpha_{5} \alpha_{6}\left(\alpha_{3} \alpha_{4} \alpha_{5}\right)^{3} \alpha_{4}^{2}
$$

by using equation (1.1) repeatedly we have

$$
\prod_{i=2}^{6} \alpha_{i}\left(\prod_{j=3}^{5} \alpha_{j}\right)^{3} \alpha_{4}^{2}=\beta_{10}
$$

which proves for $n=1$
Suppose the theorem is true for $n=k$, so by equation (1.2.4)
$\beta_{k+8}=\prod_{i=k}^{k+4} \alpha_{i}\left(\prod_{j=k+1}^{k+3} \alpha_{j}\right)^{3} \alpha_{k+2}^{2}$

Now to prove for $n=k+1$, by using equation (1.2.1) and (1.2.5)

$$
\prod_{i=k+1}^{(k+1)+4} \alpha_{i}\left(\prod_{j=(k+1)+1}^{(k+1)+3} \alpha_{j}\right)^{3} \alpha_{(k+1)+2}^{2}=\alpha_{k+1} \alpha_{k+2} \alpha_{k+3} \alpha_{k+4} \alpha_{k+5}\left(\alpha_{k+2} \alpha_{k+3} \alpha_{k+4}\right)^{3} \alpha_{k+3}^{2}
$$

by using equation (1.2.1) repeatedly we have

$$
\prod_{i=k+1}^{(k+1)+4} \alpha_{i}\left(\prod_{j=(k+1)+1}^{(k+1)+3} \alpha_{j}\right)^{3} \alpha_{(k+1)+2}^{2}=\beta_{(m+1)+8}
$$

which proves the theorem.
Theorem 3 If β_{n} and γ_{n} are define by equation (1.2.1) then (for $n>1$)

$$
\begin{equation*}
\gamma_{n+8}=\prod_{i=n}^{n+4} \beta_{i}\left(\prod_{j=n+1}^{n+3} \beta_{j}\right)^{3} \beta_{n+2}^{2} \tag{1.2.6}
\end{equation*}
$$

Proof: Theorem can be proved by mathematical induction method on n For $n=1$ by equations (1.2.1) and (1.2.6)

$$
\prod_{i=2}^{6} \beta_{i}\left(\prod_{j=3}^{5} \beta_{j}\right)^{3} \beta_{4}^{2}=\beta_{2} \beta_{3} \beta_{4} \beta_{5} \beta_{6}\left(\beta_{3} \beta_{4} \beta_{5}\right)^{3} \beta_{4}^{2}
$$

by using equation (1.2.1) repeatedly we have

$$
\prod_{i=2}^{6} \beta_{i}\left(\prod_{j=3}^{5} \beta_{j}\right)^{3} \beta_{4}^{2}=\gamma_{10}
$$

which proves for $n=1$
Suppose the theorem is true for $n=k$, so by equation (1.2.6)
$\gamma_{k+8}=\prod_{i=k}^{k+4} \beta_{i}\left(\prod_{j=k+1}^{k+3} \beta_{j}\right)^{3} \beta_{k+2}^{2}$
Now to prove for $n=k+1$, by using equation (1.2.1) and (1.2.6)

$$
\prod_{i=k+1}^{(k+1)+4} \beta_{i}\left(\prod_{j=(k+1)+1}^{(k+1)+3} \beta_{j}\right)^{3} \beta_{(k+1)+2}^{2}=\beta_{k+1} \beta_{k+2} \beta_{k+3} \beta_{k+4} \beta_{k+5}\left(\beta_{k+2} \beta_{k+3} \beta_{k+4}\right)^{3} \beta_{k+3}^{2}
$$

by using equation (1.2.1) repeatedly we have

$$
\prod_{i=k+1}^{(k+1)+4} \gamma_{i}\left(\prod_{j=(k+1)+1}^{(k+1)+3} \gamma_{j}\right)^{3} \gamma_{(k+1)+2}^{2}=\gamma_{(m+1)+8}
$$

which proves the theorem.

References

[1] J.Z. Lee and J.S. Lee, Some Properties of the Generalization of the Fibonacci sequence, The Fibonacci Quarterly,25(2), 111-117, 1987
[2] Cerda-Morales, G., On the Third-Order Jabosthal and Third-Order Jabosthal-Lucas Sequences and Their Matrix Representations, arXiv:1806.03709v1 [math.CO], 2018
[3] Feinberg, M., Fibonacci-Tribonacci, The Fibonacci Quarterly, 1s: 3 (1963) pp. 71-74, 1963.
[4] K T Atanassov, V Atanassova, A G Shannon, J C Turner, New Visual Perspective on Fibonacci Numbers, World Scientific Publishing Co. Pte. Ltd., World Scientific Publishing Co. Pte. Ltd., 2002.

