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Abstract: An one server retrial lineup system operating in a uncertain environment subject 

to server failure along with repair is analysed. The environment is in any one of the m + 1 

states 0, 1, 2,…, m.  The environmental state 0 denotes to the state that the server is 

undergoing repair. The mean
 

  
 is exponential to the repair time. Throughout repair time, 

customer is not allowed to join the orbit. Instantaneously once the repair, the system drives 

to phase i, i   1 with probability   , where ∑   
 
   =1.  When the environment is in stage   

 1, the model acts like an               queue with service and arrival rate   and    
respectively   There is no waiting room and any arriving customer who discovers the server 

idle joins for service; else (in case of  busy server) goes to an orbit of infinite capacity and 

retries for service with rate v. The system resides in phase   for a random intermission of 

time  is exponential with mean 
 

  
 and at the end of the sojourn period, a catastrophe occurs 

washing out the customers (if any) in the orbit and also the customer (if any) undergoing 

service and the system moves to phase 0: The system steady-state behaviour is derived.  
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1. INTRODUCTION 

We see that, the Queueing systems working on  randomly occurring tragedies have been 

studied by, Sengupta [1], Yechiali [2], Chakravarthy [3], Krishna Kumar et al. [4], Sudhesh 

[5], Paz and Yechiali [6] and Udayabaskaran and Dora Pravina [7]) . The steady-state 

behaviour of an M/M/1 model  queue operating in uncertain environment subject to disasters 

where the underlying environment is described by a n-phase continuous-time Markov chain 

have been analysed by Paz and Yechiali [6]. Udayabaskaran and Dora Pravina [7] have 

analysed the time-dependent behaviour model of Paz and Yechiali [6]. However, to our 

knowledge, retrial queueing systems operating in random environment and subject to 

randomly occurring disasters have not been studied so far in literature. The purpose of the 

present paper is to perform a stochastic analysis of a retrial queueing system operating in an 
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uncertain conditions subject to catastrophes. We find the steady- state probability distribution 

of the queueing system. 

The paper is organized as follows: the model of a retrial queueing system have been 

analysed in section 2. The time-dependent probabilities of the system equations will be 

discussed in section 3. Section 4 obtains obvious expressions in the steady-state probabilities. 

 

2. EXPLANATION  OF THE MODEL 

We study a single server queuing system operating in an uncertain condition. The server 

fails due to the occurrence of catastrophes and it is immediately taken for repair. The mean
 

  
 

is exponential to the repair time. As in Paz and Yechiali [3], we assume that the environment 

is in any one of the m+1 states 0, 1, 2,…, m. The environmental state 0 corresponds to the 

state that the server is undergoing repair. Instantaneously once repair, the server returns to 

work immediately without delay in state i, i   1 with probability    where ∑   
 
        when 

it is in state i, customers arrive to externally to the system from outside with Poisson process 

with rate  ,                   These customers are called prime customers. There is no 

waiting room in the system and any prime customer who knows the server is busy 

immediately will move to an infinite capacity orbit and retries later for getting assistance. 

Customers in the orbit follow the classical retrial policy with rate   , where n is the number 

of people in the orbit retrying for service. The system resides in phase i for a uncertain time 

interval which is exponentially 
 

  
 as mean and at the instant of the end of the living period in 

phase   a disaster occurs washing out all the customers and the system goes to phase 0. 

During phase 0, no customer is allowed to join the orbit. When the conditions is in phase 

    ; the system performs like an               queue with arrival rate    and service 

rate     Let S(t) be the state of the server (0 for undergoing repair, 1 for idle at service and 2 

for actively serving) at time t, Let the state of the conditions at time t be E(t); and  the number 

of customers in the orbit at time t be      . Let                        .  Then the three-

dimensional             is Markov. The state space of the process is known by   
         |                                         We assume that a catastrophe has 

just occurred at time t = 0: Then, we have              .We define the probability 

distribution of                  by 

                               |                .                                          (1) 

In the next section, we derive the governing integral equations for p (i, j, k, t). 

 

3. GOVERNING EQUATIONS 

Standard probabilistic arguments yield the following integral equations for           . 

Case (i)            : For the system to be in state         at time t, one of the following 

equally exclusive and exhaustive events should occur: (a) No event has taken place up to time 

t. (b) The system was in state          or                                       at time 

u   (0, t),a catastrophe occurred in         and no event has occurred thereafter up to time 

t: Consequently, we get 

                  ∑ ∑ ∫            
 

 
 
   

 
                  

             (2) 

          (1,j, 0)                    : 

           =∫            
 

 
                

                         (3) 

           (                          ;               

           =∫            
 

 
   

                                              (4) 
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           =∫            
 

 
                                     (5) 

                                                   

           =∫               
 

 
                                                           (6) 

Representing the Laplace transform of p(i, j, k, t) by p*         , equations (2) - (7) yield 

       
             ∑ ∑                         

   
 
              (7) 

(         ) 
                                                            (8) 

(           )                                                        (9) 

(            ) 
                                                         (10) 

(            ) 
                                                           

                                                            (11) 

 

4. STEADY-STATE SOLUTION 

Steady-state probabilities are defined by 

                                                                     (12) 

By Final Value Theorem of Laplace transform, 

                                                               

Consequently, equations (7) - (11) yield the following equations: 

            ∑ ∑                       
 
   

 
            (13) 

                                                                 (14) 

                                                              (15) 

                                                                (16) 

                                                                        

                 (17) 

Equations (13)-(17) can be solved by the technique of partial generating functions. These 

functions are defined by 

∏      =∑          
                                               (18) 

Equations (14) and (15) yield 

           ∏      =  ∏                                ,                  (19) 

Equations (16) and (17) yield 

                ∏      =    
 

 
 ∏                  ,               (20) 

Equation (19) yields 

∏       
          ∏                                

  
,             .     (21) 

Equations (20) and (21) yield 

∏       
          

                {          
 )              

      
                  

,    (22) 

Where               and              . Using Rouche's theorem, equation (22) 

yields 

         
                 

              
        ,             .     (23) 

where     (0,1) is the positive root of the quadratic equation 

      
  (         )                 (24) 
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The other root    of (24) lies outside (0, 1). Expanding (22) as a power series and equating 

like powers of u, the probabilities                    can be obtained in terms of          

Using          in (14), we can obtain           Using the total probability law 

         ∑ ∑                      

 

   

 

   

 

 We can obtain          explicitly. 

 

5. CONCLUSION 

Here, we governed the probabilities of steady-state for a lone server retrial lineup system 

operating in a uncertain environment subject to server failure and repair. 
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