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Abstract: The harmful amounts of metals in soils may be related to natural 

vegetation due to planting, manufacturing, mining, and waste management 

activities. Many of the acidic soils below pH 5.0 are essential growth 

restricting factors in plants, pH value as large as 5.5, however, may be easily 

reached. The issue is especially bad in extremely acidic subsoils that face 

trouble during liming and are aggravated by strongly acidic nitrogen 

engravings. The strong acidity in the subsoil (AI toxicity) decreases height of 

the plants, increases drought susceptibility and decreases the use of subsoil 

nutrients. The high temperature exacerbates aluminum toxicity d in cotton 

and wheat. The treatments T4, when compared with T1, showed that Fibroin NPs 

decreased the total free proline in rice stalk by only 14.19% whereas KNO3 NPS in T5 

enhanced the same by 39.92% when applied along with Aluminium stress. The total free 

proline in rice stalk was significantly enhanced by about 9.88% concerning T1 when 

treated with Fibroin  NPs upon Aluminium stress whereas only sole Fibroin NPs were 

applied (T6). KNO3 Nanoparticles when applied upon Aluminium stress (T6). The total 

free proline in rice roots was significantly decreased by about 17.39% concerning T1 when 

treated with Fibroin  NPs upon Aluminium stress whereas only sole Fibroin NPs were 

applied (T6). KNO3 Nanoparticles when applied upon Aluminium stress (T6). 
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1. INTRODUCTION  

 

Many plant species have developed mechanisms for the alleviation of Al internally and/or 

externally such as secretion of various organic acids anions (citrate, malate, and oxalate) from 

roots which further chelate Al ions in the rhizosphere (Kumar, P., Dwivedi, P. (2018a), 

Kumar, P., Kumar S. et al. (2018b), Kumar, P., Misao, L., et al., 2018c, Kumar P, Dwivedi, 

P.  2018d, Kumar, P. and Purnima et al., 2018e, Kumar, P. Pathak, S. 2019f, Kumar, P. 

Siddique, A. et al., 2019g) Furthermore, several Al tolerance genes have been explored in 

plants especially rice. It was found that NH+
4 ions reduced aluminum accumulations in the 

roots by altering the cell wall properties which took place due to a decrease in pH by the 

NH4
+ uptake. Ample of detoxification methodologies have been adopted by the plants to fight 

back with the metal toxicity and their accumulation such as a cellular antioxidant system that 

constitutes Superoxide dismutase (SOD), Ascorbate peroxidase(APX), Glutathione reductase 
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(GR) and Catalase (CAT). They help in the detoxification of oxyradical which further inhibits 

the oxidation of biomolecules (Kumar, P., 2014r, Kumar, P., Dwivedi, P., Singh, P., 2012s, 

Mishra, P.K., Maurya, B.R., Kumar, Pp. 2012t, Kumar, P., Mandal, B., Dwivedi, P.  2011u. 

Kumar, P., Mandal, B., Dwivedi, P. 2011v, Kumar, P., Pathak, S. 2016w, Pathak, S., Kumar, 

P., Mishra, P.K., Kumar, M. 2016x). In India, it has been mainly grown in the Gangetic 

plains and coastal areas (Kumar, P., Pandey, A.K., et al., 2018aa, Kumar, P., Kumar, S. et al., 

2018bb, Kumar, P., Krishna, V., et al., 2018cc, Kumar, P. and Dwivedi, P. 2018gg. Kumar 

P., Siddique A., et al., 2018ff, Kumar, P, Pathak, S, Kumar, M and Dwivedi, P. 2018cd, 

Kumar P. and Pathak S. 2018kk, Kumar P and Pathak S. 2018pq). Aluminum (Al) is the 

third-largest metallic element in the Earth's crust following oxygen and silicon. A large 

quantity of aluminosilicate minerals are found in soil. However, very small amounts are 

found in soluble form, able to influence biotechnology systems. The bioavailability is 

restricted mainly due to the acid environment and consequently leading to the toxicity. The 

most significant limitations of agriculture production are acidic soils (with a pH of 5.5 or 

lower). Acidic soils harm the production of staple food crops, in particular grain crops 

(Kumar, P., Harsavardhn, M. et al., 2018y. Kumar, P., Yumnam, J. et al., 2018z). 

Furthermore, acidification of agricultural soils is the result of certain agricultural practices 

such as the removal of products, the liquidation of nitrogen below the root zone, injudicious 

use of nitrogen fertilizers and organic build-up (Singh et al 2020a., Singh et al., 2020b., Sood, 

et al., 2020., Bhadrecha et al 2020, Singh et al., 2020c, Sharma et al., 2020, Singh et al., 

2020d, Bhati et al., 2020, Singh et al., 2019, Sharma et al., 2019). Many plant species have 

developed certain mechanisms for the alleviation of Al internally and/or externally such as 

secretion of various organic acids anions (citrate, malate, and oxalate) from roots which 

further chelate Al ions in the rhizosphere. Furthermore, several Al tolerance genes have been 

explored in plants especially rice. It was found that NH+
4 ions reduced aluminum 

accumulations in the roots by altering the cell wall properties which took place due to a 

decrease in pH by the NH4+ uptake. Al-induced oxidative stress leads to the splitting of 

membrane integrity and stability. Plants such as Vignita radiate (green gram), Oryza sativa 

(rice) and Lolium penne (ryegrass) exhibited enhanced lipid peroxidation onto Al exposure. 

Even Brassia juncea genotypes verified enhanced oxidative stress upon Al exposure. Al 

enhanced the content of Ascorbate, dehydroascorbate (DHA) and total Ascorbate 

(ASA+DHA) in B.juncea species.When plants are brought under Al exposure they are 

involved in free radical scavenging activities such as DPPH and HRSA in two genotypes of 

mustard. The same findings were shown by (Chutipaijit, 2016) which exaggerates on better 

the DPPH activity, more shall the rice genotypes be adaptive to osmotic stress based on 

antioxidant activities. Aluminum at very low concentration induces growth of native crops 

which have developed adaptive mechanisms (ChitraMani & Kumar, P. (2020); Sharma, M., 

& Kumar, P. (2020); Chand, J., & Kumar, P. (2020); Naik, M., & Kumar, P. (2020); Kumar, 

P., & Naik, M. (2020); Kumar, P., & Dwivedi, P. (2020); Devi, P., & Kumar, P. (2020); 

Kumari, P., & Kumar, P. (2020); Kaur, S., & Kumar, P. (2020); Devi, P., & Kumar, P. 

(2020); Sharma, K., & Kumar, P. (2020); Kumar, S. B. P. (2020); Devi, P., & Kumar, P. 

(2020); Chand, J., & Kumar, P. (2020). 

 

2. MATERIALS AND METHODS 

 

The experiment was conducted at Natural Ventilated Poly house, School of 

Agriculture, Lovely Professional University (LPU), Phagwara, Punjab. The farm situated at 

attitude 232 meters above sea level, latitude 31.244604 N and longitude 75.701022 E as per 

Google map (Figure 1). 

Figure 1. Google map of the experimental site 
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(Source: Google Earth, 2019)  

  Climate Condition 

Punjab Trans-Gangetic Plains Region Phagwara falls in the Central Plain Zone of 

Punjab. Generally, in June the hottest month of the year with a maximum temperature of 

45°C and a minimum of 27°C, the annual average temperature is 24°C. In January during 

winters the temperature falls down up to 4°C to 6°C. Monsoon starts in the last of June / early 

of July having a normal annual rainfall of 686mm.    

Treatments Details  
The pot experiment was conducted on the farm of the School of Agriculture, Lovely 

Professional University, Jalandhar Punjab with one genotype Pusa Basmati 1121 of Rice. 

Genotype was procured from Punjab Agriculture University, Punjab. The pot size for the 

experiment was 30 cm jn diameter and 25 cm in height. Heavy metal stress was created by 

foliar application of aluminum (100 ppm) at the flowering stage. KNO3 protein nanoparticle 

(1%) and Fibroin Nanoparticle (1%) were applied through a foliar application at the 

flowering stage. The various measurements were taken at 90 DAT. The treatment and 

experimental lay out details are presented in Table 1 and 2, respectively. 

 

Table 1:  Treatments Detail 

Treatments Details of the treatments 

T-0 Control 

T-1 Al (100ppm) 

T-2 Fibroin nanoparticle (1%) 

T-3 KNO3 protein nanoparticle (1%) 

T-4 Al (100ppm) + Fibroin nanoparticle (1%) 

T-5 Al (100ppm) + KNO3 protein nanoparticle (1%) 

T-6 Al (100ppm) + KNO3 protein nanoparticle (1%) + Fibroin 

Nanoparticle (1%) 

 

Table 2: Layout Details 

S. No. Particulars  Details  

1.  Layout CRD 
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2.  Treatment 7 

3.  Replications 3 

4.  Total Number of pots 7*3=21 

5.  Soil per pot 7 kg 

6.  Genotype Pusa Basmati 1121  

 

The total free proline was estimated by the method described by Bates et al., 1973.  

 

3. RESULTS AND DISCUSSION  

 

Total free Proline in rice stalk (µm g-1 fresh weight)   

 Effect of Silk Fibroin Nanoparticle (NP) and Potassium Nitrate (KNO3) and their 

combination on total free proline in rice stalk was studied in rice variety Pusa Basmati 1121 

under the Aluminium toxicity stress. Data were recorded at 90 days after transplanting (DAT) 

(Table 3 and Fig. 2). The average total free proline in rice stalk was significantly decreased 

by 32.01% when exposed to heavy metal stress (T1) as compared to control (T0) at 90 DAT 

of interval. Exogenous application of KNO3 particles on the leaves (T3) decreased the total 

free proline in rice stalk by 1.93% as compared to (T1). In comparison to T1, the exogenous 

application of Fibroin Nanoparticle (T2) showed an increment in the total free proline in rice 

stalk by 25.48%. The treatments T4, when compared with T1, showed that Fibroin NPs 

decreased the total free proline in rice stalk by only 14.19% whereas KNO3 NPS in T5 

enhanced the same by 39.92% when applied along with Aluminium stress. The total free 

proline in rice stalk was significantly enhanced by about 9.88% concerning T1 when treated 

with Fibroin NPs upon Al stress whereas only sole Fibroin NPs were applied (T6). KNO3 

Nanoparticles when applied upon Al stress (T6). The effects of Al on the sugars (Sucrose, 

Glucose, Fructose) and phytohormones in the roots of Quercus Serrata Thumb seedlings were 

studied previously. It was found that when the ten-week-old plant was hydroponically 

brought in contact with Al, the concentration of starch and sucrose was reduced but the 

concentration of glucose was enhanced in the roots. Even abscisic acid (ABA) was seen to 

increase at a gradual rate during the experiment. Al was seen to promote root growth by a 

signal pathway for which glucose served as an energy source (Kumar P. 2018i., Kumar P. 

2018ii., Kumar P. 2018iii, Kumar P.2018iv, Kumar P. 2018v. , Kumar P. 2018vi, Kumar P. 

2018vii, Kumar P. 2018viii, Kumar P., Pathak S. 2018ix, Kumar P., Pathak S. 2018x, Kumar 

P., Pathak S. 2018xi, Kumar P., Pathak S, Kumar P., Pathak S. 2018xiii, Kumar P., Pathak S. 

2018xiv, Kumar P., Pathak S. 2018xv, Kumar P., Pathak S. 2018xvi, Kumar P., Pathak S. 

2018xvii, Kumar P., Pathak S. 2018xviii). Al on exposure to two different wheat cultivars 

having different Al resistance was found to reduce the Ca+2 and Mg+2 content of the leaves as 

well as a gradual increase in the lipid peroxidation. Further Al-resistant cultivar was seen to 

assemble more concentration of Ca+2 and Mg+2 in the leaves. However, Al stress on plants 

immediately suppresses the respiration process and produces Reactive Oxygen Species 

(ROS). Mitochondrial Alternative Oxidase (AOX) was found to suppress Al stress by 

inhibiting ROS accumulation and thereby, reducing mitochondrial oxidative stress and 

enhancement in the growth capability of tobacco cells. 

 

Table 3. Total free Proline (ppm) in rice stalk during Kharif 

Treatments Total free proline in rice stalk at 90 DAT 

T0 0.0228ab ± 0.00256 

T1 0.0155ab ±  0.00492 
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T2 0.0208ab ± 0.00278 

T3 0.0152ab ± 0.00041 

T4 0.0133b ± 0.00219 

T5 0.0258a ± 0.00546 

T6 0.0172ab ± 0.00128 

 

where,  Data are in the form mean± SEM. Significance at P≤0.05 using SPSS ver. 22. 

T0= Control; T1: Aluminium chloride (100ppm); T2: Fibroin nanoparticle (1%); T3: KNO3 

nanoparticle (1%); T4: Aluminium chloride (100ppm) + Fibroin nanoparticle (1%); T5: 

Aluminium chloride (100ppm) + KNO3 Nanoparticle (1%); T6: Aluminium chloride 

(100ppm) + Fibroin nanoparticle (1%) + KNO3 Nanoparticle (1%). 

 

Figure 2. Total free Proline in rice stalk during Kharif 

 
where,  Data are in the form mean± SEM. Significance at P≤0.05 using SPSS ver. 22. 

T0= Control; T1: Aluminium chloride (100ppm); T2: Fibroin nanoparticle (1%); T3: KNO3 

nanoparticle (1%); T4: Aluminium chloride (100ppm) + Fibroin nanoparticle (1%); T5: 

Aluminium chloride (100ppm) + KNO3 Nanoparticle (1%); T6: Aluminium chloride 

(100ppm) + Fibroin nanoparticle (1%) + KNO3 Nanoparticle (1%). 

Total free Proline in rice roots (µm g-1 fresh weight)   

Effects of Silk Fibroin Nanoparticle (NP) and Potassium Nitrate (KNO3) and their 

combination on total free proline in rice roots were studied in rice variety Pusa Basmati 1121 

under the Aluminium toxicity stress (Kumar, P. (2019); Kumar, D., Rameshwar, S. D., & 

Kumar, P. (2019); Dey, S. R., & Kumar, P. (2019); Kumar et al. (2019); Dey, S. R., & 

Kumar, P. (2019); Kumar, P., & Pathak, S. (2018); Kumar, P., & Dwivedi, P. (2018); Kumar, 

P., & Pathak, S. (2018); Kumar et al.,2018; Kumar, P., & Hemantaranjan, A. (2017); 

Dwivedi, P., & Prasann, K. (2016). Kumar, P. (2014); Kumar, P. (2013);  Kumar et al. 

(2013); Prasann, K. (2012); Kumar et al. (2011); Kumar et al. (2014). Data were recorded at 

90 days after transplanting (DAT) (Table 4 and Fig. 3). The average total free proline in rice 

roots was significantly increased by 34.78% when exposed to heavy metal stress (T1) as 

compared to control (T0) at 90 DAT of interval. Exogenous application of KNO3 particles on 

the leaves (T3) decreased the total free proline in rice roots by 28.26% as compared to (T1) at 

90 DAT. In comparison to T1, the exogenous application of Fibroin Nanoparticle (T2) 

showed a decrease in the total free proline in rice roots by 30.43%, on proposed DAT. The 
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treatments T4, when compared with T1, showed that Fibroin NPs decreased the total free 

proline in rice roots by only 30.43% whereas KNO3 NPS in T5 enhanced the same by 43.90% 

when applied along with Aluminium stress. The total free proline in rice roots was 

significantly decreased by about 17.39% concerning T1 when treated with Fibroin  NPs upon 

Aluminium stress. The effect of Al on tea Camellia sinensis L. was found to induce certain 

biochemical changes in the cell wall. It also reduced the amount of xyloglucan in the root 

apices and thereby, reduced the Al binding sites by the activity of loosening agents and 

further enhanced the root length. The responses of two species (Al-tolerant and Al-sensitive) 

of Cicer arietinum (Chickpea) upon exposure to Al were studied earlier. Al-tolerant plants 

were found to exhibit less oxidative stress and reduced damage to root growth because of the 

accumulation of H2O2 and Lipid Peroxidation. In the wild species and flowering species of 

Camellia japonica L., wild species possess red colour whereas the flowering species possess 

purple colour which may revert to the red colour of the wild species the next year. This 

purple coloration in the plants was said to be the outcome of Al chelation with the 

anthocyanin. To study the role of NO-
3 and NH+

4 in Al binding capacity in the roots, it was 

found that on exposure to NH+
4, Al binding capacity of rice roots reduced as compared to 

NO-
3 exposure on roots. The reason may be attribute to the fact that NH+

4 uptake by the roots 

led to pH changes which further gave rise to change in cell wall properties and reduction in 

not only the Al binding groups such as –OH and COO- but also pectin and hemicellulose 

((Siddique, A.  Kumar, P. 2018h, Siddique, A., Kandpal, G., Kumar P. 2018i, Pathak, S., 

Kumar, P., P.K Mishra, M. Kumar, M. 2017j, Prakash, A.,  P. Kumar, 2017k., Kumar, P., 

Mandal, B., 2014L, Kumar, P.,  Mandal, B., Dwivedi P.,  2014m., Kumar, P.,  Kumar, P.K., 

Singh, S.   2014n, Kumar, P. 2013o., Kumar, P., Dwivedi, P. 2015p, Gogia, N., Kumar, P., 

Singh, J., Rani, A. Sirohi, Kumar, P.  2014q). 

 

Table 4. Total free Proline in rice roots during Kharif 

 

 

where,  Data are in the form mean± SEM. Significance at P≤0.05 using SPSS ver. 22. 

T0= Control; T1: Aluminium chloride (100ppm); T2: Fibroin nanoparticle (1%); T3: KNO3 

nanoparticle (1%); T4: Aluminium chloride (100ppm) + Fibroin nanoparticle (1%); T5: 

Aluminium chloride (100ppm) + KNO3 Nanoparticle (1%); T6: Aluminium chloride 

(100ppm) + Fibroin nanoparticle (1%) + KNO3 Nanoparticle (1%). 

 

 

 

 

 

 

 

 

Treatments Total free proline in rice roots at 90 DAT 

T0 0.0003b ± 0.000011 

T1 0.00046b ± 0.000008 

T2 0.00032b ± 0.000016 

T3 0.00033b ± 0.000004 

T4 0.00032b ± 0.000019 

T5 0.00082a ± 0.000174 

T6 0.00038b ± 0.000001 
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Figure 3. Total free Proline in rice roots during Kharif 

 
where,  Data are in the form mean± SEM. Significance at P≤0.05 using SPSS ver. 22. 

T0= Control; T1: Aluminium chloride (100ppm); T2: Fibroin nanoparticle (1%); T3: KNO3 

nanoparticle (1%); T4: Aluminium chloride (100ppm) + Fibroin nanoparticle (1%); T5: 

Aluminium chloride (100ppm) + KNO3 Nanoparticle (1%); T6: Aluminium chloride 

(100ppm) + Fibroin nanoparticle (1%) + KNO3 Nanoparticle (1%). 

 

4. CONCLUSION  

 

Based on the previous report, it is evident that there are many diagnostic degrees of 

impact of nanoparticles of metal and metal oxide on specific crops. Based on the above 

experiment conducted, it is clear that nanoparticles influenced the vital physiological and 

metabolic process. Among them, the total free proline was targeted to correlate the changes 

along with applied nanoparticles.  
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