Association of microbiota to oral squamous cell carcinoma: A short review

Thematic area: Microbiology

Prasada Rao Namburi¹, Krishnan Mahalakshmi^{2*}

¹Research Scholar, Dept of Microbiology, Bharath Institute of Higher Education and Research, Chennai, India, Assistant professor, Department of microbiology, Fathima institute of medical sciences (FIMS) Ramarajupalli, Kadapa PIN 516003 Andhra Pradesh India

²Professor & Head, Department of microbiology, Research lab for Oral-systemic health, Sree balaji

dental college and hospital, Bharath Institute of Higher Education and Research, Chennai- 600100, Tamil

Nadu, India

Association of microbiota to oral squamous cell carcinoma: A short review

Abstract:

Squamous cell carcinoma is commonly occurring cancer of the oral cavity and it is the major cause of morbidity and mortality. Apart from risk factors like tobacco habit, alcohol consumption and betel quid chewing, certain microorganisms are also implicated in the etiology of oral cancer. The oral microbiota contributes significantly in the human oral disease, systemic diseases and in health. The imbalances between microbes and their hosts mostly caused by bacteria leads to cancer. This review presents the literature on oral microbiota involved in causing oral squamous cell carcinoma. Articles were searched in databases such as PubMed, Google Scholar, Scopus, EBSCO, E-Journals and Science Direct until 2018 with the following search terms: "Association of oral microbiota with oral cancer Squamous cell carcinoma". Initially, 40 full text articles were identified and after taking into consideration of inclusion/exclusion criteria, 17 were excluded and finally, 23 articles were included in the review. The reports of 23 articles revealed that microbiota involved in oral cancers. As oral bacteria are found to be associated with OSCC, they can be certain biomarkers in the early diagnosis of carcinoma.

Key words:

Carcinogenesis, microbiome, oral bacteria, oral microbiota, oral squamous cell carcinoma,

Introduction:

Oral squamous cell carcinoma (OSCC) is the main cause of death compared to other oral cancers. This tumor develops from the oral mucosa with recognized 350,000 new diagnoses and 175,000 deaths across the world in 2018 (1). Risk factors such as chemicals, fibers, heavy metals & pesticides are causing OSCC by inducing prooncogenic genetic and epigenetic alterations (2-6). There are some other factors like oral injuries, inflammatory diseases, infections, and bacterial dysbiosis which are now considered as risk factors for cancer development (7-10).

Microorganisms present in the oral cavity can move to neighboring sites by spreading on contiguous epithelial surfaces. Oral cavity microorganisms are causing oral infectious diseases like dental caries, periodontitis, endodontic infections, alveolar osteitis (dry socket), and tonsillitis. Oral bacteria are also linked to cause a number of systemic diseases (11), including cardiovascular disease (12, 13), stroke (14), preterm birth (15), diabetes (16), and pneumonia (17).

Oral microbiota changes are able to cause disease by changing the link between oral bacteria and humans (18,19). Oral microbiota seems to regulate OSCC by the carcinogenetic modulation of cell metabolism and thus stimulating the formation of different cytokines associated in several pathological conditions (20–24). It is presented that the bacteria induce carcinogenesis by interfering with signal pathways and the cell cycle or by causing chronic inflammation. Cancer cells show

quick and unrestricted division, high metabolic rates and cellular morphology difference compared to normal cells. This abnormal regulation involves deficiency in cellular programs like demarcation, expansion, senescence and apoptosis. (25,26)

The present review is aimed at identifying specific microbiota association with OSCC. This review was achieved to know the association between oral microbiota and OSCC with the key question: "Does oral microbiota contribute to the development and progression of OSCC?"

Methods and Materials

Data sources and search strategy

Original research articles that focused on microbiota association to human OSCC were included in the study. Articles that have not assessed microbiota as an etiology for oral cancer, articles that were not original research and studies with insufficient data were excluded

Articles were searched in databases such as Google Scholar, PubMed, Scopus, EBSCO, E-Journals and Science Direct using keywords such as "Association of oral micriobiota to Oral squamous cell carcinoma". Articles which were published between 1998 to 2018 were included. The chosen articles references were also searched for the relevant information.

Study selection and data collection

The study was done in two stages. Firstly, the articles were examined and then the specific microbiota involved in each study was listed. In the second stage, different techniques used and results were presented.

Results

Search results

During searching, Initially 40 full-text articles were considered. After taking into consideration of inclusion/exclusion criteria, 17 were excluded and finally, 23 articles were included in the review. A total of 23 articles are listed in Table 1. 23 original research articles in which oral microbiota causing oral cancer were chosen for this review. After reviewing the articles, it was found that oral cancers are linked with altered microbial profiles. In the majority of searched articles it was found that, bacteria such as *Fusobacterium nucleatum*, *Porphyromonas gingivalis* in oral cancer exhibited shifts from normal health to cancer in terms of its abundance.

Discussion

The human body microbiome includes a wide variety of microorganisms like virus, bacteria, fungi & protozoa. The microbiome occupies in few parts of the host body and provides a niche for the commensal symbionts and pathobionts. Largest microbial population in the human body is present in the gastrointestinal tract, followed by the oral cavity. The emergence of innovative molecular techniques has helped in identifying nearly 700 microorganisms within the oral cavity. Currently, the concept of microorganisms has changed. They are now observed only as pathogens instead of partners of the healthy human body (27-29).

Many studies have found the interaction between microbiome and cancer. The microbiome influence carcinogenesis by various mechanisms which are not regulated by the immune system and inflammation. However, the link between the microbiome and cancer is through the immune system.

In the present review, a total of 23 original research articles reporting the association of microbiota to carcinogenesis were selected. By way of chronic infections and toxin production, most of the microorganisms interrupt the cell cycle and modify cell growth. Chronic infections result in the intracellular accretion of the pathogen which leads to the decline of apoptosis largely. (30,31) In this way, partially transformed cells are allowed to escape the self-destructive process and move to a further level of transformation, finally becoming carcinogenic. An alternative method is by the synthesis of substances that are carcinogenic by the bacteria. (32-34).

As Cancer sustains for longer duration, it is connected with changes in the body environment. So, it is understood that changes happening during cancer development will also influence the normal microbiome (35). In cancer, because of inflammation and oxidative stress, imbalance of normal flora occurs leading to the formation of nitric oxide synthetase (NOS2), reactive nitrogen species (RNS), and reactive oxygen species and an increase in cytokines such as interleukin-17 and tumor necrosis factor-alpha. As a consequence, various cellular responses occur leading to the formation of carcinogens. All these result in a shift from commensal microflora to the pathogenic state (30).

In the present review, it was identified that oral cancer is being associated with altered microbiota and the most commonly reported bacterial species were *Porphyromonas* gingivalis and *Fusobacterium nucleatum*.

Common bacterial species and cancer development

In this review, it is found that *F. nucleatum* and *P. gingivalis* are the common bacteria in causing cancer. *P. gingivalis*, a bacterium which was isolated, plays an important role in cancer through cellular invasion. The bacterial infection activates pro-matrix metalloproteinase (MMP)-9 expression. MMP-9 disintegrates the basement membrane and extracellular matrix, promoting tumor cell migration and invasion. This makes the tumor cells to reach the lymphatic system and blood vessels leading to metastasis. In this way, *P. gingivalis* may lead to the development and progression of cancer (33-41).

F. nucleatum is another bacterium which was found to play a role in carcinogenesis. It may induce cell proliferation and migration by targeting signaling molecules such as kinases involved in cell cycle control, causing cell proliferation and migration to increase. Moreover, the bacterium secretes MMP-9 and MMP-13 (collagenase 3) by triggering p38. It also plays an important role in tumor invasion and metastasis.(42,43). It is very well established that *F. nucleatum* and *P. gingivalis* has a role in periodontitis. In an unpredicted manner, the significance of these bacteria in the cause and development of oral cancer is less understood. Chronic infection of oral cavity promote carcinogenesis (42).

Conclusion:

After reviewing the articles, it is concluded that oral microbiota has been found to be associated with carcinogenesis. The predominant bacterial species associated with oral cancer was found to be *F. nucleatum and P. gingivalis*. The results have shown the association between bacterial species and oral cancer.

BIBLIOGRAPHY:

1.Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin dM, Piñeros M, Znaor A and Bray F: Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144: 1941-1953, 2019.

2. Fenga C, Gangemi S, di Salvatore V, Falzone L and Libra M: Immunological effects of occupational exposure to lead (Review). Mol Med Rep 15: 3355-3360, 2017 (Review).

3. Rapisarda V, Ledda C, Matera S, Fago L, Arrabito G, Falzone L, Marconi A, Libra M and Loreto C: Absence of t(14;18) chro- mosome translocation in agricultural workers after short-term exposure to pesticides. Mol Med Rep 15: 3379-3382, 2017.

4. Rapisarda V, Salemi R, Marconi A, Loreto C, Graziano AC, Cardile V, Basile MS, Candido S, Falzone L, Spandidos dA, *et al*: Fluoro-edenite induces fibulin-3 overexpression in non-malignant human mesothelial cells. Oncol Lett 12: 3363-3367,2016.

5. .Falzone L, Marconi A, Loreto C, Franco S, Spandidos dA and Libra M: Occupational exposure to carcinogens: Benzene, pesticides and fibers (Review). Mol Med Rep 14: 4467-4474, 2016 (Review).

6. .Malfa GA, Tomasello B, Sinatra F, Villaggio G, Amenta F, Avola R and Renis M: 'Reactive' response evaluation of primary human astrocytes after methylmercury exposure. J Neurosci Res 92: 95-103, 2014.

 Vivarelli S, Salemi R, Candido S, Falzone L, Santagati M, Stefani S, Torino F, Banna GL, Tonini G and Libra M: Gut Microbiota and Cancer: From Pathogenesis to Therapy. Cancers (Basel) 11: E38, 2019.
Banna GL, Torino F, Marletta F, Santagati M, Salemi R, Cannarozzo E, Falzone L, Ferraù F and Libra M: *Lactobacillus rhamnosus GG*: An overview to explore the rationale of its use in cancer. Front Pharmacol 8: 603, 2017.

9. Vivarelli S, Falzone L, Basile MS, Nicolosi d, Genovese C, Libra M and Salmeri M: Benefits of using probiotics as adjuvants in anticancer therapy. World Ac Sci J 1: 125-135, 2019 (Review).

10. Garozzo A, Falzone L, Rapisarda V, Marconi A, Cinà d, Fenga C, Spandidos dA and Libra M: The risk of HCV infection among health-care workers and its association with extrahepatic mani- festations (Review). Mol Med Rep 15: 3336-3339, 2017 (Review).

11.SEYMOUR, G. J., P. J. Ford, M. P. Cullinan, S. LEISHMAN, and K. YAMAZAKI. 2007. Relationship between periodontal infections and systemic disease. Clin. Microbiol. Infect. 13(Suppl. 4):3–10.

12. Turnbaugh, P. J., R. E. Ley, M. HAMADY, C. M. Fraser-Liggett, R. Knight, and J. I. Gordon. 2007. The human microbiome project. Nature 449:804–810.

13. Joshipura, K. J., H. C. Hung, E. B. RIMM, W. C. Willett, and A. Ascherio. 2003. Periodontal disease, tooth loss, and incidence of ischemic stroke. Stroke 34:47–52.

14. Joshipura, K. J., E. B. RIMM, C. W. Douglass, D. Trichopoulos, A. Ascherio, and W. C. Willett. 1996. Poor oral health and coronary heart disease. J. Dent. Res. 75:1631–1636.

 Offenbacher, S., H. L. Jared, P. G. O'Reilly, S. R. Wells, G. E. Salvi, H. P. Lawrence, S. S. Socransky, and J. D. Beck. 1998. Potential pathogenic mechanisms of periodontitis associated pregnancy complications. Ann. Peri- odontol. 3:233–250

16. Genco, R. J., S. G. Grossi, A. Ho, F. NISHIMURA, and Y. MURAYAMA. 2005. A proposed model linking inflammation to obesity, diabetes, and periodontal infections. J. Periodontol. 76:2075–2084.

17. K. Sonoki, K. Fujisawa, and T. Takehara. 2008. Oral health and mortality risk from pneumonia in the elderly. J. Dent. Res. 87:334–339

18. .Al-Maweri SA, Warnakulasuriya S and Samran A: Khat (*Catha edulis*) and its oral health effects: An Dent. 9:2018

19. Leonardi R, Loreto C, Barbato E, Polimeni A, Caltabiano R and Lo Muzio L: A histochemical survey of the human temporomandibular joint disc of patients with internal derangement without reduction. J Craniofac Surg. 18:1429–1433. 2007.

20. Petralia MC, Mazzon E, Fagone P, Falzone L, Bramanti P, Nicoletti F and Basile MS: Retrospective follow-up analysis of the transcriptomic patterns of cytokines, cytokine receptors and chemokines at preconception and during pregnancy, in women with post-partum depression. Exp Ther Med. 18:2055–2062. 2019

21. Vesty A, Gear K, Biswas K, Radcliff FJ, Taylor MW and Douglas RG: Microbial and inflammatorybased salivary biomarkers of head and neck squamous cell carcinoma. Clin Exp Dent Res. 4:255–262. 2018.

22. Meurman JH. Oral microbiota and cancer. J Oral Microbiol. 2010; 2:10.

23. Pennisi M, Malaguarnera G, Bartolo GD, Lanza G, Bella R, Chisari EM, Cauli O, Vicari E and Malaguarnera M: Decrease in Serum Vitamin D Level of Older Patients with Fatigue. Nutrients. 11:E25312019.

24. Pennisi M, Di Bartolo G, Malaguarnera G, Bella R, Lanza G, Malaguarnera M and Vitamin D: Vitamin D serum levels in patients with statin-induced musculoskeletal pain. Dis Markers. 2019:35494022019.

25. Dalton-Griffin L, Kellam P. Infectious causes of cancer and their detection. J Biol 2009;8:67.

26. Lax AJ, Thomas W. How bacteria could cause cancer: one step at a time. Trends Microbiol 2002;10:293-9.

27. Bhatt AP, Redinbo MR, Bultman SJ, *et al*. The role of the microbiome in cancer development and therapy. CA Cancer J Clin 2017;67:326-44.

28. Rajagopala SV, Vashee S, Oldfield LM, *et al.* The human microbiome and cancer. Cancer Prev Res (Phila) 2017;10:226-34.

29. Botero LE, Delgado-Serrano L, Cepeda Hernandez ML, *et al*. The human microbiota: the role of microbial communities in health and disease. Acta Biologica Colombiana 2016;21:5-15.

30. Dagli N, Dagli R, Darwish S, *et al.* Oral microbial shift: factors affecting the microbiome and prevention of oral disease. J Contemp Dent Pract 2016;17:90-6.

31.Mohd Bakri M, Mohd Hussaini H, Rachel Holmes A, *et al.* Revisiting the association between candidal infection and carcinoma, particularly oral squamous cell carcinoma. J Oral Microbiol 2010;2:5780.

32. Ghosh DS, Chaudhary, DM, Patil DS, *et al*. Quantification of viable aerobic bacteria in oral squamous cell carcinoma tissue – a microbiological approach. IOSR J Dent Med Sci 2014;13:115-8.

33.Chocolatewala N, Chaturvedi P, Desale R *et al*. The role of bacteria in oral cancer. Indian J Med Paediatr Oncol 2010;31:126-31.

34. Khajuria N, Metgud R. Role of bacteria in oral carcinogenesis. Indian J Dent 2015;6:37-43.

35. Khan AA, Shrivastava A, Khurshid M, *et al.* Normal to cancer microbiome transformation and its implication in cancer diagnosis. Biochim Biophys Acta 2012;1826:331-7.

36.Cankovic M, Bokor-Bratic M, Loncar J*et al.* Bacterial flora on the surface of oral squamous cell carcinoma. Arch Oncol 2013;21:62-4.

37.Hu J, Han S, Chen Y, *et al.* Variations of tongue coating microbiota in patients with gastric cancer. Biomed Res Int 2015;2015:173729.

38.Metgud R, Gupta K, Gupta J, *et al.* Exploring bacterial flora in oral squamous cell carcinoma: a microbiological study. Biotech Histochem 2014;89:153-9.

39.Sharma P, Gawande M, Chaudhary M, *et al.* Evaluation of Prevalence of Bacteria Helicobacter pylori in Potentially Malignant Disorders and Oral Squamous Cell Carcinoma. World J Dent 2015;6:82-6.

40.Tsai CE, Chiu CT, Rayner CK, *et al.* Associated factors in Streptococcus bovis bacteremia and colorectal cancer. Kaohsiung J Med Sci 2016;32:196-200.

41.Zaki AN, Kadum AD, Mousa NK, *et al.* Cancer infection and its relationship with Streptococcus mitis increasing numbers in human mouth. Int J Eng Sci Res 2014;5:88.

42. Whitmore SE, Lamont RJ. Oral bacteria and cancer. PLoS Pathog 2014;10:e1003933.

43.Binder Gallimidi A, Fischman S, Revach B, *et al.* Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget 2015;6:22613-23.

- 44. Lim Y, Fukuma N, Totsika M, *et al.* The performance of an oral microbiome biomarker panel in predicting oral cavity and oropha- ryngeal cancers. Front Cell Infect Microbiol. 2018;8(n/a):267.
- 45. Yang CY, Yeh YM, Yu HY, Chin CY, Hsu CW, Liu H, Huang PJ, Hu SN, Liao CT, Chang KP, Chang YL. Oral Microbiota Community Dynamics Associated With Oral Squamous Cell Carcinoma Staging. Front Microbiol. 2018. May 3;9:862.
- 46. Wolf A, Moissl-Eichinger C, Perras A, Koskinen K, Tomazic PV, Thurnher D (2017) The salivary microbiome as an indicator of carcinogenesis in patients with oropharyngeal squamous cell carcinoma: a pilot study. Sci Rep 7:5867
- 47. Shin JM, Luo T, Kamarajan P, et al. Microbial communities asso- ciated with primary and metastatic head and neck squamous cell carcinoma—a high Fusobacterial and low Streptococcal signature. Sci Rep. 2017;7(1):9934
- 48. Wang H, Funchain P, Bebek G, *et al.* Microbiomic differences in tumor and paired-normal tissue in head and neck squamous cell carcinomas. Genome Med. 2017;9(1):14
- 49. Al-Hebshi NN, Nasher AT, Idris AM, *et al.* Robust species taxon- omy assignment algorithm for 16S rRNA NGS reads: application to oral carcinoma samples. J Oral Microbiol. 2015;7(n/a):28934
- 50. Lee WH, Chen HM, Yang SF, Liang C, Peng CY, Lin FM, Tsai LL, Wu BC, Hsin CH, Chuang CY, *et al:* Bacterial alter- ations in salivary microbiota and their association in oral cancer. Sci Rep 7: 16540, 2017.
- 51. Amer A, Galvin S, Healy CM, *et al.* The microbiome of potentially malignant oral leukoplakia exhibits enrichment for *Fusobacterium, Leptotrichia, Campylobacter,* and *Rothia* species. Front Microbiol. 2017;8(2391):2391
- 52. Schmidt BL, Kuczynski J, Bhattacharya A, *et al*. Changes in abun- dance of oral microbiota associated with oral cancer. PLoS One. 2014;9(6): e98741
- 53. Sonalika WG, Tayaar SA, Bhat KG, *et al.* Oral microbial carriage in oral squamous cell carcinoma patients at the time of diagnosis and during radiotherapy–a comparative study. Oral Oncol 2012;48:881-

6

- 54. Katz J, Onate MD, Pauley KM, *et al.* Presence of *Porphyromonas gingivalis* in gingival squamous cell carcinoma. Int J Oral Sci. 2011;3(4):209–15
- 55. Pushalkar S, Mane SP, Ji X, *et al.* Microbial diversity in saliva of oral squamous cell carcinoma. FEMS Immunol Med Microbiol 2011; 61(3): 269-77.
- 56. Kullander J, Forslund O, Dillner J, *et al.* Staphylococcus aureus and squamous cell carcinoma of the skin. Cancer Epidemiol Biomarkers Prev 2009;18:472-8
- 57. Kang MS, Oh JS, Kim HJ, *et al.* Prevalence of oral microbes in the saliva of oncological patients. J Bacteriol Virol 2009;39:277-85.
- 58. Saini S, Saini SR, Katiyar R, *et al.* The use of tobacco and betel leaf and its effect on the normal microbial flora of oral cavity. Pravara Medical Review 2009;1:47-85
- 59. Kurkivuori J, Salaspuro V, Kaihovaara P, et al. Acetaldehyde production from ethanol by oral streptococci. Oral Oncol 2007;43:181-6
- 60. Sasaki M, Yamaura C, Ohara-Nemoto Y, *et al. Streptococcus anginosus* infection in oral cancer and its infection route. Oral Dis. 2005;11(3):151–6
- 61. Mager DL, Haffajee AD, Devlin PM, *et al.* The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non- randomized study of cancer-free and oral squamous cell carcinoma subjects. J Transl Med. 2005;3:27
- 62. Tateda M, Shiga K, Saijo S, *et al. Streptococcus anginosus* in head and neck squamous cell carcinoma: implication in carcinogenesis. Int J Mol Med. 2000;6(6):699–703
- 63. Nagy KN, Sonkodi I, Szoke I, *et al.* The microflora associated with human oral carcinomas. Oral Oncol. 1998;34(4):304–8

European Journal of Molecular & Clinical Medicine ISSN 2515-8260 Volume 07, Issue 5, 2020

Author & year	Microbiota	Sample	Site	Methodology & validation	Conclusion
Table 1					
Lim et al. [2018] , (44)	Corynebacterium, Paludibacter, Porphyromonas	Mouth			data indicate that the oral microbiome is able to predict the presence of OSCC and OPC with sensitivity and specificity of 100 and 90%, respectively
		Oral rinse		16S rRNA (V6–8) amplicon sequencing (Miseq	
Yang CY et al (45)	<i>F. periodonticum</i> increaseand decrease of S. mitis and <i>Porphyromonas</i> pasteri	Oral rinse	mouth	16S rRNA Sequencing	Change of oral microbiota as the cancer progresses from stage 1 to stage 4. upregulated <i>F. periodonticum</i> and down-regulated <i>S. mitis</i> and <i>Porphyromonas pasteri</i> forms a bacterial biomarker
Wolf <i>et al.</i> [2017] (46)	Salivary microbiota	samples (collected at baseline)	Saliva	16SrRNAamplicon sequencing (454)	Changes were found in the salivary microbiome of oral and oropharyngeal SCC patients and healthy controls. These changes may be promising biomarkers for SCC tumorigenesis, disease detection and the effectiveness of potential therapeutic interventions
Shin et al. (47) [2017],	Fusobacterium	Tissue	Mouth	16S rRNA (V4) amplicon sequencing	an increase in Fusobacterium and Parvimonas associated with OSCC
Wang et al.(48) [2017] ,	Parvimonas	Tissue	Mouth	16S rRNA clone sequencing	Genus Parvimonas only associated with OSCC
	Fusobacterium nucleatum	Tissue	Mouth	16S rRNA (V4) amplicon sequencing	Fusobacterium nucleatum associated with OSCC
Al-Hebshi et al (2017) (49) Lee WH etal (2017)	Fusobacterium,Porphyromonas gingivalis	Saliva	Mouth	16S rRNA (V4) amplicon sequencing	the dominant bacterial species belonging to one of five phyla: <i>Firmicutes, Bacteroidetes,</i> <i>Proteobacteria, Actinobacteria, and Fusobacteria</i> are associated with OSCC <i>Fusobacterium,Leptrotrichia, & Campyloabacter are associated with OSCC</i>
(50) Amer et al (2017)(51)	Fusobacterium,Leptrotrichia,& Campylobacter	Tissue	Mouth	16S rRNA (V1-V2) amplicon sequencing	

Viable aerobic bacteria	Tissue	Lesional site	Histological grading, culture method	Viable aerobic bacteria were more abundant in the deeper tissues of OSCC than closer to the surface
Streptococcus mitis	Saliva	Whole mouth	Culture & Gram staining, validated by the sugar fermentation test and the catalase test	Increase in the number of <i>Streptococcus mitis</i> in saliva of oral and digestive cancer patients act as an early diagnostic marker
Fusobacterium				
	Tissue	Mouth	16S rRNA (V4) amplicon sequencing	Fusobacterium associated with OSCC
Aerobic and facultative anaerobic	Saliva	Mucosa, whole mouth	Culture method	Higher degree of total number of microbial colony forming unit (CFUs)/mL was found in carcinoma site and saliva
Streptococcus alpha-haemoliticus	Saliva	Lesional site	Culture method	Presence of microbial flora on the irregular oral carcinoma surface contributes to chronic inflammation
Aerobes, anaerobes, coliforms, candida and gram negative, anaerobic	Saliva	Whole mouth	Culture method	An appropriate antimicrobial protocol at the stage of diagnosis OSCC is mandatory
	Viable aerobic bacteria Streptococcus mitis Fusobacterium Aerobic and facultative anaerobic Streptococcus alpha-haemoliticus Aerobes, anaerobes, coliforms, candida and gram negative, anaerobic bacilli	Viable aerobic bacteriaTissueStreptococcus mitisSalivaFusobacteriumTissueAerobic and facultative anaerobicSalivaStreptococcus alpha-haemoliticusSalivaAerobes, anaerobes, coliforms, candida and gram negative, anaerobic bacilliSaliva	Viable aerobic bacteriaTissueLesional siteStreptococcus mitisSalivaWhole mouthFusobacteriumTissueMouthAerobic and facultative anaerobicSalivaMucosa, whole mouth Lesional siteStreptococcus alpha-haemoliticusSalivaMucosa, whole mouth Lesional siteAerobes, anaerobes, coliforms, candida and gram negative, anaerobicSalivaWhole mouth	Viable aerobic bacteriaTissueLesional siteHistological grading, culture methodStreptococcus mitisSalivaWhole mouthCulture & Gram staining, validated by the sugar fermentation test and the catalase testFusobacteriumTissueMouthI6S rRNA (V4) amplicon sequencingAerobic and facultative anaerobicSalivaMucosa, whole mouthCulture methodStreptococcus alpha-haemoliticusSalivaMucosa, whole mouthCulture methodAerobes, anaerobes, coliforms, candida and gram negative, anaerobicSalivaWhole mouthCulture method

PCR Immunohistochemical *P. gingivalis* is abundantly present in malignant oral epithelium suggesting a potential

European Journal of Molecular & Clinical Medicine ISSN 2515-8260 Volume 07, Issue 5, 2020

Joseph katz et al [2011 <mark>]</mark> (54)	Porphyromonas gingivalis	tissue	Mouth	staining	association of the bacteria with gingival squamous cell carcinoma.
(51) Pushalkar et al., 2011 (55)	Porphyromonas gingivalis	Saliva	Mouth	16S rRNA pyrosequencing	Relative abundance increased in OSCC samples compared to healthy samples
Kullander <i>et al</i> . [2009] (56)	Staphylococcus aureus	Tissue and swab	Lesional and normal area	Multiple displacement amplification and PCR	A strong association between <i>Staphylococcus aureus</i> and SCC was found which was found to be greater than HPV and SCC
Kang <i>et al.</i> [2009] (57)	Cariogenic bacteria, periodontopathic bacteria,	Saliva	Whole mouth	PCR	periodontopathic bacteria was significantly more prevalent in the oncological patients than in the healthy groups
Saini et al. [2009](58)	Streptococcus viridians, Pseudomonas aeruginosa, Klebsiella, Candida albicans & Leptotrichia	Saliva	Lesional site	Culture & gram staining method	Hundred percent reduction in the normal microbial flora in oral cancer was observed
Kurkivuori <i>et al.</i> [2007] (59)	Oral Streptococci group	Strains	Bacterial and clinical	Culture method, Fluorescence analysis & gas chromatography PCR	Oral streptococci play a pivotal role in fluctuation of salivary acetaldehyde levels after alcohol consumption and increases the risk of oral cancer development
Sasaki et al [2005] (60)	Streptococcus anginosus	Tissue	mouth		Authors concluded S. anginosus was associated with OSCC
Mager et al[2005](61)	Capnocytophaga gingivalis, Prevotella melaninogenica and Streptococcus mitis	Saliva	nouth	Checkerboard DNA-DNA hybridization	High salivary counts of <i>C. gingivalis</i> , <i>P. melaninogenica</i> and <i>S. mitis</i> may be diagnostic indicators of OSCC
Tateda et al [2000] (62)	Streptococcus anginosus			PCR	Authors concluded S. sanginosus was associated with OSCC
		Tissue	Whole mouth		It was concluded that human oral carcinoma surface biofilms harbour significantly increased numbers of aerobes and anaerobes as compared with the healthy mucosal surface of the same

European Journal of Molecular & Clinical Medicine ISSN 2515-8260 Volume 07, Issue 5, 2020

Nagy et al. [1998] (63) Fusobacterium

Culture method patient

Whole mouth

Tissue