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ABSTRACT:  

Economic Order Quantity (EOQ), an inventory model is ideal to produce cent percent 

ordered items. But practically, this assumption becomes invalid as process deterioration, 

production processes and other factors pop up. The customer’s expectation and marketing 

demands can be satisfied, if only the production rate becomes a function of demand rate. 

As the demand and deterioration products are time dependent function, eventually allowed 

shortages will be partially backlogged. Rate of backlog is contingent on the waiting time up 

to the arrival next lot. To prevail over these sparsities, this paper signifies the application of 

EPQ model to contemplate the optimal production run time, production quantity and 

shortage period aiming to minimise the total average cost. 

KEYWORDS: 

         Economic Production Quantity (EPQ), deteriorating items, trapezoidal fuzzy number, 

Yager’s ranking index. 

 

1. INTRODUCTION: 

          It is very important to understand economic production quantity from the inventory 

management side of things. To hold maximum inventory is costly to carry. Holding minimum 

can incur stock outs, lost sales and shutdown of production plant. Inventory managers and 

practitioners can overcome such short comings through EPQ model that is used to determine 

the optimal order quantity that an organization should place with a supplier to minimise 

inventory costs, while balancing inventory holding and average fixed costs. 

          An inventory model emphasizes on the concept of deterioration and shortages. 

Although the rate of deterioration cannot be neglected, it’s imperative to scrutinize the 

product’s rate of deterioration in the determination of lot size of products. 

          EOQ model was presented by Singh et.al (2016) for deteriorating products which 

experience stock dependent demand with trade credit period and preservation technology. 

Khurana and Chaudhary (2016) bestowed an optimal pricing and ordering policy for 

deteriorating items with price and stock dependent demand and partial backlogging. 

          Due to customer’sexpectation in advanced customisation, a significant increase in 

market survey is materialised. Hence to renumerate the customer’s demand, it is requisite to 

scrutinize the production rate as a function of occurring demand. This paper centralises 

(fixates) a production inventory model for deteriorating products over a finite planning 

perspective in which the production rate is demand rate dependent. The existing shortages are 

acknowledged and partially backlogged at a perpetual outlay. 

2. NOTATIONS: 

I - Inventory level during the given time t  

cs - Setup cost 
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h - Holding inventory cost 

k - coefficient of deterioration, 0k  

 - production coefficient 

a - initial rate of demand 

b - coefficient of demand 

M - Maximum level of inventory 

T - Time span of inventory cycle  

d - deterioration cost per tariff 

p - production cost per unit time 

S - shortage cost 

sl - lost sale cost 

 - rate of backlogging 

v - measure for which inventory level becomes zero 

1t - maximum time period of production 

3. ASSUMPTIONS: 

1. The product demand is linear in nature and time dependent btaDie .,  

2. Production rate )( btaP   when production rate is considered as a function 

of demand rate. 

3. The product deterioration rate is inclined as tk  when it is a function of ''t  

4. Partial backlog when shortages are permitted. 

5. Inexhaustible capacity of the warehouse. 

6. Absolute rejection of the deteriorated items. 

 

4. MATHEMATICAL MODEL: 

4.1 PROPOSED INVENTORY MODEL IN CRISP SENSE: 

At 0t , production rate commences and continues upto
1tt   to satisfy demand and 

deterioration. At this instant ],[ 1 vt  the inventory level expands to out – turn the demand and 

deterioration for shortages. Applying the concept of differential equation, this method 

extends the change in inventory level with respect to time. Hence, the differential equation 

directing the transition as per the system is given by, 

Let set up cost be cs  

Holding cost is expressed as, 
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Total cost per unit is given by, 
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4.2 PROPOSED INVENTORY MODEL IN FUZZY SENSE USING YAGER’S 

RANKING INDEX: 

          Here dplhSs sc ,,,,,  are considered as trapezoidal fuzzy numbers where cs  is the set up 

cost per production unit, S  is the shortage cost per unit, h  is the holding cost, sl  is the lost 

sale cost, p  is the production cost, d  is the deterioration cost and are defined by their  cuts 

as follows:  
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Using Yager’s ranking index for the above equation we have, 
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Therefore, on substituting these ranking values the fuzzy total cost becomes, 
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5. NUMERICAL EXAMPLE: 

CRISP SENSE: 

100a units, 2b  unit, ,01.0k sl Rs.4 /unit, h Rs.0.2 /unit, d Rs.12 /unit,  

S Rs.3 /unit, p Rs.10 /unit, 30T , 2.1 , A Rs.250 /production run 

 The total cost is Rs.1152.97 

 

 

FUZZY SENSE: 
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  Fuzzy total cost is Rs.602.5024 

 

CONCLUSION: 

          In a market economy, any price movement can be explained by a temporary difference 

between what providers are supplying and what consumers are demanding. Supply is the 

amount of articles people want to purchase. Deterioration of goods overtime and occurrence 

of shortages is a natural feature in one’s life. This paper culminates a production inventory 

model EPQ using Yager’s ranking method to spotlight that deterioration rate is time 

dependent and production rate is a function of demand rate. To agglomerate, the solution 

obtained through this unique method of Yager’s ranking is found to be effectual for all 

conditions of shortages and deterioration. 
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