
European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 07, Issue 09, 2020

956

ADAPTIVE DIMENSIONAL PARTICLE SWARM

OPTIMIZATION BASED HYPER BASIS FUNCTION

NEURAL NETWORK CLASSIFICATION FOR

SOFTWARE FAILURE CAUSE PREDICTION

Mr.P.SARAVANAN
1
, Dr.V.SANGEETHA.,M.Sc.,Mphil.,Ph.D

2

1
Asst.Professor, Department of computer science, Govt. Arts College, Dharmapuri, Tamilnadu,

2
Asst.Professor, Department of computer science, Govt. Arts College, Pappireddipatti,

Tamilnadu

ABSTRACT

In software engineering, Detection of software root cause failure is a considerable

issue to be resolved for increasing the reliability. Few research works are introduced for

predicting the software failure causes with help of diverse classification algorithm. However,

False Positive Rate (FPR) of failure detection process was higher. Therefore, a novel software

failure cause prediction model called Adaptive Dimensional Particle Swarm Optimization

Based Hyper Basis Function Neural Network (ADPSO-HBFNN) Model is proposed to

increase the software reliability through predicting the root cause of software failure at an

early stage. ADPSO-HBFNN Model initially gets number of event log files as input. Next,

ADPSO-HBFNN Model applies Hyper Basis Function Neural Networks (HBFNNs) for

discovering the software fault root cause by means of classifying the event log files.

Subsequently, ADPSO-HBFNN Model applies Adaptive Dimensional Search Based Particle

Swarm Optimization (ADS-PSO) algorithm where it considers the cost sensitive factor such as

expected cost of software failure misclassification. The ADS-PSO algorithm lessen mean

square error (MSE) during the learning process by optimizing the weights of network. From

that, ADPSO-HBFNN Model correctly find outs the root cause of software failure with higher

accuracy. Simulation outcome of ADPSO-HBFNN Model increase the accuracy and lessen

time required for software fault root cause prediction as compared to conventional works.

Keywords: Adaptive Dimensional Search, Event Log Files, Hyper Basis Function Neural

Networks, Particle Swarm Optimization, Root Cause, Software Failure

1. INTRODUCTION

Software root cause analysis finds the faults that originate system application crashes. In

modern software system, logs are utilized in order to record system events at runtime. Software

defect prediction process finds out possible fault and thereby enhances the quality. There are

many research works have been designed for software root cause failure analysis with help of

different techniques. However, existing techniques does not provided higher accuracy for both

root cause and software defect discovery. Therefore, a novel ADPSO-HBFNN Model is

introduced by using the HBFNNs and ADS-PSO algorithm.

 To perform event-based failure prediction with minimal time, Artificial neural network

(ANN) model was employed in [1]. However, software cause prediction accuracy was very

European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 07, Issue 09, 2020

957

lower. In [2], Hierarchical online failure prediction approach called Hora was designed to

discover failures. But, expected cost of software failure misclassification was more.

Ant Colony Optimization (ACO)-based classification technique was introduced in [3] to

predict erroneous software modules. However, TC of software cause detection was more. For

software fault prediction, a hybrid one-class rule learning approach was introduced in [4]. But,

FPR of software fault discovery was not considered.

In [5], Bayesian Regularization (BR) technique was designed to discovering the software

faults and lessens cost of software testing. However, accuracy of root cause and software defect

detection was poor. A survey of diverse classification techniques designed for accomplishing

software fault detection was analyzed in [6].

To enhance the detection performance of software faults with minimal time, Quad Tree-

based K-Means algorithm was presented in [7]. But, fault prediction accuracy was very lower. A

review of varied machine learning algorithms intended for carried outing the software fault

discovery was presented in [8].

 Finding the effort interrelated with discovering software errors were presented in [9]. But,

TC during the fault detection process was remained open issue. In order to addresses the

significant issues in software failure detection, a Mamdani type fuzzy inference system (FIS) was

designed in [10].

 To resolve the aforementioned conventional issues, ADPSO-HBFNN Model is presented.

Contribution of ADPSO-HBFNN Model is described below,

 The HBFNNs employed in ADPSO-HBFNN Model for better classification performance

when taking a large number of event log files as input. Hence, HBFNNs used in ADPSO-

HBFNN.

 ADS-PSO algorithm varies from nature-inspired metaheuristic techniques because it does

not employ any metaphor as underlying principle for implementation. Besides to that,

ADS-PSO algorithm provides accurate software failure cause detection. Also, ADS-PSO

algorithm updates the search dimensionality ratio for rapid and reliable convergence to

optimum.

 ADS-PSO algorithm includes benefits such as quick convergence, a small number of

setting parameters, and easy implementation. For this reason, ADS-PSO algorithm used

in ADPSO-HBFNN Model to solve expected cost of misclassification problem in

software failure cause identification process with enhanced accuracy.

The residual structure of article is follows: ADPSO-HBFNN Model is described in

Section 2. Experimental settings and results are discussed in Section 3 and Section 4. Literature

survey is demonstrated in Section 5. The paper is concluded in Section 6.

European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 07, Issue 09, 2020

958

2. ADAPTIVE DIMENSIONAL PARTICLE SWARM OPTIMIZATION BASED HYPER

BASIS FUNCTION NEURAL NETWORK MODEL

An ADPSO-HBFNN Model is designed in order to effectively find the root cause of

software failures by using the event logs. The ADPSO-HBFNN Model is proposed with help of

HBFNNs and ADS-PSO algorithm. ADPSO-HBFNN Model gives good performance in

different application domains. HBFNN is a variant of three-layer feed forward neural networks.

The advantage of employing HBFNNs in ADPSO-HBFNN Model is due to its faster

convergence. To lessen the time taken for convergence, the weights of HBFNNs are optimized

with assist of ADS-PSO algorithm. The HBFNNs model performs software failure cause

prediction process to get better accuracy with faster convergence.

 The overall process of ADPSO-HBFNN Model is illustrated in Figure 1 to attain better

software failure cause detection accuracy with time. At first, ADPSO-HBFNN acquires software

program codes and event log files from Blue Gene/P Intrepid system as input. After obtaining the

event log files, ADPSO-HBFNN Model employs HBFNNs to discover cause of software

failures. Followed by, ADPSO-HBFNN Model used ADS-PSO algorithm lessen the expected

cost of misclassification during the software failure cause prediction through optimizing the

European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 07, Issue 09, 2020

959

weights of the HBFNNs. As a result, ADPSO-HBFNN Model exactly finds software failure

causes.

2.1 Hyper Basis Function Neural Networks

In ADPSO-HBFNN Model, HBFNNs algorithm is a kind of feed-forward neural

networks. The HBFNNs obtains a number of event log files as input. The HBFNNs contains

input, hidden and output layer in order to classify each event log files with higher accuracy. The

structure diagram of HBFNNs is presented in below Figure 2.

As illustrated in the above structural diagram 2, HBFNNs includes of three layers. Input

layer obtains number of event log files and sends to the hidden layer. Hidden layer scrutinizes

input event log files using activation function and generates the classification result to the third

layer called output layer. Every interconnection in HBFNNs contains a strength called weight.

The weight is referred by a number. The HBFNNs learns input event log files by adjusting the

weights of each neuron to get higher classification accuracy with minimal time.

Let us consider number of event log files in given dataset are denoted as ‘𝑙𝑖 =𝑙1, 𝑙2, . . , 𝑙𝑛’. In HBFNNs, Gaussian activation function finds the relationship between the input

event log files. The output of activation function is either ‘0’ or ‘1’. From that, ‘𝐹’ output in

hidden layer is mathematically estimated as follows,

 F(𝑙𝑖) = 1√2𝜋𝜎 𝑒−(𝑙𝑖−𝑚)22𝑣2 (1)

European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 07, Issue 09, 2020

960

From the above mathematical equation (1), ‘𝑙𝑖’ signifies input event log files. Here, ‘𝑚’
and ‘ 𝑣’ represent the mean and variance value between the event log files and software failure

conditions. The output of Gaussian activation function ‘1’ denotes that there is a root cause of

software failure is found whereas ‘0’ indicates that there is a root cause of software failure is not

found. For each the obtained result, then HBFNNs computes error rate ‘𝛽(𝑡)’ using below,

 𝑀𝑆𝐸 = 𝛽(𝑡) = 1𝑛 ∑ (𝑂𝑅 − 𝑂𝑅)2𝑛𝑖=1 (2)

From (2), HBFNNs estimates error rate of each classification result of input event log

files whereas ‘𝑀𝑆𝐸’ represents mean squared error. Here, ‘𝑂𝑅’ is a target result, ‘𝑂𝑅’ is an

actual result. Subsequently, the HBFNNs update the weights on network based on calculated

mean squared error. The processes of HBFNNs are continual until the mean squared error value

is very minimal to accurately classify input event log files.

The goal of HBFNNs is to lessen MSE by optimizing the weights of network. The MSE

determined is back propagated and weights are tuned to lessen the error with assist of ADS-PSO

algorithm.

2.2 Adaptive Dimensional Search Based Particle Swarm Optimization

In ADPSO-HBFNN Model, error adjustments and tuning for optimal weights are

performed by considering a new objective function i.e. the cost-sensitivity for effective software

failure cause prediction. ADS-PSO algorithm at first initialize swarm population by considering

the different number of random weights on HBFNNs. In ADS-PSO algorithm, initial populations

of particles (i.e. number of random weights) are initialized using below mathematical

formulation,

 𝑎𝑖 = 𝑎1, 𝑎2, … 𝑎𝑛 (3)

 From the above mathematical equation (3), ‘𝑎’ refers a number of random weights on

HBFNNs. Best solution of previous population create number of candidate solutions in current

population. The ADS-PSO is based on updating search dimensional rate (SDR) metric. SDR is

calculated as percentage of design variables which are perturbed when produce a candidate

solution from current best population. From that, search dimensional rate is mathematically

determined using below,

 𝑆𝐷𝑅 = 𝑋𝑝𝑋𝑑 (4)

From (4), ‘𝑋𝑝’ is the number of design variables perturbed to create new solution and

‘𝑋𝑑’ denotes total number of design variables.

Further, cost parameters in ADS-PSO algorithm are expected cost of misclassification

and its normalized value. These cost-sensitive factors are assumed based on false positive error

cost and false negative error cost. The objective function of cost-sensitive HBFNNs to be

minimized by ADS-PSO which is obtained as follows,

European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 07, Issue 09, 2020

961

𝑂𝐹 ← 𝑀𝑖𝑛𝑁𝐸𝐶𝑀 = 𝐹𝑃𝑅 + 𝑝𝑁𝐷𝑃 + 𝐶𝐹𝑁𝐶𝐹𝑃 × 𝐹𝑁𝑅 × 𝑝𝐷𝑃 (5)

 From equation (5), ‘𝑁𝐸𝐶𝑀’ indicates normalized expected cost of misclassification

whereas ‘𝐹𝑃𝑅’ is the false positive rate, ‘𝐹𝑁𝑅’ is false negative rate, ‘𝐶𝐹𝑃’ indicates cost

pertaining to false positive error. Here, ‘𝐶𝐹𝑁’ refers the cost pertaining to false negative error and

‘𝑝𝑁𝐷𝑃’ and ‘𝑝𝐷𝑃’ are percentage of non-defect-prone modules and defect-prone modules. ADS-

PSO algorithm updates position and velocity of particles to discover the optimal weights.

 Consider ‘𝑖’ is a number of particles i.e. ‘ 𝑖 = 1, . . , 𝑛’. Here, ‘𝜑𝑖(𝑡)’ signifies the

position of particle ‘in search space at time t. The position of particle is varied based on velocity

‘𝛿𝑖 (𝑡)’ to current position. Position of particles is updated as below,

 𝜑𝑖 (𝑡 + 1) = 𝜑𝑖 (𝑡) + 𝛿𝑖(𝑡 + 1) (6)

 From (6), ‘𝜑𝑖(𝑡 + 1)’ is updated position and ‘𝜑𝑖 (𝑡)’ indicates current position of

particles and adjusted velocity ‘𝛿𝑖(𝑡 + 1)’. Subsequently, velocity of particle is updated as

below, 𝛿𝑖 (𝑡) = 𝜔𝑡𝛿𝑖 (𝑡 − 1) + 𝑏1𝑘1(𝑝𝑏𝑒𝑠𝑡 (𝑡) − 𝜑𝑖 (𝑡 − 1) + 𝑏2𝑘2 (𝑔𝑏𝑒𝑠𝑡 (𝑡) − 𝜑𝑖 (𝑡 − 1)) (7)

 From (7), ‘𝛿𝑖’ designate the particle velocity, ‘𝜑𝑖’ is position of current particle , ‘𝑘1,𝑘2’
represent random number between 0 and 1. Here, ‘𝑏1, 𝑏2’ signifies the acceleration factors and

‘𝜔𝑡’ designates weight factor. The current position of successful particles is updated when

position and velocity of particle is updated. For each iteration, ADS-PSO algorithm determines

the optimal weights through decreasing the MSE in order to accurately predicting the software

failure causes with minimal time consumption.

European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 07, Issue 09, 2020

962

The processes of ADPSO-HBFNN Model is presented in Algorithm 1 for precisely

predicts the cause of given software failure with lower TC. Thus, ADPSO-HBFNN Model

provides enhanced accuracy for discovering cause of given software failure application when

compared to conventional works.

3. EXPERIMENTAL SETTINGS

 ADPSO-HBFNN Model is implemented in java language with event log files taken from

Blue Gene/P Intrepid system [21]. The input event log files are collected from period of 6

months on Blue Gene/P Intrepid system. Effectiveness of ADPSO-HBFNN Model is determined

in accuracy, TC and FPR. Result of ADPSO-HBFNN Model is compared with [1] and [2].

4. RESULTS

The result analysis of ADPSO-HBFNN Model is described and compared with existing

[1] and [2]. ADPSO-HBFNN Model is evaluated with following metrics with the assist of tables

and graphs.

4.1 Experimental measure of Accuracy

Accuracy ‘A’ is calculated as ratio of number of event log files which are correctly

detected as cause or not to total number of event log files taken as input. Thus, accuracy is

mathematically obtained as follows,

 𝐴 = 𝑋𝐴𝐷𝑛 ∗ 100 (8)

From (8), ‘𝑛’ indicates a total number of event log files whereas ‘𝑋𝐴𝐷’ point outs number

of event log files that are accurately detected. The accuracy is calculated in percentage (%).

When carried outing an experimental evaluation using 100 event log files from an input

dataset, proposed ADPSO-HBFNN Model achieves 97 % accuracy whereas existing ANN model

[1] and Hora [2] acquires 73 % and 71 % respectively. Accordingly, it is expressive that the

accuracy of software failures causes detection using proposed ADPSO-HBFNN Model is higher

than other traditional works ANN model [1] and Hora [2]. The experimental result of accuracy is

obtained during the processes of software failure prediction are demonstrated in Table 1.

European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 07, Issue 09, 2020

963

The result of accuracy is depicted in figure 3 with number of event log files ranges from

50 to 500 by using three techniques. From figure 3, ADPSO-HBFNN Model attain higher

accuracy for predicting software failure causes as compared to existing [1] and Hora [2]. This is

because of application of HBFNNs and ADS-PSO algorithm in proposed ADPSO-HBFNN

Model. This assists to enhance the number of event log files exactly detected as failure cause or

not. Therefore, proposed ADPSO-HBFNN Model increases the accuracy of failure causes

discovery by 17 % and 23 % than the existing [1] and [2].

4.2 Experimental measure of Time Complexity

 ‘𝑇𝐶’ calculates the amount of time required to identify the software failure cause via

classifying input event log files. The TC is mathematically expressed as follows,

 𝑇𝐶 = 𝑛 ∗ 𝑇 (𝐶𝑆𝐿𝐹) (9)

 From the above mathematical equation (9), the TC of software failure cause prediction is

measured. Here, ‘𝑛’ signify the number of event log files and ‘𝑇 (𝐶𝑆𝐿𝐹)’ denotes the time taken

for classifying a single event log file. The TC of software application failure cause prediction is

determined in milliseconds (ms).

 When accomplishing an experimental process using 350 event log files from an given

dataset, TC of ADPSO-HBFNN Model is 88 ms whereas TC of existing [1] and [2] is 109 ms

and 105 ms. For that reason, the TC of ADPSO-HBFNN Model is very minimal than the existing

European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 07, Issue 09, 2020

964

[1] and [2]. The performance result of TC is acquired during the processes of software failure

detection is presented in Table 2.

European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 07, Issue 09, 2020

965

Figure 4 shows experimental measure of TC using three techniques. From figure,

ADPSO-HBFNN Model affords minimal TC with increasing number of event log files as input

as compared to ANN model [1] and Hora [2]. This is due to application of HBFNNs and ADS-

PSO algorithm in proposed ADPSO-HBFNN Model. This assists to lessen the time for

discovering software failure cause by means of classifying input event log files. Therefore,

proposed ADPSO-HBFNN Model minimizes the TC of software application by 15 % and 19 %

as compared to conventional ANN model [1] and Hora [2].

4.3 Experimental measure of False Positive Rate

 ‘𝐹𝑃𝑅’ is calculated as ratio of number of event log files which are incorrectly detected as

cause or not to total number of event log files. FPR is calculated as follows, 𝐹𝑃𝑅 = 𝑋𝐼𝐷𝑛 ∗ 100 (10)

 From (10), ‘𝑛’ is the total number of event log files whereas ‘𝑋𝐼𝐷’ point outs number of

event log files that are inaccurately detected. The FPR of software application failure cause

prediction is estimated in percentage (%).

 When conducting an experimental work by taking 450 event log files from an input

dataset, proposed ADPSO-HBFNN Model acquires 8 % FPRwhereas traditional ANN model [1]

and Hora [2] attains 21 % and 23 % respectively. Therefore, the FPR of software failures causes’
detection process using proposed ADPSO-HBFNN Model is very lower than other conventional

works ANN model [1] and Hora [2]. Result of FPR determined during the processes of software

failure discovery according to diverse number of event log files using three methods is

demonstrated in Table 3.

European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 07, Issue 09, 2020

966

Result of FPR is portrayed in figure 5 with number of event log files ranges from 50 to

500. From figure 5, the ADPSO-HBFNN Model affords FPR minimal as compared to ANN

model [1] and Hora [2]. This is due to application of HBFNNs and ADS-PSO algorithm in

proposed ADO-HBFNN model. This assists to reduce the event log files that are incorrectly

detected as cause or not. Therefore, proposed ADPSO-HBFNN Model minimizes the FPR by 71

% and 75 % as compared to [1] and [2].

5. LITERATURE SURVEY

Analytics-driven testing (ADT) was accomplished in [11] to discover types of software

system failures with lower error rate. But, failure detection accuracy using ADT was not

adequate. A cluster based fault prediction classifiers were employed in [12] that gets better fault

detection performance with minimal time complexity. However, FPR during the fault detection

process was more.

A Combined-Learning Based Framework was introduced in [13] to achieve enhanced

accuracy and minimal amount of time for software fault prediction. But, misclassification

problem was not solved. A fuzzy rule based algorithm was utilized in [14] for accurate discovery

of faults in software during the software testing process. However, the amount of time consumed

for predicting the software failure was more.

Diversity Based Oversampling method was employed in [15] with the aim of resolving

the class imbalance problems in defect prediction. But, fault detection accuracy was not

improved. An attention-based recurrent neural network was used in [16] to get better software

reliability. However, TC was remained open issue.

European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 07, Issue 09, 2020

967

An Ordinal Classification method was introduced in [17] with objective of minimizing

the FPR of software bug prediction. Naive Bayes classifier was presented in [18] for detecting

the software faults with lower computational complexity. However, fault detection accuracy was

lower.

An automated approach was implemented in [19] with the goal of reducing the

maintenance time and cost of software fault detection. But, accuracy using this approach was

minimal. A Log-logistic testing effort function model was employed in [20] for carried outing

the fault detection and correction. However, cost of software fault discovery was more.

6. CONCLUSION

 The ADPSO-HBFNN Model is proposed with the goal of increasing software reliability

by discovering the root cause of software failure with minimal misclassification error. ADPSO-

HBFNN Model enhances the ratio of number of event log files correctly detected. Moreover, the

proposed ADPSO-HBFNN Model minimizes the amount of time needed to discover the software

failure cause through categorizing input event log files. Proposed ADPSO-HBFNN Model

decreases number of event log files that are wrongly predicted. The experimental result shows

that ADPSO-HBFNN Model provides better performance in terms of accuracy and TC as

compared to conventional works.

REFERENCES

[1] Michael Borkowski, Walid Fdhila, Matteo Nardelli, Stefanie Rinderle-Ma, Stefan Schulte,

“Event-based failure prediction in distributed business processes”, Information Systems,

Elsevier, Volume 81, Pages 220-235, March 2019

[2] Teerat Pitakrat, Dusan Okanovic, Andrévan Hoorn, Lars Grunske, “Hora: Architecture-aware

online failure prediction”, Journal of Systems and Software, Elsevier, Volume 137, Pages 669-

685, March 2018

[3] Olivier Vandecruys, David Martens, Bart Baesens, Christophe Mues, Manu De Backer, Raf

Haesen, “Mining software repositories for comprehensible software fault prediction models”,

Journal of Systems and Software, Elsevier, Volume 81, Issue 5, Pages 823-839, May 2008

[4] Yousef Abdi, Saeed Parsa, Yousef Seyfari, “A hybrid one-class rule learning approach based

on swarm intelligence for software fault prediction”, Innovations in Systems and Software

Engineering, Springer, Volume 11, Issue 4, Pages 289–301, December 2015

[5] Rohit Mahajan, Sunil Kumar Gupta, Rajeev Kumar Bedi, “Design of Software Fault

Prediction Model Using BR Technique” Procedia Computer Science, Elsevier, Volume 46,

Pages 849-858, 2015

 [6] Santosh S. Rathore, Sandeep Kumar, “An empirical study of some software fault prediction

techniques for the number of faults prediction”, Soft Computing, Springer, Volume 21, Issue 24,

Pages 7417–7434, 2016

European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 07, Issue 09, 2020

968

[7] Partha S. Bishnu, Vandana Bhattacherjee, “Software Fault Prediction Using Quad Tree-

Based K-Means Clustering Algorithm”, IEEE Transactions on Knowledge and Data

Engineering, Volume 24, Issue 6, Pages 1146 – 1150, June 2012

[8] Ruchika Malhotra, “A systematic review of machine learning techniques for software fault

prediction”, Applied Soft Computing, Elsevier, Volume 27, Pages 504-518, February 2015

 [9] Maggie Hamill, Katerina Goseva-Popstojanova, “Analyzing and predicting effort associated

with finding and fixing software faults”, Information and Software Technology, Elsevier,

Volume 87, Pages 1-18, July 2017

[10] Ezgi Erturk, Ebru Akcapinar Sezer, “Software fault prediction using Mamdani type fuzzy

inference system”, International Journal of Data Analysis Techniques and Strategies, Volume 8,

Issue 1, Pages 14 – 28, 2016

[11] Feras A. Batarseh, Avelino J. Gonzalez, “Predicting failures in agile software development

through data analytics”, Software Quality Journal, Springer, Pages 1–18, 2015

[12] Pradeep Singh and Shrish Verma, “An Efficient Software Fault Prediction Model using

Cluster based Classification”, International Journal of Applied Information Systems, Volume 7,

Issue 3, Pages 35-41, May 2014

[13] Chubato Wondaferaw Yohannese, Tianrui Li, “A Combined-Learning Based Framework for

Improved Software Fault Prediction”, International Journal of Computational Intelligence

Systems, Volume 10, Issue 1, Pages 647 – 662, 2017

[14] Subhashis Chatterjee, Bappa Maji, “A New Fuzzy Rule Based Algorithm for Estimating

Software Faults in Early Phase of Development”, Soft Computing, Springer, Volume 20, Issue

10, Pages 4023–4035, June 2015

[15] Kwabena Ebo Bennin, Jacky Keung, Passakorn Phannachitta, Akito Monden, Solomon

Mensah, “MAHAKIL: Diversity Based Oversampling Approach to Alleviate the Class

Imbalance Issue in Software Defect Prediction”, IEEE Transactions on Software Engineering,

Volume 44, Issue 6, Pages 534 – 550, June 2018

[16] Guisheng Fan, Xuyang Diao, Huiqun Yu, Kang Yang, and Liqiong Chen, “Software Defect

Prediction via Attention-Based Recurrent Neural Network”, Scientific Programming, Volume

2019, Article ID 6230953, Pages 1-14, 2019

[17] Elife Öztürk Kıyak, Kökten Ulaş Birant, Derya Birant, “An Ordinal Classification Approach

for Software Bug Prediction”, Dokuz Eylul University Faculty of Engineering Journal of Science

and Engineering, Volume 21, Issue 62, Pages 533-544, 2019

[18] Bhekisipho Twala, “Predicting Software Faults in Large Space Systems using Machine

Learning Techniques”, Defence Science Journal, Volume 61, Issue 4, Pages 306-316, 2011

[19] Amjad A. Hudaib, Hussam N. Fakhouri, “An Automated Approach for Software Fault

Detection and Recovery”, Communications and Network, Volume 8, Pages 158-169, 2016

European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 07, Issue 09, 2020

969

[20] Zafar Imam, Ishrat Jahan Ara and N. Ahmad, “Analysis of Software Fault Detection and

Correction Processes with Log-Logistic Testing-Effort”, Recent Advances in Mathematics,

Statistics and Computer Science, Pages 549-560, 2016

