ISSN 2515-8260

Volume 07, Issue 05, 2020

Non-invasive Techniques for Detection of Oral Potentially Malignant Disorders (OPMDs) - Detect Early to Treat Early- A Review

S Swathi¹, Swetha P², Ravikanth Manyam³

¹Post graduate, Department of Oral Pathology, Vishnu Dental College. ²Professor, Department of Oral Pathology, Vishnu Dental College (Corresponding Author) ³Professor & HOD, Department of Oral Pathology, Vishnu Dental College

Abstract:

Oral potentially malignant disorders (OPMDs), the group of conditions with the risk of malignancy being present in a lesion or condition either at the time of early diagnosis or future date. Oral carcinoma is a major global, health care issue with high morbidity and mortality rates to date. Leukoplakia, Erythroplakia, Palatal lesion associated with reverse smoking, Oral Lichen Planus, Oral Sub Mucous Fibrosis, Actinic Keratosis, Discoid Lupus Erythematosus are other OPMDs. The aetiology varies from exogenous factors such as tobacco and various autoimmune disorders or inherited genetic aberrations. Early detection of the lesion is essential to prevent malignant transformation, and also to improve the chances of the patient's survival. Though tissue biopsy and histological assessment is the gold standard diagnosis for OPMDs, in recent years, demand for non - invasive adjunctive diagnostic techniques are increasing for early detection. With this in view, the early diagnostic methods were divided into 3 main categories such as vital Staining, light-based detection systems, and optical diagnostic technologies. Among the recent developments in optical imaging systems, the tissue autofluorescence, optical coherence tomography have been proved to be considerably efficient. These techniques have proven valuable for screening and monitoring OPMDs. Awareness should be created in public in employing screening methods that are non-invasive, robust and economic thereby it would enhance early detection of oral cancer which gives a positive impact on patient's survival. This review explains the sensitivity, specificity and limitations as well as their advantages, disadvantages and clinical applications of these techniques and to identify which one is better advisable and adaptable for all population groups. Keywords: Oral potentially malignant disorders, Sensitivity, Specificity, Vital Staining, Light-based detection, Optical based detection systems.

1. INTRODUCTION

Despite advances in cancer therapies, oral malignancies have high mortality and morbidity rates due to varied reasons. Oral potentially malignant disorders (OPMDs) are a group of conditions, which include leukoplakia, erythroplakia, oral lichen planus, oral submucous fibrosis, palatal lesions associated with reverse smoking, actinic keratosis, and discoid lupus erythematosus. OPMDs occur due to exogenous factors like tobacco, autoimmune disorders or inherited genetic aberrations are prone to increased risk for malignant transformation to oral cancer with a low survival rate for not being diagnosed at early stages [1],[2]. Oral Squamous cell Carcinoma (OSCC) is one such OPMD with a challenging note to diagnose at an early stage accounting with an overall 5 year survival rate since decades. Regardless of standard scalpel biopsies with the histopathological examination, these are invasive and incompliant with a high degree of intra and inter-observer variability. Hence new non-invasive adjunctive diagnostic techniques like vital Staining, light-based detection systems, and optical imaging systems like tissue autofluorescence imaging, optical coherence tomography have been proven efficient and becoming popular for screening and monitoring OPMDs[3]. This review gives an overview of promising new commercially available non-invasive adjunctive diagnostic techniques early detection and diagnosis of OPMDs. Vital Staining is an efficient chair-side diagnostic technique helps in identifying the clinically non-apparent lesions with a focus on cells with high

ISSN 2515-8260 Volume 07, Issue 05, 2020 reproductive rate, thereby indicating the most suitable area for biopsy used in staining tissues and cells with a range of pigments (table I). Although this method is easy to use, it is not conclusive and commonly used as an adjunctive diagnostic tool [4]. Light-based detection systems hand-held diagnostic technique using special light sources to detect the abnormal metabolic and structural changes occurring in mucosal

diagnostic systems offer better advantages based on biochemical changes rather than tissues with different absorbance & reflectance properties [11] (table II) Optical based visual or microscopic changes in cellular tissue morphology with quantitative information that can be rapidly analyzed to yield a diagnosis, even in the hands of a non-expert [15] (table III).

Nowadays, advanced research using salivary biomarkers were exploring. Salivary mRNA's and Interleukin 6 are most widely used in differentiating OSCC with epithelial dysplasia[19], [20]. Patients with OPMDs are often encountered in clinical settings. The challenge of the clinician lies in detecting the oral mucosal abnormality with malignant potential at the earliest stage to improve the productive longevity of the individuals. Early detection is necessary before it progresses into cancer and also for disease management. Early detection is the best way of improving the quality of life & survival rates for oral cancer patients worldwide. Presently, there is no widely accepted technique for the application of non-invasive methods in the detection and diagnosis of OPMDs. More research studies on large no of subjects are needed using these non-invasive detection techniques due to its limited evidence. Long term follows up also helps in understanding the efficacy of these detection techniques.

ISSN 2515-8260

Volume 07, Issue 05, 2020

1208

Stains	Principle	Sensitivity	Specificity	Advantages	Limitations	Interpretation
Toluidine	High	38-100%	9-100%	Sensitive,	Lack of	Adjunctive aid for
blue	affinity for			chair-side,	sufficient	dental care
	acidic			rapid, Low	randomized	providers in
	compounds			cost	control trials	clinical
	, stains the				evidence and	assessment of
	cells or			Disadvantages	long-term	OPMDs and
	tissues blue			High false-	prospective	selection of the
	with			positive rates	data can further	biopsy site. Positive - Lesions
	greater nucleic				improve our	with dark blue
	acid				understanding.	color
	content [5]				understanding.	Negative - lightly
						or faintly stained
						areas
Methylene	Stains	90-91.4%	66.6-69%	Sensitive,	False positive	To screen oral
blue	tissue with			chair-side,	rates reported	malignancy in
	large			rapid, Low	due to the	high-risk cases.
	quantities			cost	retention of	
	of nucleic				stain in	
	acids			Disadvantages	traumatic and	
				High false-	inflamed	
	T 11	00.100%	70 7	positive rates	areas [6]	
Rose	Tetrachlor	90-100%	73.7- 89.09%	Sensitive,	Very few	To diagnose ocular
bengal	o and tetraiodo		89.09%	chair-side, rapid, Low	studies have been	surface disorders, detection of
	derivative			cost	conducted so	OPMDs and oral
	of			COSt	far to assess	cancer.
	fluorescei			Disadvantages	the efficacy	
	n [7]			High false-	of this	
				positive rates	method in	
				1	detecting oral	
					PMDs	
Lugol's	Reaction	87.5-94.7%	83.8-	Sensitive,	Gingiva and	Adjunctive aid in
iodine	of iodine		84.2%	chair-side,	hard palate	selection of biopsy
	with			rapid, Low	have high	site and clinical
	glycogen			cost	keratinization	assessment of
	present			D'andaran ta ana	and lack of	OPMDs. Normal
	within the cytoplasm			Disadvantages High false-	glycogen, stain can't be	mucosa - Mahogany or
	, which is			positive rates	localized [8]	brown due to its
	visualized			Positive rates		high glycogen.
	by color					No stain/Pale -
	change					Dysplastic lesions
						when compared
						with the
						surrounding tissue.

ISSN 2515-8260

Volume 07, Issue 05, 2020

1209

Table I: Vital StainingTable II: Light-based detection systems

Light based	Principle	Sensitivity	Specificity	Advantages	Limitations	Interpretation
Chemi-	Produce	ViziLite:	ViziLite:	Effective	Fails to	Presence of an
luminescence	bluish-white	77-100%	0-	chair-side,	detect oral	"ace to white"
	light with a	ViziLite	84.6%(11)	Rapid, high	red patches.	lesion after a one-
	wave length	Plus(ViziLi	ViziLite	sensitivity in		minute rinse with
	of 430-	te&	Plus:	diagnosing		1% acetic acid
	580nm,	toluidine	27.8%	OPMD's and		solution is
	absorbed by	blue):	Microlux/	Oral cancer.		considered as
	normal cells	77.3%,	DL: 70.7 –			positive(11).
	and reflected	Microlux/	99.6%	Disadvantages		
	by abnormal	DL: 77.8 –		Low		
	cells that have	94.3%		specificity		
	a higher					
	nuclear-					
	cytoplasmic					
	ratio(12).					
Velscope	Hand held	30–100%	15-100%	Rapid,	Insufficient	Normal cells
	device, aids in			chair-side &	evidence that	exhibit pale green
	visualization			easy to operate	it can	fluorescence
	of oral				distinguish	whereas abnormal
	mucosal			Disadvantages	between	cells appear dark
	changes by			Moderate	dysplastic/	due to loss of auto f_{1}
	activating tissue			false-positive	cancerous	fluorescence(13).
	Auto-			rates.	tissue from inflammatory	
	fluorescence.				oral lesion;	
	nuorescence.				frequent false	
					positive	
					results.	
Photodynami	Based on the			Real-time &	Low	Tissues exhibiting
c diagnosis	fluorescence			cost-effective	specificity –	fluores-cence are
• angliosis	generated by				50–99%,(14)	considered to
	administration			Disadvantages		possess malignant
	of an			Strict patient	required for	
	exogenous			management,	the test.	1
	photo-			high false-		
	activated			positive rates.		
	compound			-		
	that					
	accumulates					
	in cells with					
	malignant					
	potential,					

ISSN 2515-8260

Volume 07, Issue 05, 2020

1	2	1	ი
1	4	T	υ

12	10	

n			

_		1210		
	followed by appropriate photo- irradiation.			
	appropriate			
	photo-			
	irradiation.			

Optical	Principle	Sensitivity	Specificity	Advantages	Limitations	Interpretation
based	&procedure					
Optical	Uses "L" shape	62-85%	51-81%	High	Only small	Produces
Coherence	probe upto 1mm			sensitivity&	area can be	imaging of
Tomography	of depth for			specificity.	examined at	near surface
(830nm)	0.2seconds			Cross sectional	a time	abnormalities
	produces cross			images of the	because of	in complex
	sectional images			normal/abnormal	probe size	tissues
	of tissue with a			tissues can be		
	high spatial			obtained without		
	resolution of			biopsy		
	10-20um,					
	enables optical			Disadvantages		
	biopsy &			Examines only a		
	provides			very small area		
	immediate and			at a time		
	localized					
	diagnostic					
	information.(15)					
Raman	Provides real	86%	94%	Can be used by	Difficulty of	
Spectroscopy	time histology			non-specialists	capturing	
(vibrational	information			with suitable	inherently	
spectroscopy	about molecular			diagnostic	weak tissue	
of tissue)	composition of			algorithms. No	Raman	
	tissue used in			reagents are	signals and	
	analysis of			required, as	the relatively	
	biological tissue			based on a	slow speed	
	to know the			fingerprint of the	of spectrum	
	exact			biochemical	acquisitions	
	localization,			composition		
	extent and					
	borders of			Disadvantages		
	lesion with			Time consuming		
	spatial & high					
	resolution(16)					
Narrow	Highlights	97.7%	98.9%	Advantage of	Chronic	Abnormal

ISSN 2515-8260

. . . .

Volume 07, Issue 05, 2020

		1211			
Band	abnormalities in		detecting	infections &	vasculature
Imaging	superficial		superficial	postoperative	will be seen as
(Novel	vasculature of		cancers when	radiotherapy	scattered spots
method of	mucosal lesions		compared to	may lead to	with well
imaging)	so that		conventional	false positive	demarcated
	precancerous or		techniques.	results	borders
	cancerous				
	lesions can be		Disadvantages		
	identified more		Moderate false-		
	easily(17)		positive rates		
Colposcopy	Direct oral		High	Technique	High grade
	microscope with		resolution,	sensitive and	lesions:
	focal length of		good	expensive	Persistent
	200 mm		magnification		duller shade of
	providing 3-		and		white &
	dimensional		illumination.		straighter,
	image of tissue		Detects lesions		sharper
	surfaces.		at an early		outlines with
	3-5% Acetic		stage with an		well-defined
	acid and iodine		accuracy of 80-		borders
	solution are		90%.		Low-grade
	applied to the				lesions:
	surface to		Disadvantages		Translucent or
	improve the		Expensive		bright white&
	visualization of				fade quickly&
	abnormal				have feathery
	areas(18)				margins and
					irregular
					borders.

CONCLUSION: Considering all the non-invasive techniques, the dentist/clinician should be aware of the best method that can be applied in routine chairside practice. It is essential for the method to be accurate and economical. More research has to be conducted using a larger sample size on the available techniques to determine the best technique. Previous literature comparing the sensitivity, specificity and cost of the available methods, toluidine blue, ViZiLite, and VELScope have shown to be reasonable in clinical practice. Recently developed optical imaging techniques the best detection techniques but are expensive. As toluidine blue has high sensitivity but low specificity, hence it can be used as an adjunctive tool for early detection. It can be used along with ViZiLite and VELScope, for accurate results. Early referral and collaboration with dental professionals and owing to these various advances, able to provide quick and efficient care to the patients, thus improving their quality of life and in the prevention of specific health hazards and also reduces the possibility of further complications. Future directions are to identify those at risk of cancer, saliva in advanced genomic, proteomic technologies, alignment of optical imaging technologies with biomarker strategies, automation & objective point of care diagnostics.

REFERENCES

- J Liu, D., Zhao, X., Zeng, X., Dan, H., & Chen, Q. (2016). Non-invasive techniques for detection and diagnosis of oral potentially malignant disorders. Tohoku Journal of Experimental Medicine, 238(2), 165–177.
- [2] Warnakulasuriya, S., Johnson, N.W. & van der Waal, I. (2007) Nomenclature and classification of potentially malignant disorders of the oral mucosa. J. Oral Pathology and Medicine., 36, 575-580
- [3] Madhura, M. G., Rao, R. S., Patil, S., Alhazmi, Y. A., Jafer, M., Habib, S. R., & Awan,
 K. H. (2020). Minimally invasive procedures for the recognition and diagnosis of oral precancer and cancer. Disease-a-Month, 1–5.
- [4] Panta, P. (2019). Oral cancer detection: Novel strategies and clinical impact. Oral Cancer Detection: Novel Strategies and Clinical Impact, 1–314.
- [5] Singh D, Shukla RK. Utility of toluidine blue test in accessing and detecting intra-oral malignancies. Indian J Otolaryngol Head Neck Surg.
 2015;67:47–50.
- [6] Mascitti, M., Orsini, G., Tosco, V., Monterubbianesi, R., Balercia, A., Putignano, A., Santarelli, A. (2018). An overview on current non- invasive diagnostic devices in oral oncology. Frontiers in Physiology, 9(OCT), 1–8.
- [7] Petruzzi M, Lucchese A, Baldoni E, Grassi FR, Serpico R. Use of Lugol's iodine in oral cancer diagnosis: an overview. Oral Oncol 2010;46:811–3.
- [8] Mittal N, Palaskar S, Shankari M. Rose Bengal staining– diagnostic aid for potentially malignant and malignant disorders: a pilot study Indian J Dent Res. 2012;23:561–4.
- [9] Nagi, R., Reddy-Kantharaj, Y. B., Rakesh, N., Janardhan-Reddy, S., & Sahu, S.

ISSN 2515-8260 Volume 07, Issue 05, 2020

```
1213
```

(2016). Efficacy of light-based detection systems for early detection of oral cancer and oral potentially malignant disorders: Systematic review. Medicina Oral Patologia Oral y Cirugia Bucal, 21(4), e447–e455.

- [10] Ram S, Siar CH. Chemiluminescence as a diagnostic aid in the detection of oral cancer and potentially malignant epithelial lesions. Int J Oral Maxillofac Surg. 2005;34:521-7.
- [11] Kerr, A.R., Sirois, D.A. & Epstein, J.B. (2006) Clinical evaluation of chemiluminescent lighting: an adjunct for oral mucosal examinations.

J. Clin. Dent., 17, 59-63.

- [12] McNamara KK, Martin BD, Evans EW, Kalmar JR. The role of direct visual fluorescent examination (VELscope) in routine screening for potentially malignant oral mucosal lesions. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114:636-43.
- [13] Chang CJ, Wilder-Smith P. Topical application of photofrin for photodynamic diagnosis of oral neoplasms. Plast Re- constr Surg.

2005;115:1877-1886

- [14] Sharwani A , Jerjes W , Salih V , MacRobert AJ , El-Maaytah M , Khalil HS , et al. Fluorescence spectroscopy combined with 5- aminolevilinic acid-induced protoporphyrin IX fluorescence in detecting oral premalignancy. J Photochem Pho- tobiol B . 2006;83:27–33 a.
- [15] Green, B., Cobb, A.R., Brennan, P.A. & Hopper, C. (2014) Optical diagnostic techniques for use in lesions of the head and neck: a review of the latest developments. Br. J. Oral Maxillofac Surg., 52, 675-680
- [16] Carreras-Torras, C., & Gay-Escoda, C. (2015). Techniques for early diagnosis of oral squamous cell carcinoma: Systematic review.

Medicina Oral, Patologia Oral y Cirugia Bucal, 20(3), e305-e315.

[17] Nguyen, P., Bashirzadeh, F., Hodge, R., Agnew, J., Farah, C.S., Duhig, E., Clarke, B., Perry-Keene, J., Botros, D., Masters, I.B. & Fielding, ISSN 2515-8260 Volume 07, Issue 05, 2020

```
1214
```

D. (2013) High specificity of combined narrow-band imaging and autofluorescence mucosal assessment of patients with head and neck cancer. Head Neck, 35, 619-625

- [18] Biopsy, K. (2014). Colposcopy A Novel Diagnostic Technique for Oral Mucosal Lesions. Journal of clinical and Diagnostic Research2014, October: Volume 8(10) 25– 28.
- [19] PM. Pavani, N., Srinivas, P., Rani Kothia, N., & Chaitanya Chandu, V. (2018). Recent Advances in the Early Diagnosis of Oral Cancer: A Systematic Review. International Journal of Medical Reviews, 4(4), 119–125.
- [20] Wong DT. Salivary diagnostics powered by nanotechnologies, proteomics and genomics. Journal of American Dental Association 2006; 137(3): 313–32