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Abstract: In this manuscript, we established and proved some results on fixed point in the 

framework of partial 𝒃𝒗(𝒔)- metric space. The obtained results generalize the existing 

results in the literature. 

 

 

INTRODUCTION 

 Fixed point theory is one of the strong tools of modern mathematics. The theorems that are 

related with fixed points and there properties are known as fixed point theorems. This theory 

is the wonderful combination of analysis, topology and geometry. Fixed point theorem has 

got application in the various fields such as mathematics engineering, physics, economics, 

game theory, biology, chemistry etc. In mathematics fixed points are an important part of 

nonlinear functional analysis. The study of fixed points has been at the centre of energetic 

research activity in the last decades where the mappings satisfying certain contractive 

conditions in different abstract spaces. The Banach mapping contraction principle is one of 

the incipient and basic results in this direction. In most of the problems whenever the solution 

exists fixed point will also exist naturally. Therefore the existence of fixed point is very 

important in various fields of mathematics and other sciences. Fixed point theorems provide 

conditions under which maps have solutions. The theory of fixed points thus a great and 

delighted combination of analysis (pure and applied).  In 1994, Matthews [10] gave the 

prospect of partial metric space .The typical separation was changed by incomplete 

measurement in partial metric space with an energizing property 'positive self-separation of 

points'. In this space the assembly of a grouping was characterized in such a way, that the 

limit of the convergent sequence need not to be special. In partial metric space Matthews 

gave the guarantee of the legitimacy of Banach fixed point theorem and proved that it can be 

used for the verification of programmes. After that Matthews results were generalized by 

several authors. Partial metric space thought was further generalized by O’Neill by 

acknowledging negative distances. O’Neill defined a partial metric which is known as 

dualistic partial metric. By neglecting the concept of small self-distance condition. Hickmann 

partial metric is known as weak partial metric. Wardowski displayed another idea of - 

constriction and demonstrated a fixed-point hypothesis which sums up the Banach fixed point 

hypothesis in an entirely unexpected manner than the hypotheses that are as of now existing 

in the writing on complete measurement spaces. 

Definition 1 Partial-metric space [10] Let 𝑑𝑝: 𝑋 × 𝑋 → [0,∞)be a function defined on a 

non-empty set 𝑋 satisfying the following properties.   

 (𝑝1) 𝜇1 = 𝜇2 iff 𝑑𝑝(𝜇1, 𝜇1) = 𝑑𝑝(𝜇1, 𝜇2) = 𝑑𝑝(𝜇2, 𝜇2) for all 𝜇1, 𝜇2 ∈ 𝑋 

(𝑝2) 𝑑𝑝(𝜇1, 𝜇2) ≤ 𝑑𝑝(𝜇1)for all 𝜇1, 𝜇2 ∈ 𝑋 

 (𝑝3) 𝑑𝑝(𝜇1, 𝜇2) = 𝑑𝑝(𝜇2, 𝜇1) for all 𝜇, 𝜇2 ∈ 𝑋 

 (𝑝4) 𝑑𝑝(𝜇1, 𝜇2) ≤ 𝑑𝑝(𝜇1, 𝜇3) + 𝑑𝑝(𝜇3, 𝜇2) − 𝑑𝑝(𝜇3, 𝜇3) 
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Then 𝑑𝑝is called partial metric on 𝑋 and (𝑋, 𝑑𝑝)is called partial metric space. 

Definition 2 Partial b-metric space [see 2] Define a function 𝑏: 𝑌 × 𝑌 → [0,∞), on a non-

void set 𝑌 .Then it qualifies as a partial 𝑏 metric on Y if it holds the following properties:  

 (1)    𝜇1 = 𝜇2 𝑖𝑓𝑓 𝑏(𝜇1, 𝜇1) = 𝑏(𝜇1, 𝜇2) = 𝑏(𝜇2, 𝜇2) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜇1, 𝜇2 ∈ 𝑌 

 (2)   𝑏(𝜇1, 𝜇1) ≤ 𝑏(𝜇1, 𝜇2) for all ∀ 𝜇1, 𝜇2 ∈ 𝑌; 
 (3)   𝑏(𝜇1, 𝜇2) = 𝑏(𝜇2, 𝜇1) for all 𝜇1, 𝜇2 ∈ 𝑌; 
There is 𝑠 ≥ 1 s.t ∀ 𝜇1, 𝜇2, 𝑢1 ∈ 𝑋, 𝑏(𝜇1, 𝜇2) ≤ 𝑠[𝑏(𝜇1, 𝑢1) + 𝑏(𝑢1, 𝜇2)] − 𝑏(𝑢1, 𝑢2). 
And the pair (𝑋, 𝑏) is said to be a partial b-metric space. 

Definition 3  𝒃𝒗(𝒔) -metric space [see 2] Let 𝑏𝑣: 𝑋 × 𝑋 → [0,∞) be a function defined on a 

non-void set 𝑋and 𝑣 ∈ ℕ such that if for all distinct points 𝑢1, 𝑢2, … , 𝑢𝑣 ∈ 𝑋 − {𝜇1, 𝜇2} the 

following hold: 

(1) 𝑏𝑣(𝜇1, 𝜇2) = 0 iff 𝜇1 = 𝜇2  𝜇1, 𝜇2 ∈ 𝑋 

(2) 𝑏𝑣(𝜇1, 𝜇2) = 𝑏𝑣(𝜇2, 𝜇1); 
(3) There is  𝑠𝜖ℝ  with s ≥ 1  such that 𝑏𝑣(𝜇1, 𝜇2)  ≤ 𝑠[𝑏𝑣(𝜇1, 𝑢1)  + 𝑏𝑣(𝑢1, 𝑢2)  + … + 

𝑏𝑣(𝑢𝑣, 𝜇2)].   
Then 𝑏𝑣 is called a 𝑏𝑣(𝑠)- matrix on 𝑋, and (𝑋, 𝑏𝑣) is called a 𝑏𝑣(𝑠) − metric space with a 

coefficient s. 

Definition 4 PARTIAL 𝒃𝒗(𝒔) metric space [2] Let 𝑝𝑏𝑣  : X × X→ [0,∞) be a function 

defined on a non-void set 𝑋and v ∈ ℕ such that if for all 𝜇1, 𝜇2 ∈ 𝑋  and for all different 

points 𝑢1, 𝑢2, … , 𝑢𝑣 ∈  𝑋\{𝜇1, 𝜇2}, the following hold: 

 (1)  𝜇1 = 𝜇2 Iff 𝑝𝑏𝑣(𝜇1, 𝜇1) =𝑝𝑏𝑣(𝜇1, 𝜇2) =𝑝𝑏𝑣(𝜇2, 𝜇2); 
 (2)  𝑝𝑏𝑣(𝜇1, 𝜇1) ≤ 𝑝𝑏𝑣(𝜇1, 𝜇2);  
 (3)  𝑝𝑏𝑣(𝜇1, 𝜇2) = 𝑝𝑏𝑣(𝜇2, 𝜇1) 
 (4) There is 𝑠𝜖ℝ with s≥ 1 such that 

𝑝𝑏𝑣(𝜇1, 𝜇2) ≤ 𝑠[𝑝𝑏𝑣(𝜇1, 𝑢1) + 𝑝𝑏𝑣(𝑢1, 𝑢2) + ⋯+ 𝑝𝑏𝑣(𝑢𝑣, 𝜇2)] –∑ 𝑝𝑏𝑣(𝑢𝑖, 𝑢𝑖
𝑛
𝑖=1 ) 

Then (𝑋, 𝑝𝑏𝑣) is called a partial 𝑏𝑣(s)-metric space with a coefficient s and with a partial 

𝑏𝑣(𝑠) metric denoted by 𝑝𝑏𝑣. 
Example 5 (see 2) Let X = {i, j, k, l} and let us define a function  𝑝𝑏𝑣 : X × 𝑋 → ℝ+by:                                                                                                                                                                                                            

                  𝑝𝑏𝑣(𝜇1, 𝜇2) = {

0,                      𝑖𝑓 𝜇1 = 𝜇2 = i  

 2,      𝑖𝑓 𝜇1, 𝜇2 ∈ {𝑖, 𝑗}, 𝜇1 ≠ 𝜇2;
1,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

For all  𝜇1, 𝜇2 ∈ 𝑋.  

Then the space X together with the metric 𝑝𝑏𝑣 qualifies as 𝑏2  (
4

3
) which is partial in nature. 

Which is not a metric space nor a 𝑏2(1) metric space which is partial in nature, because 

𝑝𝑏𝑣(𝑗, 𝑗) ≠ 0 and  

𝑝𝑏𝑣(𝑖, 𝑗) = 2 > 1 

 =𝑝𝑏𝑣(𝑖, 𝑘) + 𝑝𝑏𝑣(𝑘, 𝑙) + 𝑝𝑏𝑣(𝑙, 𝑗) − 𝑝𝑏𝑣(𝑘, 𝑘) + 𝑝𝑏𝑣(𝑙, 𝑙), respectively. 

DEFNITION 6 (see 2)  Suppose 𝑌 be a space and 𝑝𝑏𝑣 be a metric defined on it. Then the 

pair (𝑌, 𝑝𝑏𝑣) qualifies as a 𝑏𝑣(𝑠)-metric space which is partial in nature with coefficient 𝑠 ≥
1. Suppose {𝜇𝑛} ∈ Y in (𝑌, 𝑝𝑏𝑣). Then, 

(a) {𝜇𝑛} is said to converge to 𝑥  with respect to 𝜏𝑝𝑏𝑣 if and only if lim
𝑛→∞

𝑝𝑏𝑣(𝜇𝑛 , 𝜇) =

𝑝𝑏𝑣(𝜇, 𝜇). Moreover, 𝜇 is called limit point of {𝜇𝑛}; 
(b) {𝑥𝑛} is called Cauchy if lim

𝑛,𝑚→∞
𝑝𝑏𝑣(𝜇𝑛, 𝜇𝑚) exists and is finite; 

(c) {𝜇𝑛}  is a Cauchy sequence in 𝑋,  if there is 𝑥 ∈ 𝑋  s.t lim
𝑛,𝑚→∞

𝑝𝑏𝑣 (𝜇𝑛, 𝜇𝑚) =

lim
𝑛→∞

𝑝𝑏𝑣 (𝜇𝑛, 𝜇) = 𝑝𝑏𝑣(𝜇, 𝜇), then (𝑋, 𝑝𝑏𝑣) is a partial 𝑏𝑣(𝑠) metric space having the 

completeness property. 
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Definition 7 (see 2) An open ball with centre at 𝜇1 ∈ 𝑋  and radius 𝜖 > 0   of a partial 

𝑏𝑣(𝑠) −metric spaces can be written as: 

𝐵𝑝𝑏𝑣(𝜇1, 𝜖) ≔ {𝜇2 ∈ 𝑋: 𝑝𝑏𝑣(𝜇1, 𝜇2) < 𝑝𝑏𝑣(𝜇1, 𝜇1) + 𝜖} 

In partial 𝑏𝑣(𝑠) −metric space an open ball may be empety as well.For example, if 

𝑝𝑏𝑣(𝜇1, 𝜇1) > 0, then𝐵𝑝𝑏𝑣(𝜇1, 𝑝𝑏𝑣(𝜇1, 𝜇1)) = ∅. 

Proposition 8 (see 2) Suppose 𝑋 be a non-void set and 𝑝𝑏𝑣 be a metric defined on it, then the 

pair (𝑋, 𝑝𝑏𝑣) qualifies as a  𝑏𝑣(𝑠) metric spaces which is partial in nature  with  𝑠 ≥ 1 

possessing  let  property and let 𝐵 be the collection of all open balls in (𝑋, 𝑝𝑏𝑣), then 𝐵 will 

qualify as a basis for topology on 𝑋. 

Proposition 9 (see 2). Suppose we have a metric space of partial 𝑏𝑣(𝑠) type denoted by  

(𝑋, p𝑏𝑣)  and let 𝜆 ∈ [0,∞) , then the pair (𝑋, 𝑑) is a metric space of partial 𝑏𝑣(𝑠)  type 

where 

𝑑(𝜇1, 𝜇2) = 𝜆 + 𝑝𝑏𝑣(𝜇1, 𝜇2)   ∀𝜇1, 𝜇2 ∈ 𝑋 

Proposition 10 (see 3). Suppose 𝑏𝑣 denote 𝑏𝑣(𝑠) − metric with coefficient 𝑠 ≥ 1 and 𝑑𝑝 be a 

partial metric defined on a non-void set 𝑋. If 𝑑: 𝑋 × 𝑋 → [0,∞) is given by 

𝑑(𝜇1, 𝜇2) = 𝑑𝑝(𝜇1, 𝜇2) + 𝑏𝑣(𝜇1, 𝜇2) 

For all 𝜇1, 𝜇2 ∈ 𝑋, then the pair (𝑋, 𝑑) is a 𝑏𝑣(𝑠) −metric space, which is partial in nature. 

Lemma 11 [13] Let 𝑇: 𝑌 → 𝑌 be a function and let (𝑌, 𝑝𝑏𝑣) be a 𝑏𝑣(𝑠) −metric space which 

is partial in nature with  𝑠 ≥ 1 . If {𝜇𝑛} ∈ 𝑋 given by 𝑇𝜇𝑛 = 𝜇𝑛+1 for all 𝑛 ≥ 0 with 𝜇𝑛 ≠
𝜇𝑛+1. Let 𝑘 ∈ [0,1) such that for all 𝑛 ∈ ℕ 

𝑝𝑏𝑣(𝜇𝑛+1, 𝜇𝑛) ≤ 𝑘𝑝𝑏𝑣(𝜇𝑛, 𝜇𝑛−1). 
Then, either 𝑇 has a fixed point or 𝜇𝑛 ≠ 𝑥𝑚 for all distinct 𝑛,𝑚 ∈ ℕ. 
Lemma 12 [13] Let (𝑋, 𝑝𝑏𝑣) is a 𝑏𝑣(𝑠) −metric space which is partial in nature with  𝑠 ≥ 1 

and {𝜇𝑛}  ∈ 𝑋  s.t ∀  𝑛 ≥ 0,  𝜇𝑛 ≠ 𝜇𝑛+1 . Let 𝑘 ∈ [0,1)  and 𝛼, 𝛽, 𝜏, 𝛿 ∈ ℝ+  such that for all 

𝑛,𝑚 ∈ ℕ. 
𝑝𝑏𝑣(𝜇𝑛, 𝜇𝑚) ≤ 𝑘𝑝𝑏𝑣(𝜇𝑛−1, 𝜇𝑚−1) + (𝛼 + 𝑠𝜏)𝑘

𝑛 + (𝛽 + 𝑠𝛿)𝑘𝑚. 
Then {𝜇𝑛} is a Cauchy. 

Theorem 13. [13] Let (X,𝑝𝑏𝑣) be a partial 𝑏𝑣(𝑠) −metric space having the completeness 

property with s≥ 1 and 𝑇  be a self -map fulfilling the below condition: 

𝑝𝑏𝑣(𝑇𝜇1 , 𝑇𝑦) ≤ 𝜆𝑝𝑏𝑣(𝜇1, 𝑦) 

∀  𝜇1, 𝑦 ∈ 𝑋,  where 𝜆 ∈ [0,1)  and 𝑠 ≥1. Then 𝑇  possesses a fixed point  𝑢 ∈ 𝑋  which is 

unique and 𝑝𝑏𝑣(𝑢, 𝑢) = 0. 
Theorem 14 [13] Assume (𝑋, 𝑝𝑏𝑣) be a partial 𝑏𝑣(𝑠) −metric space having the completeness 

property with 𝑠 ≥ 1, and 𝑇 be a self- mapping on 𝑋 which fulfils the below condition 

𝑝𝑏𝑣(𝑇𝜇1 , 𝑇𝜇2) ≤ 𝜆1𝑝𝑏𝑣(𝜇1, 𝜇2) + 𝜆2𝑝𝑏𝑣(𝜇1, 𝑇𝜇1) + 𝜆3𝑝𝑏𝑣(𝜇2, 𝑇𝜇2) 

 ∀ 𝜇1, 𝜇2 ∈ 𝑋, Where 𝜆𝑖  are positive real and 𝜆𝑖 ∈ ℝ with ∑ 𝜆𝑖 < 1𝑛
𝑖=1  and 𝑚𝑖𝑛{𝜆2, 𝜆3} < 1. 

Then 𝑇 possesses a fixed point 𝑢 ∈ 𝑋 which is unique and 𝑝𝑏𝑣(𝑢, 𝑢) = 0. 

Example 15 [13] Suppose 𝑌 = {0,1,2,3,6} and suppose 𝑝𝑏𝑣: 𝑌 × 𝑌 → [0,∞) which is given 

by: 

 

𝑝𝑏𝑣(𝜇1, 𝜇2) =

{
 
 

 
 

1

2
,                                       𝑖𝑓   𝜇1 = 𝜇2 = 1

𝜇1,                                       𝑖𝑓  𝜇1 = 𝜇2 ≠ 1  

2(𝜇1 − 𝜇2)
2 + 𝜇1 + 𝜇2, 𝑖𝑓  𝜇1, 𝜇2 ∈ {1,3} 

|𝜇1 − 𝜇2|                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Then (𝑌, 𝑝𝑏𝑣) is a partial 𝑏3(2) − metric space having the completeness property. 

Suppose 𝑇 be a self- map on X which is given by: 
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𝑇(𝜇) = {
0               𝑖𝑓   𝜇 = 6

1   𝑖𝑓  𝜇 ∈ {0,1,2,3} 
 

∀  𝜇1, 𝜇2 ∈ 𝑋. Then 𝑇 fulfils all the prerequisites of the theorems (2.1) and (2.2) and hence the 

existence of fixed point 𝜇 = 1  which is unique with 𝑘 ∈ [
1

3
, 1)  and 𝜆1 = 𝜆2 =

1

6
 , 𝜆3 =

1

3
 

respectively. 

Corollary 16 [13] Suppose (Y, 𝑝𝑏𝑣)  be a partial metric space of  𝑏𝑣(𝑠) type having the 

completeness property with s≥ 1 and 𝑇 be a self-mapping defined on 𝑋 fulfilling the below 

condition: 

𝑝𝑏𝑣(𝑇𝜇1 , 𝑇𝜇2) ≤ 𝛾(𝑝𝑏𝑣(𝜇1, 𝑇𝜇1) + 𝑝𝑏𝑣(𝜇2, 𝑇𝜇2)) 

∀   𝜇1, 𝜇2 ∈ 𝑋,  where  𝑘 ∈ [0,1) . Then 𝑇  possesses a fixed point  𝑢 ∈ 𝑋  which is unique a 

unique and 𝑝𝑏𝑣(𝑢, 𝑢) = 0 

Main Section  

In this section, we have proved some fixed point results in the framework of partial 𝑏𝑣(𝑠)-
metric spaces. 

Theorem 17. Let (𝑋, 𝑝𝑏𝑣) be a complete partial 𝑏𝑣(𝑠) −metric space with coefficient 𝑠 ≥
1, and 𝑇: 𝑋 → 𝑋 be a self-mapping satisfying the following conditions: 

𝑝𝑏𝑣(𝑇𝜇1, 𝑇𝜇2) ≤ 𝑎𝑝𝑏𝑣(𝜇1, 𝑇𝜇2) + 𝑏𝑝𝑏𝑣(𝜇2, 𝑇𝜇1) + 𝑐𝑝𝑏𝑣(𝜇1, 𝜇2)   ∀ 𝜇1, 𝜇2 ∈ 𝑋,         ... (1) 

where 𝑎, 𝑏, 𝑐 are non-negative real numbers with 𝑎 + 𝑏 + 𝑐 < 1 and min {𝑎, 𝑏} < 1. Then 𝑇 

has a unique fixed point 𝑢 ∈ 𝑋 and 𝑝𝑏𝑣(𝑢, 𝑢) = 0. 
Proof. First we shall prove the existence of a fixed point and then its uniqueness. 

Existence. Let 𝜇0 be an arbitrary number and {𝜇𝑛} be a sequence in 𝑋 defined by  

𝑇𝜇𝑛 = 𝑥𝑛+1   ∀  𝑛 ≥ 0 
By (1), we have  

𝑝𝑏𝑣(𝜇𝑛+1, 𝜇𝑛) ≤ 𝑎𝑝𝑏𝑣(𝜇𝑛, 𝑇𝜇𝑛−1) + 𝑏𝑝𝑏𝑣(𝜇𝑛−1, 𝑇𝜇𝑛) + 𝑐𝑝𝑏𝑣(𝜇𝑛, 𝜇𝑛−1) 
                 = 𝑎𝑝𝑏𝑣(𝜇𝑛, 𝜇𝑛) + 𝑏𝑝𝑏𝑣(𝜇𝑛−1, 𝜇𝑛+1) + 𝑐𝑝𝑏𝑣(𝜇𝑛, 𝜇𝑛−1)  

                         = 𝑎𝑝𝑏𝑣(𝜇𝑛+1, 𝜇𝑛) + 𝑏𝑝𝑏𝑣(𝜇𝑛−1, 𝜇𝑛+1) + 𝑐𝑝𝑏𝑣(𝜇𝑛−1, 𝜇𝑛+1) 

                              = ℎ𝑝𝑏𝑣(𝜇𝑛, 𝜇𝑛−1) , where ℎ =
𝑐+𝑎

1−𝑏
< 1.                                      …(2)   

From equation (2), it follows that  

𝑝𝑏𝑣(𝜇𝑛+1, 𝜇𝑛) ≤ ℎ𝑛𝑝𝑏𝑣(𝜇1, 𝜇0)    ∀  𝑛 ∈ ℕ 

If 𝜇𝑛 = 𝜇𝑛+1, then 𝜇𝑛 is a fixed point of 𝑇 and we have nothing to prove. 

Now, we shall suppose that 𝜇𝑛 ≠ 𝜇𝑛+1 ∀ 𝑛 ≥ 0. Then, it follows from lemma (12) 𝜇𝑛 ≠ 𝜇𝑚 

for all distinct 𝑛,𝑚 ∈ 𝑁. Moreover from equation (2), we have 

𝑝𝑏𝑣(𝜇𝑛, 𝜇𝑚) ≤ 𝑎𝑝𝑏𝑣(𝜇𝑛−1, 𝑇𝜇𝑚−1) + 𝑏𝑝𝑏𝑣(𝜇𝑚−1, 𝑇𝜇𝑛−1) + 𝑐𝑝𝑏𝑣(𝜇𝑛−1, 𝜇𝑚−1) 
                 ≤ ℎ𝑛−1𝑎𝑝𝑏𝑣(𝜇1, 𝜇0) + ℎ

𝑚−1𝑏𝑝𝑏𝑣(𝜇1, 𝜇0) + 𝑐𝑝𝑏𝑣(𝜇𝑛−1, 𝜇𝑚−1) 
Taking 𝐾 = max{𝑐, ℎ} , 𝛼 = 𝑎ℎ−1𝑝𝑏𝑣(𝜇1, 𝑥0), 𝛽 = 𝑏ℎ

−1𝑝𝑏𝑣(𝜇1, 𝑥0) and 𝜁 = 𝛿 = 0. 
It follows from lemma (12) that {𝜇𝑛} is a Cauchy sequence in 𝑋. Since 𝑋 is complete, there 

exists 𝜇⋆ ∈ 𝑋 such that  

lim
𝑛,𝑚→∞

𝑝𝑏𝑣 (𝜇𝑛, 𝜇𝑚) = lim
𝑛→∞

𝑝𝑏𝑣(𝜇𝑛, 𝜇
⋆) = 𝑝𝑏𝑣 (𝜇

⋆, 𝜇⋆) = 0.                     …(3) 

We now show that 𝜇⋆ is a fixed point of 𝑇. 
𝑝𝑏𝑣(𝜇

⋆, 𝑇𝜇⋆) ≤ 𝑠[𝑝𝑏𝑣(𝜇
⋆, 𝜇𝑛) + 𝑝𝑏𝑣(𝜇𝑛, 𝜇𝑛+1) + ⋯+ 𝑝𝑏𝑣(𝜇𝑛+𝑣−1, 𝜇𝑛+𝑣)

+ 𝑝𝑏𝑣(𝜇𝑛+𝑣, 𝑇𝜇
⋆)] −∑𝑝𝑏𝑣(𝜇𝑛+𝑘, 𝜇𝑛+𝑘)

𝑣

𝑘=1

 

≤ 𝑠[𝑝𝑏𝑣(𝜇
⋆, 𝜇𝑛) + 𝑝𝑏𝑣(𝜇𝑛, 𝜇𝑛+1) + ⋯+ 𝑝𝑏𝑣(𝜇𝑛+𝑣−1, 𝜇𝑛+𝑣) + 𝑝𝑏𝑣(𝑇𝜇𝑛+𝑣−1, 𝑇𝜇

⋆)]

−∑𝑝𝑏𝑣

𝑣

𝑘=1

(𝜇𝑛+𝑘, 𝜇𝑛+𝑘) 
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≤ 𝑠[𝑝𝑏𝑣(𝜇
⋆, 𝜇𝑛) + 𝑝𝑏𝑣(𝜇𝑛, 𝜇𝑛+1) + ⋯+ 𝑝𝑏𝑣(𝜇𝑛+𝑣−1, 𝜇𝑛+𝑣) + 𝑐𝑝𝑏𝑣(𝜇𝑛+𝑣−1, 𝜇

⋆)

+ 𝑎𝑝𝑏𝑣(𝜇𝑛+𝑣−1, 𝜇𝑛+𝑣) + 𝑏𝑝𝑏𝑣(𝜇
⋆, 𝑇𝜇⋆) −∑𝑝𝑏𝑣(𝜇𝑛+𝑘, 𝜇𝑛+𝑘)

𝑣

𝑘=1

 

≤ 𝑠[𝑝𝑏𝑣(𝜇
⋆, 𝜇𝑛) + 𝑝𝑏𝑣(𝜇𝑛, 𝜇𝑛+1) + ⋯+ 𝑝𝑏𝑣(𝜇𝑛+𝑣−1, 𝜇𝑛+𝑣) + 𝑎𝑝𝑏𝑣(𝜇𝑛+𝑣−1, 𝜇𝑛+𝑣)  +

       𝑏𝑝𝑏𝑣(𝜇
⋆, 𝑇𝜇⋆) + 𝑐𝑝𝑏𝑣(𝜇𝑛+𝑣−1, 𝜇

⋆)                                                                        .... (4) 

From (3) as 𝑛 → ∞ in (4), we get 

(1 − 𝑏)𝑝𝑏𝑣(𝜇
⋆, 𝑇𝜇⋆) ≤ 0 

Similarly, we can show that 

(1 − 𝑎)𝑝𝑏𝑣(𝑇𝜇
⋆, 𝜇⋆) ≤ 0, with min {𝑎, 𝑏} < 1 

𝑝𝑏𝑣(𝜇
⋆, 𝑇𝜇⋆) = 0. 

Therefore, 𝑇𝜇⋆ = 𝜇⋆ 
Hence, 𝜇⋆ is a fixed point of 𝑇. 
Uniqueness.  

𝑝𝑏𝑣(𝜇
⋆, 𝜇⋆) = 𝑝𝑏𝑣(𝑇𝜇

⋆, 𝑇𝜇⋆) 
                      ≤ 𝑎𝑝𝑏𝑣(𝜇

⋆, 𝑇𝜇⋆) + 𝑏𝑝𝑏𝑣(𝜇
⋆, 𝑇𝜇⋆) + 𝑐𝑝𝑏𝑣(𝜇

⋆, 𝜇⋆) 
                    = 𝑎𝑝𝑏𝑣(  𝜇

⋆, 𝜇⋆) + 𝑏𝑝𝑏𝑣(𝜇
⋆ , 𝜇⋆) + 𝑐𝑝𝑏𝑣(𝜇

⋆, 𝜇⋆) 
                      = (𝑎 + 𝑏 + 𝑐)𝑝𝑏𝑣(𝜇

⋆, 𝜇⋆) 
                     < 𝑚 𝑝𝑏𝑣(𝜇

⋆, 𝜇⋆), 
which is a contradiction. Hence, 𝑝𝑏𝑣(𝜇

⋆, 𝜇⋆) = 0. 

Let  𝜇⋆, 𝑢 ∈ 𝑋 be the two distinct points 𝑖. 𝑒  𝜇⋆ ≠ 𝑢 𝑠. 𝑡 𝑇𝜇⋆ = 𝜇⋆ and 𝑇𝑢 = 𝑢.  Then, it 

follows from equation (1) that we have 

𝑝𝑏𝑣(𝜇
⋆, 𝑢) = 𝑝𝑏𝑣(𝑇𝜇

⋆, 𝑇𝑢) 
                    ≤ 𝑎 𝑝𝑏𝑣(𝜇

⋆, 𝑇𝑢) + 𝑏 𝑝𝑏𝑣(𝑢, 𝑇𝜇
⋆) + 𝑐 𝑝𝑏𝑣(𝜇

⋆, 𝑢) 
                  = 𝑎 𝑝𝑏𝑣(𝜇

⋆, 𝑢) + 𝑏 𝑝𝑏𝑣(𝑢, 𝜇
⋆) + 𝑐 𝑝𝑏𝑣(𝜇

⋆, 𝑢) 
                     = (𝑎 + 𝑏 + 𝑐) 𝑝𝑏𝑣(𝜇

⋆, 𝑢) 
[1 − (𝑎 + 𝑏 + 𝑐)]𝑝𝑏𝑣(𝜇

⋆, 𝑢) ≤ 0. 
But, 𝑎 + 𝑏 + 𝑐 < 1 

⇒ 1 − (𝑎 + 𝑏 + 𝑐) > 0. 
Hence, 𝑝𝑏𝑣(𝜇

⋆, 𝑢) = 0  

⇒ 𝜇⋆ = 𝑢, 
which proves the uniqueness. 
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