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Abstract: Gouy phase shift of q-Gaussian laser beams interacting nonlinearly with 

collisional plasmas with axially increasing density has been investigated theoretically. The 

Gouy phase shift also known as phase anomaly occurs at a fundamental level from 

position momentum uncertainty. Due to intensity gradient over the cross section of the 

laser beam redistribution of the carriers occurs on account of collisional heating of the 

plasma. The resulting index of refraction resembles to that of graded index fibers that 

stimulates the laser beam to get self-focused. The reduction in transverse dimensions of the 

laser beam in turn leads to spread in transverse momentum of its photons. This transverse 

momentum spread then modifies the axial phase of the laser beam. Following variational 

theory, a set of coupled differential equations for the evolution of beam width and axial 

phase of the laser beam has been obtained. The equations so obtained have been solved 

numerically so see the effect of laser and plasma parameters on the evolution of beam 

envelope. 
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1.Introduction 

 

The Gouy phase shift[1] or phase anomaly of an optical beam describes how the longitudinal 

phase of a focused electromagnetic beam differs from that of an infinite plane wave. Since its 

discovery, the anomalous behavior of the axial phase of the optical beams has been drawing 

attention of the researchers due to its relevance in a number of applications and physical 

problems. In wave optics it explains the phase shift obtained by the secondary wavelets 

emerging from primary wave front. In the working of lasers, it decides the resonant 

frequencies of various transverse modes in laser cavity. Applied physics problems also rely 

on Gouy phase shift. A potential example is optical trapping of particles where it produces 

lateral trapping force[2] and also provides a mechanism for the tracking of trapped 

particles[3, 4]. Moreover, a number of schemes for higher harmonic generation[5-8] of 

optical beams use the concept of longitudinal phase shift to meet the phase matching 

condition. Although the phase anomaly was discovered more than 100 years ago, curiosity 

about its origin and physical meaning is still at the vanguard of theoretical as well as 

experimental investigations. Various theories[9, 10] (ranging from classical to quantum) have 

been used to explain its origin. Classically the phase shift of an optical beam arises due to the 

contribution of an additional phase in the neighbourhood of the beam focal spot arising from 

the second order derivative of field amplitude with respect to transverse coordinates. 

However, in quantum mechanical terms the Gouy phase shift is considered to be originating 

as a consequence of modification of its transverse dimensions. The consequent change in the 

transverse momentum of the photon changes the longitudinal momentum as well that in turn 

modifies the longitudinal phase of the laser beam. 
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            Erden and Ozaktas[11] investigated Gouy phase shift of Gaussian laser beams 

propagating through first order optical systems. Andresen et al[12-14] investigated similarity 

between spectral phase shift and the Gouy phase shift. Gordon and Barge [15] investigated 

the effect of Gouy phase shift on coherent phase control of chemical reactions. Literature 

review reveals the fact that in almost all the previous investigations on Gouy phase shift, the 

irradiance over the cross section of the laser beam has been considered to be ideally 

Gaussian. However, by investigating experimentally, Patel et al[16] have shown that although 

the laser operates in TEM00 mode, the irradiance over its cross section is not ideally 

Gaussian. Further, by fitting into the experimental data it was shown that[17] the actual 

irradiance over the beam's cross section can be modeled by a set of distribution functions 

known as q-Gaussian distribution given by Tsalli [18]. The difference in the behavior of 

irradiance over the laser beam wave front from ideal Gaussian is due to cavity imperfections 

that may be inherent or accidental in nature. Till date no experimental or theoretical 

investigation on Gouy phase shift of q-Gaussian laser beams in nonlinear media has been 

reported by any researcher. Thus, this paper aims to investigate for the first time Gouy phase 

shift of q-Gaussian laser beams in collisional plasma with axial density ramp. 

2. Dynamics of Beam Envelope 

 

The model equation for the propagation of intense laser beam through collisional plasma with 

axial density ramp is 
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𝑛(𝑧) is the plasma frequency, n(z) being the axially increasing electron 

density of plasma, 𝛽 =
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 is the constant associated with the strength of collisional 

nonlinearity. The nature of collisions is expressed by the parameter s. s = 0 indicates velocity 

independent collisions, s = 2 corresponds to the collisions between electrons and diatomic 

molecules and s = -3 indicates collisions between electrons and ions.  

Eq.(1) is the mathematical statement of interplay between diffraction and nonlinear refraction 

of the optical beam where, the diffraction phenomenon is modeled by first term on R.H.S and 

the nonlinear refraction represented by second term. Being nonlinear in nature conventional 

method of solving partial differential equations i.e., expansion in power series are not 

applicable eq.(1). In order to obtain physical insight into the propagation dynamics of the 

laser beam we use a semi analytical technique known as variational method[18]. According 

to this method eq.(1) is a variational problem for action principle based on Lagrangian 
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The basic idea of this method is the selection of a trial function that characterizes the actual 

solution of the problem as close as possible. This trial function contains the parameters of 

interest. The variational method then recasts the original partial differential equation into 

Newton like ordinary differential equations for these parameters. In the present analysis we 

assume A0(r; z) takes the form of the function given by[19, 20] 
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where, the parameter f(z) is currently undetermined and upon multiplication with initial beam 

width r0it gives the waist size of the laser beam at particular location inside the medium. 

Also, upon dividing by axial intensity, f(z) also gives the estimate of instantaneous axial 

intensity of the laser beam. Hence, the parameter f(z) can be referred to as dimensionless 

beam width parameter. The phenomenological parameter q is related to the deviation of 

irradiance, over the cross section of the beam, from ideal Gaussian profile. The function f(z) 

is known as longitudinal phase of the laser beam which is also known as Gouy phase. 

               The corresponding Lagrange equations 
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gives following set of coupled equations describing the dynamical variations of beam width 

and axial phase of the laser beam with propagation distance. 
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Considering the plasma density to be increasing axially as 𝑛(𝜉) = 𝑛0(1 + 𝑡𝑎𝑛(𝜉𝑑)) 

where,𝑛0 is the plasma density seen by the laser beam while entering into the plasma and d 

isthe measure of rate of increase of plasma density with distance, one can write the 

plasmafrequency as 
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Thus, it follows from eqs. (6) and (7) that the actual problem of solving a partial differential 

equation i.e., eq.1 has reduced to that of solving a set of ordinary differential equations. 

Although this reduced set of equations is also lacking from exact analytical solution, its 

approximate solution can be easily obtained with the help of simple numerical techniques. In 

solving eqs.(6) and (7) it has been assumed that initially the beam is collimated and is having 

perfect plane wave front while entering into the plasma region. Mathematically these two 

conditions impose the boundary conditions f = 1, 𝜃 = 0 and on eqs.(6) and (7). 

3. Results and Discussion: 

 

Eq.(6) is identical to the equation of motion of a driven nonlinear oscillator. Thus, itpredicts 

that during the propagation of the laser beam through the plasma its beam width will evolve 

in an oscillatory manner i.e., the laser beam will undergo periodic focusing and defocusing. 

In the present analysis solution of eq.(7) in association with eq.(6) has been obtained with the 

help of Runge Kutta fourth order method for following set of parameters: 

𝜔0 = 1.78 × 1015
𝑟𝑎𝑑

𝑠𝑒𝑐
,

𝑟0 = 15𝜇𝑚  (
𝜔𝑝(𝜉)𝑟0

𝑐
)

2

= 6, 𝑇0 = 106𝐾, 𝑠 = −3 𝑎𝑛𝑑 𝑑 = 0.025 

and the corresponding variations of axial phase with distance have been shown in fig.(1). 

 

Fig.1. Effect of q on axial phase of laser beam. 

 

It can be seen that the axial phase of the laser beam decreases monotonically with distance, 

showing step like behavior. This is due to the periodical self focusing/defocusing of the laser 

beam. As the laser beam undergo self focusing, its intensity increases and hence, the laser 

phase fronts start experiencing larger refractive indices. This results in decreased phase 

velocity of the phase fronts that leads to decreased spacing between the phase fronts as shown 

in fig.2.  

 



                                            European Journal of Molecular & Clinical Medicine                                                                                        

ISSN 2515-8260                 Volume 07, Issue 07, 2020 
 

3809 

 

 

Fig.2. Effect of q on spacing between the wave fronts of the laser beam. 

 

 

This fact can be explained in another way. The axial phase shift of the laser beam occurs due 

to the transverse momentum gained by the photons due to reduction in the volume of space 

available for their propagation. As the reduction in the transverse dimensions of the laser 

beam occurs due to self focusing, the photons gain additional transverse momentum (kx, ky) 

due to position momentum uncertainty ∆𝑘𝑥∆𝑥 = constantand ∆𝑘𝑦∆𝑦 = constant. As the over 

all momentum of the laser beam is conserved, theincrease in the transverse momentum 

reduces the longitudinal momentum. Thus during the propagation of laser beam its 

longitudinal momentum reduces as the beam keep on focusing. This results in monotonic 

decrease in its axial phase. 

             Step like behavior of the axial phase can also be seen from fig.1. These steps occur at 

the periodical positions of the minima of the beam width i.e., at the positions of focal spots of 

the beam. This indicates that there is slowest decrement in axial phase near its focal point. 

This is quite contrary to the behavior of the phase in graded index fibers where the phase 

decreases slowest at the positions of minimum intensity i.e., at the positions of maximum 

beam width. This difference in the behavior of phase in graded index fibers and that in 

plasmas can be explained qualitatively by the fact that plasmas a nonlinear medium behave 

like a linear wave guide. In linear wave guides the growth rate of the axial phase is inversely 

proportional to the beam width. 

Further it can be seen that the size of each step keep on decreasing with distance. This is due 

to the fact that size of the step of the axial phase curve is determined by the frequency of 

oscillations of the beam width of the laser beam. As the magnitude of the refractive term in 

eq.(6) increases with distance due to the presence of density ramp, the frequency of 

oscillations of the beam with also increases with distance. This in turn reduces the size o the 

steps of the axial phase curve. 

                 In order to see the effect of deviation parameter q on the evolution of axial phase 

of the laser beam eq.(7) has been solved for different values of q. It has been seen that with 

the increase in the value of deviation parameter q there is a reduction in the rate of change of 

axial phase of the laser beam with distance. This is due to the fact that there is one to one 

correspondence between the extent of focusing of the laser beam and the rate of decrease of 

its axial phase. As with increasing q the focusing of the laser beam gets reduced, hence, the 

rate of change of axial phase also reduces with increase of deviation parameter q. 
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