A Review On Underwater Acoustic Communication

Preeti Sharma,¹ Mridul Saini,² Sarvesh Swar³

^{1,2,3}Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India. e-mail id:preeti.sharma@chitkara.edu.in¹ mridul172131.ece@chitkara.edu.in² mahajansarvesh476@gmail.com³

Abstract: Cold ocean and sea spots of our planet shroud a ton of assets and privileged insights. The investigation is impossible without the assistance of specialized methods. The submerged unmanned vehicles and sensor systems constitute the most important parts of the collaborative network and correspondence frameworks. This paper presents a study on submerged acoustic correspondence and route in states of chilly water and icicle-secured oceans and seas. All the preferences and impediments of considerable number of strategies like FSK, PSK OFDM, CDMA and so on in submerged acoustic correspondence are summed up, checked on and contrasted concurring with their long periods of distribution. Moreover, the works are looked at dependent on the multifaceted nature and execution of the calculations while some future exploration issues are also explored and distinguished.

Keywords: Under water acoustic communication, OFDM, CDMA

1. INTRODUCTION

Under Water Acoustic Communication (UWAC) is a method of transferring and accepting information (or messages) under water. Need for communication lies in for various applications like data accumulation for monitoring of environment, linking protected and unguarded under water vehicles and communication for driver speech and so on. UWAC has various types of advantages such as it avoids data spoofing and it also prevents the privacy leakage [1]. Besides these advantages UWAC also has various disadvantages due to which it becomes one of the most complex communication channels. Some hindrances of UWAC involve restricted data transfer capacity, broad multipath, high ambient noise, irregular change, enormous transmission delay, doppler recurrence move and so forth. Underwater channel is a time-dependant channel using multiple paths which causes Inter Symbol Interference. Such unwanted phenomenon of signal distortion interferes with different symbols to produce a detrimental effect of frequency spreading and fading, thereby making the communication less reliable [2]. Here, Modulation plays an important role in channels with sufficiently slow variations in time by eliminating the need of highly difficult equalizers. Various types of incoherent and coherent modulation techniques such as PSK (Phase Shift Keying), FSK (Frequency Shift Keying) and QAM (Quadrature Amplitude Modulation) may be used [3]. FSK modulation is preferred because of its simple design [4].

Since the technology is advancing day by day, better techniques are being used for the underwater acoustic communication. One of the latest techniques used for UWAC is MIMO (Multiple Input Multiple Output). While the technique is capable of increasing its spectral efficiency by transmitting symbols, it also suffers from a few limitations. These include poor energy efficiency and distortion of inter channel interface. [5].To overcome the inter-channel interface in MIMO, SSK (space shift keying) is used which provides better power efficiency

and helps to surmount the inter channel interface [4] The feat of UWAC system is generally affected by the acoustic channels used for underwater communication. Also, the bandwidth available for the communication critically depends upon two factors, namely, range and frequency, which forms the most critical challenge [5].

In general, UWAC suffers from the limitation of stability and reliability. Thus, a solution for future wideband for mobile UWAC is suggested through CDMA (Code Division Multiple Access) due to many benefits such as, resistance against multipath propagation and low probability of detection [5]. Thus, a brief study is presented and concluded in this paper in Section 2 and 3 respectively.

2. LITERATURE SURVEY

A review of various methods and techniques used for UWAC is presented in Table 1 below.

Author(s)	Area	Description	Merits	Limitations	Future
	Focussed	of work			scope
Zhu et. al	UWAC using OFDM and TPC (Turbo product Codes)	Simulation model based on BELLHOP was used to achieve the actual response approximatel y for depthless water UWAC having large delay and strong characteristics of multi-path.	Excellent multi-path and Doppler channel performance	non uniform distribution of profiles of sound speed, abrupt scattering of sound waves and reflection of interface	scope
Kaihan et. al	UWAC using FSK modulation	FSK based on FRFT (Fractional Fourier Transform) for UWAC was used. Higher order chirp single carriers were used for modulation.	Higher Bandwidth efficiency and faster transfer rate. A trade-off between BER (Bit Error rate) and rate of transmission is also controlled by the system.	Lesser bandwidth, greater ambient noise and multi- path, large delay in transmission, abrupt fluctuation in Doppler frequency.	

Table 1: Study of UWAC methods and techniques.

		2224			-	
Lanjun	Liu	CDMA	A DSSC	Achievement	Less	
et. al		method using	positioned on	of zero BER	available	
		Dual Spread	Single Carrier	was possible	bandwidth,	
		Spectrum	UWAC	with a	large ambient	
		Code(DSSC)	framework	communicati	noise,	
			with the help	on rate of 387	multipath and	
			of CDMA	bps.	transmission	
			code (SC-		delay. Abrupt	
			CDMA/DSS		fluctuations	
			C) was used.		and shifts in	
			The Training		Doppler	
			sequence was		frequency.	
			used as a long			
			and short			
			spread code			
			for the			
			purpose of			
			training and			
			effective			
			communicatio			
			n			
_			respectively.		_	
Roee		LPD (Low	Capability of	Successful	Poor	
Diamant	et.	Probability	LPD systems	transmission	performance	
al.		Detection)	for UWAC	of data	at high	
		method 1s	was studied to	packets in an	frequencies	
		used for	obtain a	undetected	and in cold	
		UWAC.	secure	mode at low	water	
				carrier		
			n. Ine	frequencies.		
			capability			
			was found to			
			improve in			
			shallow water			
			with change			
			in bandwidth			
			and inversely			
			related to rate			
			OI tuon antionian			
			u ansinission.			
Xi et al		Soft Direct-	The	Bi directional	Greater	
		Adaptation	conventional	diversity gain	Doppler	
		Based Bi	and reversed	was	spread.	
		directional	in time Soft	oppressed	less	
		Turbo method	Direct-	and error	bandwidth.	
		was used for	Adaptation	propagation	harsh Inter-	
		UWAC.	Based Bi	was also	Symbol	

		directional Turbo methods were combined using a weighted scheme of linear combining.	suppressed. Error free detection was achieved for transmissions of 500 m and 1000 m.	Interference (ISI), quick time-variation and Co Channel Interference.	
Iwona Kochanska	Wide sense stationary of bandpass signals in underwater acoustic communicatio n is tested.	Non-versatile information transmission frameworks are utilized and compelled to work with settings accepting the most noticeably terrible potential conditions; this unequivocally constrains its viable data transfer capacity, range, speed and effectiveness	limits the viable transmission capacity, range, speed, and productivity.		
Akram Ahmed and Mohamed Younis	Optimized Beam Selection method is used for Underwater Acoustic Communicati on	2D and 3D path extensions were proposed, The effects of refraction upon the directional beams were utilized by a geographic grid.	Data can be transferred to a long range, no path loss, directional transmission.		
Pierre et.al	Experiment using MIMO	A transmission	Avoids data spoofing. It		

	for UWAC	framework is	avoids the		
	was done in	tested over	avoids the		
	shallow water	different	leakage		
	shannol		holps in		
	channel.	conditions	monitoring		
		and looked at	the pollution		
		and looked at	the pollution.		
		against			
		SIMO (sin als			
		SIMO (single			
		input multiple			
		output) mode			
		working with			
		a solitary			
		transmission			
		stream and			
		different			
		reception			
Chan at al	Eroquarav	A nother	Contracted	aanstrainad	
Chen et.al	Domain Turba	iterative	and time	data	
	Equalization	heneficiary	domain with	transmission	
	method is	for Single	turbo	enormous	
	focused	Carrier	equalization	spread of	
	Ioeuseu.	MIMO (SC	FDTF	Doppler 01	
		MIMO)	diminishes	acute Inter-	
		UWAC was	the	Symbol	
		used which	unpredictabili	Interference	
		uses	ty precision	(ISI) quick	
		recurrence	of the	variation in	
		area turbo	assessed CSI	time and Co	
		evening out	is improved.	Channel	
		(FDTE) and	P	Interference	
		channel			
		estimation			
		using			
		iterations.			
Zhang et.al	Different	In light of the	It has good	Higher BER	
	characteristics	CPPM	concealment,	(bit error rate)	
	of pulses were	innovation,	higher		
	tested and	another	corresponden		
	used for a new	corresponden	ce rate and		
	method of	ce framework	more		
	modulation in	for the	noteworthy		
	UWAC.	UWAC is	powerful data		
		proposed	transmission,		
		dependent on	low capture		
		the addition	attempt and		
		of CPWM.	break rate,		
		This latest	quick		
		technique	corresponden		

		coined the characteristics of chaotic pulse and width positions. The combined modulation technique was called as Chaotic Pulse Width Combined Modulation	ce speed.		
		on System			
Chua et.al,	Effect of Bubbles on UWAC was observed.	a model for the determination of air pockets approved with controlled estimations in a breeze wave channel was introduced.	Huge air pockets infused into the water section ascend to the surface because of lightness, and commonly vanish inside a few minutes.	Tiny bubbles can stay for long periods and affect underwater acoustic communicati on.	
Du et.al	DSSS for UWAC using the principle of Differential Correlation Detector was proposed.	DCD (Differential correlation detector) was appropriately used for a direct- sequence system receiver under different interferences.	It is plain and clear to implement. Easy to remove the accouterment s of fluctuations in phase of carrier and interference of enlargement and compression of Doppler effect Offers good robustness against	This technique is considerably more delicate to obstruction of multiple paths of the UWAC and has less anti noise conflicts.	

European Journal of Molecular & Clinical Medicine ISSN 2515-8260 Volume 07, Issue 03, 2020

			various interferences.		
Zhang et. al	A non- cooperative method for UWAC using AMC algorithm for estimating a blind channel was used.	Implementati on of a non- helpful underwater acoustic corresponden ce framework utilizing Automatic Modulation Classification (AMC) and visually impaired estimation of channel was used.	This technique gives a decent characterizati on and demodulation execution.	A greater number of symbols received are needed for the extraction of statistical properties which are also unable to converge fast in UWAC.	
Han et.al.	The effect of constantly changing doppler effect on Mobile underwater communicatio n is observed.	A strategy with three stages for preparing the information is proposed so as to viably unravel the trial information with serious Doppler obstructions.	Effective tracking and compensation for time- varying channels is possible. Improved SNR and BER.	Constant changing position of the receiver due to doppler's effect.	
Rodionovet. al.	The underwater communicatio n is done using OFDM in UWAC	A study related to the concerns of using under water vehicles and networks for the purpose of communicatio n and navigation was done under the prevalent conditions of	Almost half the bandwidth is consumed with exceptional good spectral efficiency	higher BER and SNR values.	

705

Jan et.al	MIMO technique is used for UWAC.	chilled sea water and ice- dressed oceans. The technique of MIMO was used for coding the Space Time Block Code. The tests ofan ideal form of Alamonti coding were also simulated in flat Rayleigh fading channels.	Improved reliability , increased speed and range, reduced energy consumption	Attenuation, limited bandwidth, multipath propagation.	Design of floating and bottom objects of different dimensions may be used for UWAC using MIMO.
Duan et. al	ATEQ (Adaptive Turbo Equalization) scheme using MIMO for UWAC was proposed and implemented.	ATEQ scheme used an inner and outer layer for processing, which improved the adaptation, equalization and filtering of the received signals in UWAC.	transmission of many layers of modulation with more than two concurrent streams was achieved.	Slow transfer speed, high encompassing commotion, broad multipath, enormous transmission delay, irregular variance, and Doppler recurrence move shift	
Xiao et. al.	Estimation of Carrier frequency method was used for UWAC.	Method of Cyclic spectrum method was used for estimation of carrier frequency for the received UWAC signal.	The estimation effect of carrier frequency under complex multipath condition was improved.	Low signal to noise ratio, delay.	
Kochanska et. al	Coherence band width estimation designed for UWAC	Coherence bandwidth was estimated for response of channel impulse. This	Removing influence of autocorrelatio n function.	limited bandwidth, coherence bandwidth, transmission parameters.	

		method reduced the distortion of simulation tests restrained during the under water trial.			
Diamant et.al.	LPD (Low probability detection) method for UWAC was studied.	The paper proposed LPD transmission and limiting of the power spectral density	Undetected successful transmission of data packets	not good at higher frequencies, does not preform good in cold water	Range test are suggested to be done to determine the LPD capacity.
Du et. al	Mobile spread spectrum method for UWAC	Direct- sequence spread- spectrum (DSSS) was used for UWAC for achieving high quality	DSSS has proved strong resistance against interface fluctuations of anti-fast carrier phase under low Signal to Noise conditions also.	carrier phase fluctuation interference which reduces	
Tong et. al	Channel Estimation Based Equalizer technique was used	MIMO for UWAC was used which helped in increasing the rates of data for limited bandwidth in underwater channels.	High data rate	inter-symbol interference- channel interference	
Ling et. al	Joint Doppler Scale Estimation and Timing Synchronizati on was used for UWAC	The signal with superimposed hyperbolic Frequency modulation (HFM) was used as a preface in	This method helps to achieve better performance	multi-path propagation, speed of sound is low, doppler effect	

		UWAC using joint Doppler based Timing Synchronizati on method.			
Sprea et. al	BATS coding technique.	The technique using Batched Sparse (BATS) was a consolidation of spring and network coding and used to enhance the flexibility of multi hop UWAC Networks, which consisted of many under water Transceiver nodes.	Assists with conquering the confinements of divert coding as far as power and those of system coding as far as computationa 1 multifaceted nature		
Qin et.al	RLS adaptive equalization method was used.	A recursive least squares (RLS) sparse type system of low complexity direct adaptive equalizer (DAE) was used for MIMO based UWAC.	Convergence is improved.	inter-symbol interference, co-channel interference (CoI).	It will be tested at ocean level to check that the DR technique is effective or not.
Jiang et. al	Modulation Recognition of UWAC was focused.	A method was proposed to increase the rate of recognition to a great extent.	Data transfer rate is improved.	large noise.	
Rahmati et. al	A reliable CDMA based modulation technique was used for	The technique was proposed to change the physical-and connection	Physical and link-layer parameters are adjusted, system	Less volume of data is transferred.	The technique may be implemente d on a large

European Journal of Molecular & Clinical Medicine ISSN 2515-8260 Volume 07, Issue 03, 2020

	UWAC	layer boundaries cooperatively for CDMA based under water system.	performance and power control.		network with composite nodes to achieve a greater amount of data. The Scalability of the system may also be analyzed.
Jing et. al	CCK (Complement ary Code Keying) modulation was used.	A unique coding using spatial block was blended with CCK modulation to handle diversity problems of spatial and code in opposition to fading channels which were doubly selective.	improves detection accuracy and high performance gain.	Distribution of profile of sound speed was non uniform, abrupt scattering of sound waves, reflection of interfaces.	Sea experiments may be conducted.
Isitiaqahma d et.al.	SNR mapping and link adaptation.	A connection and framework level investigation of downlinks utilizing a symmetrical recurrence division of different access procedure for UWAC was done.	Better link adaptation approach is considered.	Signal to noise ratio	
Jebur et. al	Orthogonal FDM and QPSK (Quadrature Phase Shift	A method of an adjustable Self- Interference Cancellation	Attained capacity of data transfer of UWAC systems were	Surrounding commotion, long multi paths defer spread bury	

European Journal of Molecular & Clinical Medicine ISSN 2515-8260 Volume 07, Issue 03, 2020

	• `	(97.9)			
	Keying) were used.	(SIC) was used for In- Band Full- Duplex (IBFD-UWA) UWAC systems onward with a miniature of (SI) in shallow-water acoustic channels.	improved.	image obstruction, movement instigated Doppler spread.	
Zhu et.al	Orthogonal Chirp Division Multiplexing (OCDM) was used for anti multi-paths.	Chirp signals were used for carrier modulation based on OCDM using multi carriers with anti multipath effect.	Good communicati on Performance, eliminated ICI.	Long intervals of guard reduced the rate of data in multiple carrier UWAC systems.	Methods related to the effects of Doppler on DP-Rake OCDM system for the correspondi ng improveme nt may be considered.
Xiet. Al	Frequency Time Domain Turbo Equalization (FTD TEQ) was used.	Hybrid FTD turbo equalizer were presented for UWAC with thorough exploratory examinations was proposed.	faster convergence rate, high data rate, low complexity.	Very bad transmission channels, limited bandwidth, Doppler shift, Doppler spread.	
Arun et. al	Decoding of Soft Symbols was proposed using Sweep- Spread- Carrier technique.	S2C communicatio n receivers were thoroughly designed to propose a scheme of data detection to arm challenging channels of UWAC. These	Recovers data symbol at SNR, BER is low.	large delay spreads, Doppler shifts, Multipath propagation.	

modernized
ragivar
established on
gradient
heterodyne
processing
were highly
useful when
the paths of
delay and
Doppler
spread were
moderated. A
VSSD
algorithm was
also used for
general linear
model.

3. CONCLUSION

This paper represents an outline of experiments performed in the field of Underwater Acoustic Communication (UWAC). Various analysts have concentrated on various issues and it tends to be reasoned that a productive single correspondence plan with explicit calculations could be utilized in a wide range of submerged channels. The transmission configuration profoundly relies upon the channel conditions like various plans ought to be utilized in depthless rather than profound water. Also, various calculations can also used for quiet, multi-path and serious Doppler effect channels.

4. REFERENCES

- [1] X. Zhu, Z. Xie, S. Xiong, H. Zhang and Z. Yue, "Research on high speed OFDM underwater acoustic communication based on TPC," 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xiamen, 2017, pp. 1-6, doi: 10.1109/ICSPCC.2017.8242596.
- [2] Z. Kaihan, C. Keyu, Y. Fei and Y. Jinwang, "Chirp FSK based on FRFT for underwater acoustic communication," 2017 7th IEEE International Conference on Electronics Information and Emergency Communication (ICEIEC), Macau, 2017, pp. 49-52, doi: 10.1109/ICEIEC.2017.8076510.
- [3] L. Liu et al., "A SC-DS-CDMA underwater acoustic communication system using dual spread spectrum code," 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xiamen, 2017, pp. 1-6, doi: 10.1109/ICSPCC.2017.8242518.
- [4] R. Diamant, L. Lampe and E. Gamroth, "Bounds for Low Probability of Detection for Underwater Acoustic Communication," in IEEE Journal of Oceanic Engineering, vol. 42, no. 1, pp. 143-155, Jan. 2017, doi: 10.1109/JOE.2016.2550278.
- [5] J. Xi, S. Yan, L. Xu and J. Tian, "Soft direct-adaptation based bidirectional turbo equalization for MIMO underwater acoustic communications," in China Communications, vol. 14, no. 7, pp. 1-12, July 2017, doi: 10.1109/CC.2017.8010969.

- [6] I. Kochanska, "Testing the wide-sense stationarity of bandpass signals for underwater acoustic communications," 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA), Gdynia, 2017, pp. 484-489, doi: 10.1109/INISTA.2017.8001208.
- [7] A. Ahmed and M. Younis, "Optimized beam selection for efficient long range underwater acoustic communication," 2017 IEEE International Conference on Communications (ICC), Paris, 2017, pp. 1-6, doi: 10.1109/ICC.2017.7997488.
- [8] P. Bouvet et al., "Experimentation of MIMO underwater acoustic communication in shallow water channel," OCEANS 2017 - Aberdeen, Aberdeen, 2017, pp. 1-6, doi: 10.1109/OCEANSE.2017.8084719.
- [9] Z. Chen, J. Wang and Y. R. Zheng, "Frequency-Domain Turbo Equalization With Iterative Channel Estimation for MIMO Underwater Acoustic Communications," in IEEE Journal of Oceanic Engineering, vol. 42, no. 3, pp. 711-721, July 2017, doi: 10.1109/JOE.2016.2600106.
- [10] L. Zhang, J. Wang, J. Tao and S. Liu, "A New Pulse Modulation Method for Underwater Acoustic Communication Combined with Multiple Pulse Characteristics," 2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Qingdao, 2018, pp. 1-6, doi: 10.1109/ICSPCC.2018.8567790.
- [11] G. Chua, M. Chitre and G. Deane, "Impact of Persistent Bubbles on Underwater Acoustic Communication," 2018 Fourth Underwater Communications and Networking Conference (UComms), Lerici, 2018, pp. 1-5, doi: 10.1109/UComms.2018.8493226.
- [12] P. Du, X. Zhu and Y. Li, "Direct Sequence Spread Spectrum Underwater Acoustic Communication Based on Differential Correlation Detector," 2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Qingdao, 2018, pp. 1-5, doi: 10.1109/ICSPCC.2018.8567803.
- [13] L. Zhang, W. Feng, X. Xu, A. Lu and Q. Zhou, "Multi-Receiver Modulation Classification for Non-Cooperative Underwater Acoustic Communications," 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, 2018, pp. 1-4, doi: 10.1109/OCEANSKOBE.2018.8559334.
- [14] X. Han, W. Ge, J. Yin and G. Yu, "Mobile Underwater Acoustic Communication with Constantly Changing Doppler Effect," 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, 2018, pp. 1-5, doi: 10.1109/OCEANSKOBE.2018.8559293.
- [15] A. Rodionov, P. Unru, L. Statsenko, K. Kim and D. Kuzin, "OFDM-Based Underwater Acoustic Communication System Designing for Under-Ice and Cold-Water Applications," 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, 2018, pp. 1-5, doi: 10.1109/OCEANSKOBE.2018.8559439.
- [16] J. H. Schmidt, A. M. Schmidt and I. Kochańska, "Multiple-Input Multiple-Output Technique for Underwater Acoustic Communication System," 2018 Joint Conference -Acoustics, Ustka, 2018, pp. 1-4, doi: 10.1109/ACOUSTICS.2018.8502439.
- [17] W. Duan, J. Tao and Y. R. Zheng, "Efficient Adaptive Turbo Equalization for Multiple-Input–Multiple-Output Underwater Acoustic Communications," in IEEE Journal of Oceanic Engineering, vol. 43, no. 3, pp. 792-804, July 2018, doi: 10.1109/JOE.2017.2707285.
- [18] M. Xiao, Z. Xin, G. Yizhou and Z. Qing, "Research on Carrier Frequency Estimation of Underwater Acoustic Communication Signals," 2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Qingdao, 2018, pp. 1-4, doi: 10.1109/ICSPCC.2018.8567725.
- [19] I. Kochanska and J. H. Schmidt, "Estimation of Coherence Bandwidth for Underwater Acoustic Communication Channel," 2018 Joint Conference - Acoustics, Ustka, 2018, pp. 1-5, doi: 10.1109/ACOUSTICS.2018.8502331.

- [20] R. Diamant and L. Lampe, "Low Probability of Detection for Underwater Acoustic Communication: A Review," in IEEE Access, vol. 6, pp. 19099-19112, 2018, doi: 10.1109/ACCESS.2018.2818110.
- [21] P. Du, S. Xiong and C. Wang, "Research on mobile spread spectrum underwater acoustic communication," 2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Dalian, China, 2019, pp. 1-4, doi: 10.1109/ICSPCC46631.2019.8960756.
- [22] Y. Zhou and F. Tong, "Channel Estimation Based Equalizer for Underwater Acoustic Multiple-Input-Multiple-Output Communication," in IEEE Access, vol. 7, pp. 79005-79016, 2019, doi: 10.1109/ACCESS.2019.2921596.
- [23] Z. Ling, L. Xie and H. Chen, "Joint Doppler Scale Estimation and Timing Synchronization in Underwater Acoustic Communications," 2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Dalian, China, 2019, pp. 1-6, doi: 10.1109/ICSPCC46631.2019.8960868.
- [24] N. Sprea, M. Bashir, D. Truhachev, K. V. Srinivas, C. Schlegel and C. Sacchi, "BATS Coding for Underwater Acoustic Communication Networks," OCEANS 2019 -Marseille, Marseille, France, 2019, pp. 1-10, doi: 10.1109/OCEANSE.2019.8867299.
- [25] Z. Qin, J. Tao, F. Tong, H. Zhang, F. Qu and X. Han, "A Fast Proportionate RLS Adaptive Equalization for Underwater Acoustic Communications," OCEANS 2019 -Marseille, Marseille, France, 2019, pp. 1-5, doi: 10.1109/OCEANSE.2019.8867338.
- [26] N. Jiang and B. Wang, "Modulation Recognition of Underwater Acoustic Communication Signals Based on Data Transfer," 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 2019, pp. 243-246, doi: 10.1109/ITAIC.2019.8785698.
- [27] M. Rahmati, R. Petroccia and D. Pompili, "In-Network Collaboration for CDMA-Based Reliable Underwater Acoustic Communications," in IEEE Journal of Oceanic Engineering, vol. 44, no. 4, pp. 881-894, Oct. 2019, doi: 10.1109/JOE.2019.2910940.
- [28] L. Jing, H. Wang, C. He and Z. Ding, "A Novel Spatial CCK Modulation Design for Underwater Acoustic Communications," in IEEE Transactions on Vehicular Technology, vol. 68, no. 6, pp. 6192-6196, June 2019, doi: 10.1109/TVT.2019.2912583.
- [29] I. Ahmad and K. Chang, "Effective SNR Mapping and Link Adaptation Strategy for Next-Generation Underwater Acoustic Communications Networks: A Cross-Layer Approach," in IEEE Access, vol. 7, pp. 44150-44164, 2019, doi: 10.1109/ACCESS.2019.2908018.
- A. Jebur, C. T. Healy, C. C. Tsimenidis, J. Neasham and J. Chambers, "In-Band Full-Duplex Interference for Underwater Acoustic Communication Systems," OCEANS 2019 -Marseille, Marseille, France, 2019, pp. 1-6, doi: 10.1109/OCEANSE.2019.8867207.
- [30] P. Zhu, X. Xu, X. Tu, Y. Chen and Y. Tao, "Anti-Multipath Orthogonal Chirp Division Multiplexing for Underwater Acoustic Communication," in IEEE Access, vol. 8, pp. 13305-13314, 2020, doi: 10.1109/ACCESS.2020.2966072.
- [31] J. Xi, S. Yan, L. Xu, Z. Zhang and D. Zeng, "Frequency–Time Domain Turbo Equalization for Underwater Acoustic Communications," in IEEE Journal of Oceanic Engineering, vol. 45, no. 2, pp. 665-679, April 2020, doi: 10.1109/JOE.2019.2891171..
- [32] [33].JA. K. P. and C. R. Murthy, "Soft Symbol Decoding in Sweep-Spread-Carrier Underwater Acoustic Communications: A Novel Variational Bayesian Algorithm and Its Analysis," in IEEE Transactions on Signal Processing, vol. 68, pp. 2435-2448, 2020, doi: 10.1109/TSP.2020.2983830..