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Abstract: Diabetic complications, such as, retinopathy, nephropathy lead to blindness and 

end stage renal failure respectively, various neuropathies, and ultimately increased 

mortality. While the exact mechanisms that lie behind the pathological changes associated 

with diabetes remain obscure, however, it is widely believed that chronic or intermittent 

hyperglycemia may alter various metabolic pathways at the tissue level, for instance, 

increased flux through the polyol and the hexosamine pathways as well as a persistent 

activation of protein kinase C (PKC). Reducing sugars such as glucose and fructose may 

react non-enzymatically through their carbonyl groups with free amino groups of proteins 

(commonly the Ɛ amino group of lysine) to form a Schiff base intermediate which then 

rearranges to a more stable structure known as Amadori product. The Amadori products 

generated by the aforementioned Maillard reaction may then undergo further reactions, 

including dehydration, oxidation and rearrangement resulting in the irreversible formation 

of heterogeneous advanced glycation end products (AGEs). 
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1. INTRODUCTION 
 

Diabetes mellitus is characterized by chronic hyperglycemia and other metabolic aberrations, 

which together contribute to micro- and macro-vascular complications and organ 

dysfunction. Diabetic complications, such as, retinopathy, nephropathy lead to blindness and 

end stage renal failure respectively, various neuropathies, and ultimately increased mortality. 

Large scale studies such as the UK Prospective Diabetes Study (UKPDS) and the Diabetes 

Control and Complications Trial (DCCT) have evaluated the effect of long term 

hyperglycemia and glycemic control. While the exact mechanisms that lie behind the 

pathological changes associated with diabetes remain obscure, however, it is widely believed 

that chronic or intermittent hyperglycemia may alter various metabolic pathways at the tissue 

level, for instance, increased flux through the polyol and the hexosamine pathways as well as 

a persistent activation of protein kinase C (PKC). These aberrations may lead to formation of 

glycation adducts and oxidative stress, inducing inflammation and precipitating apoptosis or 

cellular death. 
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Advanced Glycation End-products (AGEs) 

Reducing sugars such as glucose and fructose may react non-enzymatically through 

their carbonyl groups with free amino groups of proteins (commonly the Ɛ amino group of 

lysine) to form a Schiff base intermediate which then rearranges to a more stable structure 

known as Amadori product. The Amadori products generated by the aforementioned Maillard 

reaction may then undergo further reactions, including dehydration, oxidation and 

rearrangement resulting in the irreversible formation of heterogeneous advanced glycation 

end products (AGEs). In addition to proteins, such covalent adducts may be formed with 

lipids as well as nucleic acids since the amino groups of adenine and guanine are also 

susceptible to glycation reactions (Vlassara, 1996; Baynes, 2002). Advanced glycation 

modifies these macromolecules in an irreparable manner, adversely affecting and 

compromising their structural and functional roles (Brownlee, 1995; Shah and Brownlee, 

2016; Sharma et al., 2019). Moreover, oxidative or dicarbonyl stress may trigger oxidation or 

degradation of glucose to yield dicarbonyl compounds including, but not limited to glyoxal, 

glyceraldehyde, glycolaldehyde, that may also participate in glycation reactions generating 

AGEs (Goldin et al., 2006; Prabhakar et al., 2020) which are reported to accumulate 

intracellularly (Giardino et al., 1994; Sharma et al., 2019). Originally, glycation end products 

were characterized as fluorescent brown-coloured  substances with cross-linking abilities, 

however, subsequently AGEs such as N-carboxymethylysine (CML), which is the major 

AGE in vivo, have been identified that are colourless and non-fluorescent with no significant 

ability to cross-link (Baynes and Thorpe, 1999; Singh, 2012). On the basis of their origin, 

AGEs have been classified as (i) AGE-1, for glucose-derived glycation products, (ii) AGE-2, 

glyceraldehyde-derived, (iii) AGE-3, glycoaldehyde-derived, (iv) AGE-4, methylglyoxal 

derived AGEs, (v) AGE-5, glyoxal-derived AGEs, and (vi) AGE-6, 3-deoxyglucosone-

derived AGEs (Sato et al., 2006). In fact, specific autoantibodies have been detected against 

these classes of AGEs in the serum of diabetic patients (Turk et al., 2001; Miura et al., 2004).  

Dietary AGEs 

Furthermore, there is evidence that AGEs may also be exogenously ingested, with 

high fat, high protein animal-derived foods being rich in AGEs and likely to form AGEs 

during the cooking process (Uribarri et al., 2005; Singh et al., 2016; 2018). While dietary 

AGEs have been reported to constitute 6-7% of the total AGEs pool and shown to induce 

inflammation in healthy human subjects (Uribarri et al., 2005), however, other groups have 

debated the role played by dietarily derived AGEs (Lueovano-Contreras et al., 2010; Poulsen 

et al., 2013) with reports of limited absorption of dietary AGEs and vegetarians having higher 

AGEs than non-vegetarians. Nonetheless, a diet restricted in food-derived AGEs are 

considered to inhibit vascular complications in diabetic patients (Uribarri et al., 2010; 

Lueovano-Contreras et al., 2013) with experimental evidence indicating that long-term 

dietary AGEs restriction was associated with lowered insulin resistance and oxidative stress. 

A large prospective study of American women who regularly consumed red meat found 

increased diabetes risk with the use of cooking methods known to promote browning 

reactions (Liu et al., 2017; Tandon et al., 2018a, 2018b, 2019). Separate studies on decreasing 

the amount of food-derived AGE intake in diabetic patients reported a drop in serum levels of 

AGEs within 2-6 weeks, resulting in a lowering of markers for vascular complications such 

as C-reactive protein (Luevano-Contreras et al., 2013; Vaid et al., 2014) and inhibition of 

oxidative degeneration of blood LDL-cholesterol reducing the risk of vascular complications 

(Wu et al., 2011; Vyas, 2019; Usman et al., 2019). However, various factors such as, 

differing absorption of AGEs by the gut, ability to bind the receptor for AGEs as well as the 

type of AGEs, ought to be given due consideration before concluding the evidence of the 

positive impact of AGE-limiting diets (Yadav et al., 2011; Rhee and Kim, 2018).  
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AGEs accumulation  

AGEs have been found to accumulate in tissues from diabetic patients (Vlassara, 

1996; Brownlee, 1995), particularly at sites of diabetic complications, including retina, 

kidney and atherosclerotic plaques (Hammes et al., 1999). Pugliese (2008) noted that the 

intracellular accumulation of AGEs may modulate cytoplasmic and nuclear factors, including 

transcription factors. Additionally the cross-linking ability of AGEs may result in the 

formation of abnormal cross-links with proteins, such as plasma proteins and collagen, 

inducing physical and chemical changes in collagen structure and function such as basement 

membrane thickening and a resistance to proteolytic digestion (Sell et al., 1992).  

Studies have shown that the active formation of AGEs and their accumulation in 

blood and tissues is dependent on both, the degree and the duration of glycemic control. In 

fact, follow up studies in the DCCT as well as the UKPDS have demonstrated that strict 

glycemic control over a period of time during the initial stages of diabetes (both type 2 and 

type 1, respectively) delayed the progression of complications and even, cardiovascular 

events (DCCT, 2003; Holman et al., 2008). This phenomenon has been described as a legacy 

effect or the development of a metabolic memory, wherein strict blood glucose regulation in 

the initial years of diabetes deferred the vascular complications of diabetes. Notably, recent 

evidence has implicated accumulated AGEs in the onset of vascular complications 

(Yamagishi and Imaizumi, 2005; Koska et al., 2018) and may well be involved in the 

development of a metabolic memory. 

Receptor for AGEs (RAGEs) 

 Several AGE binding molecules such as lactoferrin, galectin-3, CD36 have 

been described (Thornalley, 1998) that are known to act as AGEs receptors with RAGE 

(receptor for AGEs) being the most well-known and well characterized one (Prabhakar, 

2016).  RAGE is a multi-ligand receptor capable of binding diverse ligands including 

cytokines, amphoterin, integrins and amyloid β peptide and fibrills which can, in turn activate 

RAGE (Hudson et al., 2003). It belongs to the immunoglobulin superfamily and has five 

domains, three extracellular domains involved in ligand binding, a transmembrane domain 

for anchorage and lastly, a fifth intracellular domain that interacts with intracellular mediators 

(Stern et al., 2002). The expression of RAGE is thought to be increased by the presence of 

AGEs as well as other ligands mentioned previously. The interaction of AGE-RAGE is 

thought to be associated with pathogenesis (Taguchi et al., 1999) acting by various 

mechanisms affecting cellular signaling, including increased cytokine and adhesion molecule 

(ICAM) expression, nuclear factor-kB (NF-kB) activation, induction of oxidative stress, 

increased vascular permeability, and elevated cytosolic ROS, ultimately causing an 

inflammatory response (Naka et al., 2004; Piarulli et al., 2012).  

A splice variant of RAGE, known as the soluble receptor for AGEs or sRAGE, which 

is believed to arise from the cleavage of RAGE. Although, the physiological role of this 

isoform is not completely understood, however, it has been reported to act as a neutralizer of 

AGE-mediated damage by competing with cell-surface RAGEs for ligand binding, and thus, 

modulating the AGE-RAGE system (Hanford et al., 2004). Besides, serum levels of sRAGE 

are reflective of RAGE expression in tissues and thereby, endothelial cell damage; they may 

also predict the degree of vascular damage (Nakamura et al., 2007).  

Indeed, the oxidative stress and inflammation caused by the AGE-RAGE system 

inactivates endothelial Nitric Oxide Synthase and increases expression of NADPH oxidase 

causes endothelial cell dysfunction and aggravation of thrombotic tendency (Xu et al., 2005; 

Yamagishi et al., 2015). The increased NADPH oxidase exacerbates the oxidative stress 
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while amplifying AGE production and RAGE expression (Cheng et al., 2012). Additionally, 

the creation of irreversible cross-links by AGEs along with the pro-inflammatory state and 

vascular endothelial growth factor (VEGF) production induced by AGE-RAGE interaction 

causes vascular stiffening and pathological angiogenesis (Treins et al., 2001).  This may 

contribute to the development of vascular complications (Goldin et al., 2006) as evidenced by 

hyperglycemia-induced increase in expression of RAGE in atherosclerotic plaques of diabetic 

patients (Prabhakar and Sivakumar, 2019), and the more recent observation that AGEs may 

promote the differentiation of endothelial cells into osteoblasts leading to the formation of 

calcified lesions in plaques (Wei et al., 2013). Finally, the sustained activation of the AGE-

RAGE has also been implicated in the development of a long-term glycemic memory, 

wherein AGEs bound to long-lasting proteins like collagen serve as a long-term metabolic 

memory of hyperglycaemia episodes and oxidative stress (Genuth et al., 2005). Jax (2010) 

proposed that hyperglycaemia (AGEs) -induced ROS-dependent structural changes in the 

microvasculature might leave a metabolic imprint that manifests as cardiovascular events. 

Nevertheless, it is the hyperglycemia accompanied by the increased ROS generation and 

cytokine production aggravated by AGEs that precipitates cellular death and leads to a 

chronic low grade inflammatory state responsible for diabetic complications.  

AGEs in diabetic retinopathy 

 This is one of the most important and debilitating complications of diabetes where 

hyperglycemia causes damage to the retinal microvascular cells, development of abnormal 

blood vessels and other functional/structural changes. A possible role for AGEs in this 

progression is evidenced by the accumulation of AGEs in retinal pericytes of diabetic patients 

(Stitt et al., 1997) possibly impairing both their function and survival (Sharma et al., 1995). In 

addition, vascular damage may also manifest due to platelet aggregation, endothelial 

dysfunction, hypertension and induction of vascular endothelial growth factor (Antonietti et 

al., 2006). More recently, another aspect that has been discussed is neuronal damage that 

might also contribute to the pathogenesis (Mendez et al., 2010). AGEs have been postulated 

to play a role since their accumulation is reported to impair retinal physiology by rendering 

Muller macroglia dysfunctional and various other changes that lead to retinal neural 

neurotoxicity (Genuth et al., 2005).  

AGEs in diabetic neuropathy 

 Diabetic neuropathy affects both peripheral and autonomic nerves manifesting, for 

instance, as lower limb morbidity or a cause of sudden death, respectively. Hyperglycemia 

has been reported to stimulate glycolytic and polyol pathways in peripheral nerves (Wada and 

Yagihashi, 2005) with demonstrations of the formation and accumulation of AGEs in 

peripheral nerves in experimental animal models (Wada et al., 2001) and in diabetic patients 

(Sugimoto et al., 1997). Furthermore, multiple publications have described how AGEs-

induced modifications of ECM proteins may lead to basement membrane thickness, whereas 

the modification of specific proteins may explain the interrupted neuronal transport, nerve 

fibre demyelination in Schwann cells, atrophy and degeneration of nerve fibre and loss of 

axonal nerve fibre regeneration (as reviewed by Chilelli et al., 2013). Thus, AGEs may 

directly impair the structural and functional roles of proteins, directly by glycation and 

indirectly, by activation of RAGE, and the resulting pathological processes may inflict neural 

damage, particularly the AGE-RAGE mediated microangiopathy in the peripheral nerve 

(Wada and Yagihashi, 2005). 

AGEs in diabetic nephropathy 

Diabetic nephropathy is one of the most commonly encountered complications of 

diabetes and refers to a progressive decline in kidney function, specifically the glomerular 
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filtration rate that has been correlated by Genuth and colleagues (2005) with increasing AGEs 

in circulation. The deleterious effects of these extend to multiple aspects including but not 

limited to cross-linking of matrix proteins by AGEs and modulation of signaling pathways 

that contribute to disturbed structural integrity and compromised functionality.  The 

interaction of AGEs with RAGE has been shown to activate signaling pathways that induce 

apoptosis and lead to the generation of an endogenous inhibitor of NOS contributing to the 

development and progression of diabetic nephropathy (Ojima et al., 2013). The increased 

vascular permeability of albumin maybe attributed to the impaired functioning of the glycated 

collagen while glycation of other structural proteins in the extracellular matrix may prevent 

their degradation causing accumulation of collagens laminins and fibronectins resulting in the 

increased basement membrane thickness seen in nephropathy (Forbes et al., 2003). Moreover, 

diabetic nephropathy is a dual edged sword such that damage is inflicted by increased AGEs 

formation on the one hand and reduced clearance of serum AGEs on the other (Yamagishi et 

al., 2010).  

2. CONCLUSION 
 

In addition to ROS, AGEs, seem to be key players in the pathogenesis of diabetes-related 

complications with their modulation of signalling pathways and generation of cytokines and 

inflammatory molecules. Viewed from an etiologic standpoint, approaches targeting the 

formation, accumulation and interaction of AGEs may be significant targets in the control of 

diabetic complications. Several drugs including statins, telmisartin and ramipril and some 

anti-diabetic drugs are known to modulate AGEs by inhibiting AGEs formation, RAGE 

expression or post-RAGE signal transduction (Rhee and Kim, 2018). While these recently 

identified compounds and modulation of metabolic steps as potential therapeutics need 

further evaluation for their AGE-specific therapeutic potential, they may putatively be 

developed along with other interventions including glycemic control and AGEs-limited diet 

for limiting diabetic complications and improving the overall quality of life of diabetics.  
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