Projective Flat Curvature Tensor Of Kähler Manifold

Pankaj Pandey
${ }^{1}$ Department of Mathematics, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara-144411, Punjab
Email: psp.ggv@gmail.com

Abstract

In this paper, we study the projective flat curvature tensor.

1. Introduction

In 1975, a linear connection is introduced by S . Golab [1] called quarter-symmetric connection. Golab [1] defined that condition $T(X, Y)=\omega(Y) \varphi X \omega(X) \varphi Y$.

Recently, some results have been obtained in weakly symmetric manifold in [2-5] (2017). Nijenhuis tensor becomes zero in a Kähler manifold [6-11]. In the same paper, they [6] obtained some results related to contra-variant vector field in Kähler manifold with semisymmetric connection. Flatness of Kähler manifold under weak symmetric condition has been discussed in [1] (2014). In 2015 a new type of results has been studied [2] in an almost Hermitian manifold. The same authors [3] further studied a special type of Kähler manifold under weak symmetric condition. The study of conformal connection has been extended by Chaturvedi and Pandey [4] in an almost Hermitian manifold in 2016.

Let M be differentiable manifold of dimension 2 k , for non-negative integer k . If the conditions
$F^{2}(X)+X=0, g(F X, F Y)=g(X, Y),\left(\nabla_{X} F\right) Y=0$,
hold then M becomes Kähler manifold.
In this paper, we have considered a connection ∇^{*}
$\nabla_{X}^{*} Y=\nabla_{X} Y+\omega(Y) F X$
satisfying
$\left(\nabla_{X}^{*} g\right)(Y, Z)=\alpha[\omega(Y) g(F X, Z)+\omega(Z) g(F X, Y)$
$T^{*}(X, Y)=\omega(Y) F X-\omega(X) F Y$
respectively for ω 1-form defined by $\omega(X)=g(X, \rho)$, where ρ is an associated vector field.

2. Preliminaries

Let M denotes a manifold of dimension 2 k , for non negative integer, then Riemannian tensor is defined by
$R(A, B, P)=\nabla_{A} \nabla_{B} P-\nabla_{B} \nabla_{A} P-\nabla_{[A, B]} Z$
(2.1) and the Ricci tensor is contraction of R.

Now, equation (2.1) becomes for ∇^{*}
$R^{*}(X, Y, Z)=\nabla_{X}^{*} \nabla_{Y}^{*} Z-\nabla_{Y}^{*} \nabla_{X}^{*} Z-\nabla_{[X, Y]}^{*} Z$
(2.2)

Using (1.2) in (2.2), we get

$$
\begin{equation*}
R^{*}(A, B, P)=R(A, B, P)+\left[\left(\nabla_{A} \omega\right)(P) F B-\left(\nabla_{B} \omega\right)(P) F A\right]+\left[\left(\nabla_{A} F\right) B-\left(\nabla_{B} F\right) A+\right. \tag{2.3}
\end{equation*}
$$ $\omega(F B) F A-\omega(F A) F B] \omega(P)$.

If the associated vector field is unit parallel then $\nabla_{X} \rho=0$, which imply
$\left(\nabla_{P} \omega\right)(Z)=0$.
(2.4) Now, using (1.1) and (2.4) in (2.3), we get
$R^{*}(A, B, P)=R(A, B, P)+[\omega(F B) F A-\omega(F A) F B] \omega(P)$.
(2.5)

Further, contracting (2.5), we get
$S^{*}(B, P)=S(B, P)+\omega(B) \omega(P)$

Again, contracting (2.6), we get
$r^{*}=r$
(2.7)

3. Projective tensor

The projective tensor is defined by
$W(A, P, K)=R(A, P, K)-\frac{1}{n-1}[S(P, K) A-S(A, K) P]=0$

For projective flat manifold, we get
$R(A, P, K)=\frac{1}{n-1}[S(P, K) A-S(A, K) P]$
(3.2)

Now, the projective curvature tensor for quarter symmetric connection ∇^{*} defined in (1.2) is given by
$W^{*}(A, P, K)=R^{*}(A, P, K)-\frac{1}{n-1}\left[S^{*}(P, K) A-S^{*}(A, K) P\right]$

Using (2.5), (2.6) and (3.1) in (3.3), we get
$W^{*}(A, P, K)=W(A, P, K)+\left[\omega(F P) F A-\frac{1}{n-1} \omega(P) A-\omega(F A) F P+\frac{1}{n-1} \omega(A) P\right] \omega(K)$

Hence for projective flat manifold we get
$\omega(F P) F A-\omega(F A) F P=\frac{1}{n-1}[\omega(P) A-\omega(A) P]$.
We can state here
Theorem 3.1: For M being a Kähler manifold with ∇^{*} defined by (1.2) then for a associated parallel unit vector field ρ the manifold becomes projective flat if and only if (3.5) satisfy.

Replacing A and P by $F A$ and $F P$ respectively in (3.5), we get
$\omega(P) A-\omega(A) P=\frac{1}{n-1}[\omega(F P) F A-\omega(F A) F P]$

Subtracting (3.6) from (3.5), we get
$[\omega(F P) F A-\omega(F A) F P-\omega(P) A+\omega(A) P](n-2)=0$

Let us defined
$D(A, P)=\omega(F P) F A-\omega(P) A$

With the help of (3.8), equation (3.7) yields
$[D(A, P)-D(P, A)](n-2)=0$

Equation (3.9) implies manifold is two dimensional for $D(A, P) \neq D(P, A)$.
From above, we conclude that
Theorem 3.2: For M being a Kähler manifold with ∇^{*} defined by (1.2) then for a associated parallel unit vector field ρ the manifold becomes two dimensional projective flat if and only if $D(X, Y)$ defined in (3.8) is not symmetric.

References:

[1] B.B. Chaturvedi and P. Pandey, On the Flatness of Weakly Symmetric Kähler Manifolds, Journal of International Academy of Physical Sciences, 18 (4), (2014), 279-284.
[2] B.B. Chaturvedi and P. Pandey, Study of a new type of metric connection in an almost Hermitian manifold, Facta Universitatis (NIS), Series: Mathematics and Informatics, 30(2) (2015), 217-224.
[3] B.B. Chaturvedi and P. Pandey, Study on special type of a weakly symmetric Kähler manifold, Differential Geometry Dynamical system 17 (2015), 32-37.
[4] B.B. Chaturvedi and P. Pandey, Conformal transformation in an almost Hermitian manifold, Novi Sad Journal of Mathematics, 46 (1), (2016), 217-226.
[5] B.B. Chaturvedi and P. Pandey, Weak symmetric manifolds equipped with semisymmetric metric connection, Palestine Journal of Mathematics, 6 (2), (2017), 507-514.
[6] B.B. Chaturvedi and P.N. Pandey, A semi-symmetric non-metric connection on a Kähler manifold, Differential Geometry Dynamical system, 10 (2008), 86-90.
[7] U.C. De and A.A. Shaikh, Complex Manifolds and Contact Manifolds, Narosha Publishing House, 2009.
[8] S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor, N. S., 29 (1975), 249-254.
[9] P. Pandey and B.B. Chaturvedi, On a Kähler manifold equipped with lift of quarter symmetric non-metric connection, Facta Universitatis (NIS), Series: Mathematics and Informatics, 33(4), (2018), 539-546.
[10] P. Pandey and B.B. Chaturvedi, Study of Kähler manifolds endowed with lift of semisymmetric non-metric connection, Acta Mathematica Academiae Paedagogicae Nyregyhaziensis, 33 (2017), 61-66.
[11] Singh, G., Gupta, M. K., Mia, M., \& Sharma, V. S. (2018). Modeling and optimization of tool wear in MQL-assisted milling of Inconel 718 superalloy using evolutionary techniques. The International Journal of Advanced Manufacturing Technology, 97(1-4), 481494.

