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Abstract: In this paper, the Hepatitis B Virus (HBV) infectious model with Cytotoxic T-

Lymphocyte (CTL) response delay and its effect on the stability of equilibrium has been 

investigated. The boundedness and non-negativity solutions of the proposed model were 

verified. The local stability of virus-free equilibrium and the infected equilibrium were 

determined by the basic reproduction number R0. Further, the existence of Hopf 

bifurcation at the infected equilibrium of CTL response was also observed. Using different 

set of parameters, the empirical findings in the study are shown with numerical 

simulations. 
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1. INTRODUCTION 

 

Hepatitis B virus (HBV) infection has been a global issue which causes the death of 

approximately two billion people every year. In Asia, almost 400 million people were 

critically affected by HBV causing severe health issues. Therefore, it is high time find out a 

medicine to prevent as well as to cure this disease. Having the basic knowledge on immune 

pathogenesis of HBV would help us to find out an effective way to prevent and give a 

treatment to this infection. Generally, molecular techniques provide the basic and minute 

details about the interaction of immune system and HBV, but it does not answer the question 

biologically [1]. Therefore, mathematical models could answer those questions effectively by 

explaining the experimental outcomes. Not only it provides experimental outcomes but also 

supports to understand the fundamental mechanism of the spread of disease. Nowak et al. [2] 

and Zeuzem et al. [3] proposed a virus infectious model which has been used in several 

studies without adding immune responses. 

Recent studies show the enhanced formation of virus-specific Cytotoxic T-Lymphocytes 

(CTL) which was demonstrated through the use of HBV pathogenesis animal models. 

Hepatocellular carcinoma generally affects those who have liver related diseases [4, 5].  

Though the models delineate the relationship between the host and virus immune response 

explaining the acute hepatitis mechanism [6-8], these models do not describe the HBV 

infection outcomes [9]. The prime function of CTL is not only killing the virus but also 

mailto:anijimich@gmail.com
mailto:kavitha997@yahoo.com
mailto:balamurali.maths@gmail.com


                                          European Journal of Molecular & Clinical Medicine 

                                                                                 ISSN 2515-8260                 Volume 07, Issue 06, 2020             75 

 

75 

 

curing infected hepatocytes through the mechanism of nonlytic effector [10, 11]. CTL play a 

major part in protecting antiviral through invading infected cells in most virus infections [12]. 

There has been a substantial concern to population dynamics in viral pathogens with CTL, 

and several properties have been studied [13-15]. Some researchers suggest that the time 

delay in the immune response models can never be disregarded. [16, 17, 18, 19]. 
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(1.1) 

In our proposed work, the immune response of target cells has been considered including a 

time delay of the immune response (1.1) to obtain the following model: 
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(1.2) 

In this model, *t represents the time delay which is considered as the time between antigenic 

stimulation and the production of CTL cells. The model is taken from the work of Uttam 

Ghosh et al. [20] in which the fourth compartment is added with a time delay of CTL cells.  

This model is interrelated with liver cells (uninfected and infected) and the virus, and the 

immune response of CTL cells is obtained by the mathematical model.  Here, ( )x t  denotes 

the target uninfected cells (uninfected hepatocytes), ( )y t  denotes the infected cells (infected 

hepatocytes), ( )v t  denotes the HBV virus, and ( )z t  denotes immune response of CTL cells.  

This model represents the target cells infecting at the rate φ. Infection happens because of the 

relation with target cells and virus. Initially, this target cells produce hepatocytes at the rate 

 and the natural death rate is .  The infected cells die at a rate of  . These infected cells 

are killed by the immune response of CTL cell at a rate of  . The decay rate is  . CTL cells 

can maximize immune response to viral antigen. Here the CT proliferate rate is  and the 

viral load is   death rate of CTL cells .  The immune responses of CTL cells have the 

effective power to kill the infected cells [21].   These assumptions lead the following model: 
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Fig.1. Compartmental Diagram for the System ( Model 1.2) 

1. Boundedness and Non-Negativity 

The initial conditions for model 1.2 are

               

   
1 2 3 4, , , ,

0, *,0 , 1,2,3,4.i

x y v z

t i

           

  

    


   

                    

(2.1) 

Here,        1 2, ,... *,0 ,Q t R      , the Banach space continuous functions mapping the 

interval  *,0t into 4R
. 

Lemma 2.1. Let  ( ), ( ), ( ), ( )x t y t v t z t of (1.2) satisfying conditions (2.1), we have 
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Here, we used  1x t



  which is a contradiction to  1 0.x t   Therefore, Lemma 2.1 has 

been proven. 

Theorem 2.1. Let  ( ), ( ), ( ), ( )x t y t v t z t be the solution of (1.2) satisfying conditions (2.1).  

Then ( )x t , ( )y t , ( )v t , and ( )z t are positive ; 0K   such that ( )x t K , ( )y t K , ( )v t K , and

( )z t K hold after sufficiently large time t. 

Proof.  From Model1.2, we have 
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From Model 1.2, we can say that ( )x t is positive on the particular interval.  Next, we will 

prove that ( )y t is positive.  In fact, let 1 0t  be the first time such that 1( ) 0y t  .   

Also, we get
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This implies that ( ) 0y t  for  1 1,t t t  . As  is an arbitrary small positive constant, this is 

a contradiction.  Therefore, ( ) 0y t  and ( ) 0v t  .  Similarly, we can prove that  z t  is also 

positive on the existence interval. 

Next, we check the boundedness of 1.2. 
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So, T 



 for all large t.  Thus,  x t ,

 
 y t ,  v t , and  z t are bounded by some positive 

constant K .  

Hence, theorem 2.1 has been proven. 

2. Stability Analysis 
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The basic reproductive number for (1.2) is
0R






 .  

Also, we can find the below three equilibria.   

Infection-free equilibrium: 
0 ,0,0,0A
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, 
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. 

The infection-free equilibrium corresponds to maximal levels of healthy 4CD T cells.  The 

equilibrium 1A corresponds to positive levels of healthy 4CD T cells, but there is no immune 

response.  The equilibrium corresponds to positive levels of 4CD T cells, infected cells, virus 

and immune response. 

3.1 Stability of Infection-Free Equilibrium 0A
 

For discussing the local asymptotic stability of the infection-free equilibrium 0A , the 

corresponding linearized equation (1.2) at 0A is 
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(3.1) 

The characteristic equation of the above equation is, 
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Solving this characteristic equation we get, 
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Clearly, all the roots are negative. 

 

Theorem 3.1. 

i. If 0 1R  , then the infection-free equilibrium 0A is locally asymptotically stable; 

ii. If 0 1R  , then the infection-free equilibrium 0A is unstable. 

Definitely, when 0 1R  , the global asymptotic stability of 0A can be obtained by 

constructing a Lyapunov functional. 

Theorem 3.2. The infection-free equilibrium 0A is globally asymptotically stable if 0 1R  . 

Proof. Let us define a Lyapunov functional: 
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Here, p  is a non-negative constant that will be chosen later. In order to calculate the time 

derivative of L along with the solution of (1.2), we get 
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Then, the global asymptotic stability of 0A follows from the Lyapunov -LaSalle type theorem 

[22, 23]. 

 

3.2 Stability of CTL-Absent Equilibrium 1A  
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Now, the transcendental characteristic equation is 
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Using Routh-Hurwitz criteria, the roots of eq. 3.4 are negative. 

Next, we analyze the transcendental equation 
* 0tve      .        
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implies that eq.(3.5) has negative roots for * 0t  . Let the purely imaginary roots of (3.5) be 

i   for 0  and * 0t  . From 3.5,  
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Noting that if 
01 1 ,R
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2 0.   

Theorem 3.3 

i. If
01 1 ,R




   , then the CTL-absent infection equilibrium 1A is locally 

asymptotically stable; 

ii. If
0 1R




  , then the CTL-absent infection equilibrium 1A is unstable. 

3.3 Stability and Hopf Bifurcation at the CTL-Present Equilibrium A  

The bifurcation parameter is the CTL-response delay *t  and this shows that when the delay 

*t passes through a critical value, the CTL-present equilibrium A loses its linear stability and 

a Hopf bifurcation occurs. Let  
   

ˆ ˆ ˆ ˆ, , , , , ,A x y v z
    

        

   
       

and     ˆ' ,x t x t x      ˆ' ,y t y t y      ˆ' ,v t v t v      ˆ' .z t z t z   Instead of using 

       ' , ' , ' , 'x t y t v t z t , we use        , , ,x t y t v t z t for simplification. The linearized 

equations of (1.2) at A is 

 
( )

ˆ ˆ( ) ( ) ( ) ( ),

( )
ˆ ˆ( ) ( ) ( ) ( ) ( ),

( )
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ),

( )
ˆ ˆ( *) ( *) ( *) ( *) ( ).

dx t
v x t x t v t xv t

dt

dy t
x t v t vx t y t xv t

dt

dv t
y t v t vz t zv t v t z t

dt

dz t
v t t z t t vz t t zv t t z t

dt

   

   

    

   


    


    


     


        


        

(3.7) 

The linearized equation at the origin is 
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 
( )

ˆ ˆ( ) ( ),

( )
ˆ ˆ( ) ( ) ( ),

( )
ˆ ˆ( ) ( ) ( ) ( ),

( )
ˆ ˆ( *) ( *) ( ).

dx t
v x t xv t

dt

dy t
vx t y t xv t

dt

dv t
y t v t vz t zv t

dt

dz t
vz t t zv t t z t

dt

  

  

   

  


   


   


    


     


           

(3.8) 

By the theoretical meaning of delay differential equations, if the trivial solution of Equation 

3.8 is asymptotically stable, the Equation 3.7 is also the same. 

   4 3 2 3 2 *

1 2 3 4 1 2 3 4 ,tC E E E E F F F F e                 
       

(3.9)
 

The real parts of the roots of Equation 3.9 gives the stability of the trivial solution. 

Here,  1
ˆ,E v             

     2
ˆ ˆ,E v v                     

 3
ˆ ˆ ˆ,E xv v           

4
ˆ ˆ ,E xv        

1
ˆ,F v  

    2

2
ˆ ˆ ˆ ˆ ˆ ˆˆ ,F zv x v v v v                  

 2 2

3
ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ,F zv zv zv x v v x                 

2

4
ˆ ˆ ˆ ˆ ˆˆ ˆ .F zv zv v v x          

Theorem 3.4. The trivial solution of system (3.8) is asymptotically stable, if 
0 1R




  , 

when * 0t  . 

Proof. When * 0t   

(3.9)      4 3 2

1 1 2 2 3 3 4 4 0E F E F E F E F            .      

(3.10) 

As 
0 1R




  , ˆ ˆ ˆ ˆ0, 0, 0, 0.x y v z     

Using Routh-Hurwitz criteria, we have    1 1 1
ˆ 0,H E F v                  



                                          European Journal of Molecular & Clinical Medicine 

                                                                                 ISSN 2515-8260                 Volume 07, Issue 06, 2020             83 

 

83 

 

    2 1 1 2 2 3 3H E F E F E F         v̂              ×

          2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆv v zv x v v v v                                    

    2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ 0.xv v zv zv zv x v v x                           

1 1 3 3

3 2 2 4 4

1 1 3 3

0

1

0

E F E F

H E F E F

E F E F

 

  

 

         
2

1 1 2 2 3 3 1 1 4 4 3 3 .E F E F E F E F E F E F            

Obviously, 3 0H  . 

1 1 3 3

2 2 4 4

4 4 3

1 1 3 3

2 2 4 4

0 0

1 0
.

0 0

0 1

E F E F

E F E F
H e H

E F E F

E F E F

 

 
 

 

 

 

Where, 4
ˆe z also 4 0H  . Thus, Equation 3.10 has negative real parts. Hence, Theorem 

3.4 has been proven. 

When * 0t  ,  C  has negative real parts, then there exists a 0 0t  for  0* 0,t t . The roots 

of equation 3.9 should satisfy   0C   ,  Re 0,   for  0* 0,t t ,                          

(3.11) 

Suppose 0*t t ,  Re 0.   When solving for equation 3.9, we find 0t and the corresponding 

imaginary roots  0 0 0i   .  

(3.9)   4 3 2 3 2

0 1 0 2 0 3 0 4 1 0 2 0 3 0 4 0 0 0 0cos sin 0.E i E E i E F i F F i F t i t                  

(3.12)
 

Separating the real and imaginary parts, we get 

   

   

2 3 4 2

4 2 0 0 0 3 0 1 0 0 0 0 2 0 4

3 2 3

1 0 3 0 0 0 4 2 0 0 0 1 0 3 0

cos sin ,

cos sin .

F F t F F t E E

F F t F F t E E

      

      

      


            

(3.13)

 



4 2 3

0 2 0 4 3 0 1 0

0 0 3 2

1 0 3 0 4 2 0

1
cos

E E F F
t

F F F F

   


  

  

  

 

     6 4 2

1 1 2 0 4 2 2 1 3 3 1 0 3 3 2 4 4 2 0 4 4

1
E F F F E F E F E F E F E F E F E F             
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 6 4 2

1 0 2 0 3 0 4

1
.a a a a     


 

2 4 2

4 2 0 0 2 0 4

0 0 3 3

1 0 3 0 1 0 3 0

1
sin

F F E E
t

F F E E

  


   

  

  

 

   6 4 20
1 0 1 2 3 2 1 0 2 3 4 1 3 2 1 4 0 3 4 4 3F E F F E F E F E F E F E F E F E F


              

 

 6 4 20
1 0 2 0 3 0 4 .b b b b


      


 

Here,

2 3

4 2 0 3 0 1 0

3 2

1 0 3 0 4 2 0

F F F F

F F F F

  

  

 
 

 
 

       
2 2

2 3 6 4 2 2 2

4 2 0 3 0 1 0 1 0 2 1 3 0 3 2 4 0 42 2F F F F F F F F F F F F                

 6 4 2

1 0 2 0 3 0 4 0.c c c c        

But, 2 2

0 0 0 0sin cos 1t t   . Therefore, 

14 12 12 8 6 4 2

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0,d d d d d d d             
       

(3.14)
 

Here,  2 2

1 1 1 2 12

1

1
2 ,d a b b c

b
    

 2

2 1 2 2 1 3 1 32

1

1
2 2 2 ,d a a b b b c c

b
     

 2 2

3 2 1 3 1 4 2 4 2 1 32

1

1
2 2 2 2 ,d a a a b b b b c c c

b
       

 2

4 1 4 2 3 3 2 4 1 4 2 32

1

1
2 2 2 2 2 ,d a a a a b b b c c c c

b
       

 2 2

5 3 2 4 3 4 3 2 42

1

1
2 2 2 ,d a a a b b c c c

b
      

 2

6 3 4 4 3 42

1

1
2 2 ,d a a b c c

b
    

 2 2

7 4 42

1

1
.d a c

b
   

Let 2

0r  and substitute this in equation 3.14,  



                                          European Journal of Molecular & Clinical Medicine 

                                                                                 ISSN 2515-8260                 Volume 07, Issue 06, 2020             85 

 

85 

 

7 6 5 4 3 2

1 2 3 4 5 6 7 0r d r d r d r d r d r d r d         can be obtained.    

    (3.15) 

Using computational software, the roots of equation 3.15) can be calculated. 

If 4 0F  , then 0r  is not a root. Suppose equation 3.15 has only a negative real root, then 

*t does not exist, because 0 r  does not exist. Therefore, the Hopf bifurcation is not 

occurring. For that, 1H : we assume one of the roots is having positive real part.  

2H :

   6 2 2 4 2 2 2 2 2

0 1 2 1 0 2 2 4 1 3 1 3 0 3 3 2 4 2 44 3 2 2 2 2 2 2 2 0E E F E F E F F E E E F F F E E                
 

for any 0 0  . Let 0r be the only positive root and 0 0r  we get, 

6 4 2

1 0 2 0 3 0 4

6 4 2

0 1 0 2 0 3 0 4

1
arccos 2i

a a a a
t i

c c c c

  


   

   
  

   
,  0,1,2,...,i    

6 4 2

1 0 2 0 3 0 4
0 6 4 2

0 1 0 2 0 3 0 4

1
arccos ,

a a a a
t

c c c c

  

   

  


  
   0i  . 

We investigate the nature of the roots of equation 3.9 near 0t on  0 0, t . The implicit 

differentiation of  C  with respect to *t , we get 

 
   

3 2 *1 2
1 2 3 1 2 3

3 2 3 2

1 2 3 4 1 2 3 4

4 3 2 3 2 *
.

*

tE E E e F F Fd t

dt F F F F F F F F

    

       

       
   

      
    

(3.16)

 

     

     

    

2 3 2

1 0 3 1 0 3 0 0 4 4 0 0
1

3 2 3

0 2 0 4 2 0 0 1 0 3 0 0

0
2 3 2

3 1 0 1 0 3 0 2 0 4 2 0

3 cos * sin *

1
Re 4 2 cos * sin *

*

3 2

E E F F t F F t

d
E F F t F F t

dt

F F F F F F F

     


      



    



     
  

                
     
 

 

   6 2 2 4 2 2 2

0 1 2 1 0 2 2 4 1 3 1 3 0

2 2

3 3 2 4 2 4

4 3 2 2 2 2 21

2 2

E E F E F E F F E E

E F F F E E

          
 

      

.     

(3.17) 

Here,    
2 2

3 2

1 0 3 0 4 02 0.F F F F        If equation  3.17 0  for 0 0  , then 2H is 

satisfied. Therefore, 

sign 

0*

Re
*

t t

d

dt





   
  

   

sign

0

1

*

Re
*

t t

d

dt






 
  
  

   

sign  . 1 . 
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So, if the delay *t near 0t is increased, the root of equation 3.10 has negative real parts. When

0*t t , there exists a pair of purely imaginary roots for   0C   , and other roots have 

negative real parts. From the above analysis, we have the following 

Theorem 3. 5. For system 3.7, when the conditions 1H , 2H hold, 

i. If  0* 0,t t , then the CTL-present equilibrium A is locally asymptotically stable; 

ii. If 0*t t , then the CTL-present equilibrium P is unstable and system 1.2 undergoes a 

Hopf bifurcation at A when 0*t t . 

Table 1: Parameter Values 

 

Parameter Description Values 

  Production of uninfected cells 1.0 mm
-3

/day 

  Transmission rate of virus 0.9 mm
-3

 

  Death rate of uninfected cells 2 per day 

  Death rate of infected cells 5 per day 

  Virus rate 0.1 mm
-3

/day 

  Virus clearance rate 0.1 mm
-3

/day 

  Decay rate of virus by immune system 0.024 mm
-3

/day 

  CTL proliferate rate 0.1 mm
-1

/day 

  Death rate of CTL cells 0.2 per day 

 

3. NUMERICAL SIMULATION 

 

We use Matlab to perform numerical illustrations in order to ascertain the main results. The 

parameter values are considered in Table 1. Based on the values of the given parameters, the 

infected equilibrium is  0.026,0.0165,1.8,0.0344A  , the basic reproduction ratio 0 0.9R  , 

and the critical value 0 0.012t  .  Also, if we increase the value of , 0R value will be 

increased. By Theorem 3.4, the infected equilibrium A is stable when 0*t t [Fig.2] 0*t t

Hopf bifurcation occurs and the equilibrium becomes unstable. If 0*t t  [Fig.3].  
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4. CONCLUSION 

 

In this article, we present a model for CTL response delay of an HBV infection. The stability 

of virus-free equilibrium 0A and infected equilibrium 1A were investigated. The existence of 

Hopf bifurcation was demonstrated and ascertained by numerical representations when the 

delay was used as the bifurcation parameter. This helped to indicate that the existence of 

periodic solutions occurs in the system when the delay crosses the critical value. Based on the 

numerical findings, it is apparent that HBV infection can easily be regulated. 
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Fig. 2. Shows when * 1.2t  ; the system (1.2) is stable with the initial conditions.
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Fig. 3. Shows when * 2t  ; the phase diagrams after Hopf bifurcation occurs. 


