Inverse Domination In Circular-Arc Graphs

Purushotham $\mathrm{P}^{1,2}$, Dr Rama Latha $\mathrm{V}^{1,2}$, Dr Manjunath G^{2}
${ }^{l}$ Department of Mathematics, S J C institute of technology, Chikkaballapura, Karnataka, India
${ }^{2}$ Department of Mathematics, Presidency University,Yelahanka, Bengaluru, Karnataka, 560064, India
${ }^{3}$ Department of Mathematics, RGIT, Bangalore, Karnataka, India
ppurushothamp48@gmail.com, v.ramalatha@gmail.com

Abstract

The intersection graph of a set of arcs on the circle is called a circular-arc graph. Circular-arc has one vertex for each arc in the set and an edge between every pair of vertices corresponding to arcs that intersect. Let $C=\left\{c_{1}, c_{2}, \ldots ., c_{n}\right\}$ be family of arcs on a circle. In this paper we are taking circular arcs such that if we remove c_{1} then there will be a disconnection between left end side intersecting arc of c_{1} and right end side intersecting arcs of c_{1}. We are writing an algorithm to find an inverse of dominating set with respect to a minimum dominating set of a circular-arc family.

Keywords— Inverse dominating set, Inverse domination number, Circulare-arc graph.

I. INTRODUCTION

The Concept of inverse domination was introduced by V.R. Kulli and C. Sigarkanti [1]. In [2] V Jude Anne Cynthia and A Kavitha [2] investigated the inverse domination in Circulant graph $G(n, \pm\{1,2\})$. Many other inverse domination parameters in domination theory were studied, for example[3,4,5,6] A dominating set D is called an inverse dominating set with respect to a minimum dominating set D if D^{\prime} is a minimum dominating set of $\langle V-D\rangle$. The cardinality of a smallest inverse dominating set of G is called an inverse domination number $\gamma^{\prime}(G)$ of G .

Let $C=\left\{c_{1}, c_{2}, \ldots ., c_{n}\right\}$ or $C=\{1,2, \ldots \ldots, n\}$ be family of arcs on a circle. Here we taking left end labelling.

Some Notations

Minimum dominating set $=M D S_{d s}$,
Inverse dominating set $=I D S_{d s}$,
$\max (A)=$ maximum number in set A,
$\min (A)=$ minimum number in set A,
$\operatorname{Nhod}^{-}(j)=$ The set of all right intersecting arcs to arc j and less than j,
$\operatorname{Nhod}^{+}(j)=\{$ The set of all left intersecting arcs to arc $j\} \cup\{$ Arcs which are contained in $j\}$,
$N b d[i]=\{$ The set of all intersecting arcs to arc i including $i\}$
$N A J(i)=$ First non intersecting arc to arc i left side.

A. An algorithm to find an inverse dominating set with respect to a minimum dominating set of a circular-arc graph

Input: Circular-arc family
Step 1: $M D S_{d s}=\{ \}$
Step 2: IDS ${ }_{d s}=\{ \}$
Step 3: $i=1$
Step 4: Lsn $1=\{i\} \cup\{$ The set of all circular-arcs $>i$ which are left side intersecting to arc $i\} \cup$ $\{$ arcs which are contained in $i\}$
Step 5: Lsn2 $=\{$ The set of all circular-arcs $\in L s n 1$ which are intersecting to all other arcs $\in L s n 1$ and $\notin M D S_{d s}$ and $\left.\notin I D S_{d s}\right\}$
Step 6: If \mid Lsn $2 \mid>1$ then
Step 6.1: $a=\max (L s n 3)$
Step 6.2: $b=\min ($ Lsn3 $)$
Step 6.3: $M D S_{d s}=M D S_{d s} \cup\{a\}$
Step 6.4: $I D S_{d s}=I D S_{d s} \cup\{b\}$ go to step 11
Else
Step 7: If $|\operatorname{Lsn} 2|=1$ and $L s n 2 \subseteq N b d[k]$ for any $k \in M D S_{d s}$ then
Step 7.1: $a=p \in L s n 2$ go to step 9
Else
Step 8: If $|\operatorname{Lsn} 2|=1$ then
Step 8.1: $a=p \in \operatorname{Lsn} 2$
Step 8.2: MDS ${ }_{d s}=M D S_{d s} \cup\{a\}$
Step 9: Find Nhod $^{-}$(a)
Step 10:If $\operatorname{Nhod}^{-}(a)$ is not null then
Step10.1: Isn1 $=\operatorname{Nhod}^{-}(a)$
Else
Step 10.2: Isn1 $=\operatorname{Nhod}^{+}(a)$
Step 10.3: Isn $2=\{$ The set of all circular-arcs \in Isn1 which are intersecting all other arcs $\in I s n 1$ and $\notin M D S_{d s}$ and $\left.\notin I D S_{d s}\right\}$
Step 10.4: If $\operatorname{Isn} 2$ is null then
Step 10.4.1: $b=\min ($ Isn 1$)$
Else
Step 10.4.2: $b=\max (I s n 3)$
Step 10.5: $I D S_{d s}=I D S_{d s} \cup\{b\}$
Step 11: Find $i=\operatorname{NAJ}(a)$
Step 12: If i is greater than a
Step 12.1: go to step 4
Else
Step 12.2: Find $i=N A J(b)$
Step 12.3: If i is greater than b
Step 12.3.1: $\mathrm{a}=\mathrm{i}$ go to 10
Else
Step 12.3.2: go to step 14

Step 13: End
Output: $I D S_{d s}$ is an inverse dominating set with respect to a minimum dominating set $M D S_{d s}$

Remark : In a circular-arc graph if we have one or two minimum dominating sets we may or may not get by using this algorithm.

B. Illustrations

Example 1

Step 1: $M D S_{d s}=\{ \}$
Step 2: $I D S_{d s}=\{ \}$
Step 3:i=1
Step 4 : Lsn1 $=\{1,2,3,4\}$
Step $4: \operatorname{Lsn} 1=\{1,2,3,4\}$
Step 5: Lsn $2=\{1\}$
Step $6:|\operatorname{Lsn} 2|=2>1$
Step 6.1: $a=3$
Step 6.2:b=1
Step 6.3: $M D S_{d s}=\{3\}$
Step 6.4: $I D S_{d s}=\{1\}$
Step $11: i=5$
Step 4: Lsn $1=\{5,6,7\}$
Step 5:Lsn2 $=\{5,6,7\}$
Step $6:|\operatorname{Lsn} 2|=2>1$
Step 6.1: $a=7$
Step 6.2:b=5
Step 6.3: MDS $_{d s}=\{3,7\}$
Step 6.4:IDS ${ }_{d s}=\{1,5\}$
Step 11: $i=10$
Step 4: Lsn1 $=\{10\}$
Step 5: Lsn $2=\{10\}$
Step 8: $|\operatorname{Lsn} 2|=1$
Step 8.2: $\operatorname{MDS}_{d s}=\{3,7,10\}$
Step 10.1: Isn $1=\{8,9\}$
Step 10.3: Isn $2=\{8,9\}$
Step 10.4.2: $b=9$
Step $10.5:$ IDS $_{d s}=\{1,5,9\}$
Step $12: i=1<10$
Step 12.2: $i=1<9$
Step 13: End
Output: $I D S_{d s}=\{1,3,9\}$ is an inverse dominating set with respect to a minimum dominating set $M D S_{d s}=\{3,7,10\}$

Example 2

Step 1: $M D S_{d s}=\{ \}$
Step 2: $I D S_{d s}=\{ \}$

Step 3: $i=1$
Step 4: Lsn1 $=\{1,2,3,4\}$
Step 5: Lsn $2=\{1\}$
Step 8: $|\operatorname{Lsn} 2|=1$
Step 8.2: MDS $_{d s}=\{1\}$
Step 10.2: Isn $1=\{2,3,4\}$
Step 10.3: Isn $2=$ null
Step 10.4.1: $b=2$
Step 10.5:IDS ${ }_{d s}=\{2\}$
Step 11: $i=5$

$$
\text { Step } 4: \operatorname{Lsn} 1=\{5,6,7\}
$$

$$
\text { Step } 5: \operatorname{Lsn} 2=\{5,6,7\}
$$

$$
\text { Step } 6:|\operatorname{Lsn} 2|=2>1
$$

Step 6.1: $a=7$
Step 6.2:b=5
Step 6.3: MDS $_{d s}=\{1,7\}$
Step 6.4: $I D S_{d s}=\{2,5\}$
Step $11: i=9$
Step 4: Lsn1 = \{9\}
Step 5: Lsn2 $=\{9\}$
Step 6:|Lsn2|=1 and $9 \in \operatorname{Nbd}[1]$
Step 10.1: Isn $1=\{7,8\}$
Step 10.3: Isn $2=\{7,8\}$
Step 10.4.2: $b=8$
Step 10.5: IDS $_{d s}=\{2,5,8\}$
Step $12: i=1<9$
Step $12.2: i=1<8$
Step 13: End
Output: $I D S_{d s}=\{1,7\}$ is an inverse dominating set with respect to a minimum dominating set
$M D S_{d s}=\{2,5,8\}$

Special case

If there are three $\operatorname{arcs} \mathrm{j}, \mathrm{k}, 1$ such that j is only one right side intersecting arc to k and l is only one left side intersecting arc to k and also there are another three arcs p, q, r such that p is only one right side intersecting arc to q and r is only one left side intersecting arc to q and if there is only one arc s which left side intersecting arc to l and right side intersecting arc to p then above algorithm directly we cannot find. But we have to use the following step. In the above algorithm in step 3 instead of $\mathrm{i}=1$ we have to take $\mathrm{i}=\mathrm{j}$. Then we can use step 6.1 to step 6.4.

Example

From the above example
Step 1: $M D S_{d s}=\{ \}$
Step 2: $I D S_{d s}=\{ \}$
Step 3: $i=2$
Step 4: Lsn1 = $\{2,3,4\}$
Step $5: \operatorname{Lsn} 2=\{2,3,4\}$

Step 6: If $|\operatorname{Lsn} 2|>1$ then

> Step 6.1: $a=4$
> Step $6.2: b=2$

Step 6.3: $M D S_{d s}=\{4\}$
Step 6.4:IDS ${ }_{d s}=\{2\}$
Step $11: i=6$
Step 4: Lsn1 $=\{6,7,8\}$
Step $5: \operatorname{Lsn} 2=\{6,7,8\}$
Step 6: If $|\operatorname{Lsn} 2|>1$ then
Step 6.1: $a=8$
Step $6.2: b=6$
Step 6.3: $M D S_{d s}=\{4,8\}$
Step 6.4: $I D S_{d s}=\{2,6\}$
Step $11: i=10$ Here
Step 4: Lsn $1=\{10,11,12\}$
Step 5: Lsn2 = $10,11,12\}$
Step 6: If $|\operatorname{Lsn} 2|>1$ then
Step 6.1: $a=12$
Step $6.2: b=10$
Step 6.3: $M D S_{d s}=\{4,8,12\}$
Step 6.4: IDS $_{d s}=\{2,6,10\}$
Step $11: i=1<12$
Step 12.2: $i=1<10$
Step 13: End
$I D S_{d s}=\{2,6,8\}$ is an inverse dominating set with respect to a minimum dominating set $M D S_{d s}=\{4,8,12\}$

Figure 1: Circular-arc family

Figure 2 : Circular-arc

family 1

Figure 3: Circular- arc Graph 1

family 2

$\begin{array}{llll}\text { Figure 5: Circular-arc } & \text { Graph } & 2 \\ \text { 6: Circular-arc family } 3\end{array}$

Figure 4: Circular-arc

Figure

[4] V.R. Kulli and R.R.Iyer,"Inverse vertex covering number of a graph," Journal of Discrete Mathematical Sciences and Cryptography, Vol.15, 2012, pp. 389-393.
[5] V.R.Kulli and B. Janakiram,"On n-inverse domination number in graphs," A. N. International of Mathematics \& Information Technology Vol.4, pp. 33-42,2007.
[6] V.R.Kulli and N.D. Soner," The inverse neighborhood number of a graphs," South East Asian J Math and Math Sci, Vol.6, pp. 23-28,2008.

