Medical Imaging: A Brief Review

Preeti Sharma¹, Sarvesh Swar², Mridul Saini³

^{1,2,3}Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India.

Email: ¹preeti.sharma@chitkara.edu.in, ²mahajansarvesh476@gmail.com, ³mridul172131.ece@chitkara.edu.in

Abstract: The probing of the human body is done using different modalities of medical imaging. The explications of various images require different methods of image processing which enhance their visual interpretation. These image analysis methods may provide images for different application using automated or semi-automated methods. The processed images may be widely used for data mining, feature selection etc by retaining the underline information and eliminating the irrelevant features. These techniques do not focus on the acquisition of the images. Computations and analysis of various images is the main thrust of MIP (Medical Image Processing) techniques. In general MIP can be categorised further into different physiological modelling or segmentation or registration of the image .This paper presents a survey on various feature selection methods used in medical imaging wherein most of the techniques and methods like Screening, Scanning, Selecting, etc. are summarized.

Keywords: Medical images, selection of features, processing

1. INTRODUCTION

Medical imaging (MI) is the process of creating viewable depictions of the interior of body organs or tissues for the purpose of clinical analysis and medical intervention. It intends to treat and diagnose different internal structures within the skin or bones by exposing them to various imaging techniques [1-2]. MI forms the base of normal anatomy and physiology and helps to identify the possible abnormalities. While pathology mainly consists and allows procedures to remove organs or parts of human body, the techniques of MI allow scanning the tissue abnormalities before any surgical process. This can be achieved through various Content Based Image Retrieval (CBIR) techniques. A general block diagram of the selection techniques used by CBIR is shown in Figure 1 [16]. Such techniques include steps of capturing, enhancement, segmentation, etc as shown in Figure 2[17].

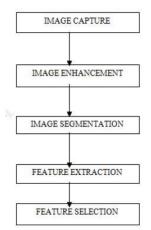


Fig 1: Flow Process in MIP

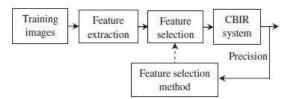


Fig 2: Block Diagram of a CBIR system

Medical imaging is often distinguished to cog nominate a set of techniques which help in assembling detailed images of the internal organs of the body through inoffensive mechanisms. MI techniques help to relate the abnormal conditions or symptoms (effects) with different modalities of unhealthy state (causes) of tissues and organs. The field of MI offers various advantages of providing applications in the areas of Telemedicine, Biomedical Engineering, Aerial Imaging, etc. However, these techniques also suffer from various challenges too. Thus, a brief study is presented and concluded in this paper in Sections 2 and 3 respectively.

2.		1			
[Re f	Area Focussed	Description of work	Merits	Limitation s	Future Scope
No]					
[3]	Image resampling, discrete samples, Nearest Neighbour Interpolation (NNI)	Two Dimension interpolations were reconstructed for a continuous signal using discrete samples. The NNI method was the easiest way to approximate the sync function by a spatially limited kernel.			
[4]	Image retrieval in medical applications (IRMA) technique was used for content based applications.	of IRMA was used to categorize, register, select	Query completion was satisfactory	Prior knowledge of image and its content was required.	

2. WORK DONE:

		steps of the			
		steps of the image.			
[5]	A Content based Image Retrieval (CBIR) approach was used to implement	A large	offered practical applications in various	The narrow gap between an image imprint and its description still existed.	
[6]	The principle of machine learning was used to select features of the image using risk based prediction method. and concepts of Support vector machine(SVM).	The performance of the proposed method was improved by using two feature			Outlier detection of features may be considered.
[7]	Hybrid technique of feature selection using Confocal Scanning Laser Tomography (CSLT) was used for analysis of optical images.	The methods of image processing and data mining were combined to make clinical decisions in eye problems of glaucoma. Classifiers were training to distinguish healthy and diseased optic nerves of patients.	accuracy was maintained at minimum number of moments also.		Rule induction algorithms may be planned for further work.
[8]	A new embedded	Many relevant	Classification		ESFS may be

	feature selection method ESFS was used for categorization of images.	features were added incrementally for selection of features of the image. Evidence theory was used to represent the features by mass functions.	accuracy was improved and computationa l cost was also low.	used as a hierarchical classifier,
[9]	Classifiers of image were used to select features for mammography with the help of statistical techniques.	A hybrid approach with reduced features was used to detect tumours in breasts using the algorithm of decision trees.	Reduced computation cost, different applications of image analysis	Data mining may be used for classification
[10]	Different areas of continuing research in various applications were addressed.		Many common parameters were used to highlight the deficiencies.	Early symptoms may also be used for further study
[11]	SVMandoptimizationmethod usingAntColony(ACO)forextractingHistogram andMorphologyFeatures		High efficiency, Good classification accuracy	Parallel combination of classifier, more feature selection by increasing the training data

				[]
		extracted step		
		wise related to		
		the shape,		
		morphology,		
		Histogram and		
		correlogram		
[12]	Content-Based	The visual	Euclidean	Other wavelet
[12]	Image Retrieval,	contents of the	distance	transforms may
	Comparing images		method was	be used for
		-		
	using Color		used to	CBIR.
1	Coherence Vector,	search for like	retrieve	
	Biased	images in other	images	
	Discriminative	databases on		
	Euclidean	the basis of		
	Embedding.	colour, shape		
	C	and textual		
		features upon a		
		large scale. The		
		histogram		
		-		
		based technique		
		used the Tree		
		and Pyramidal		
		structured		
		wavelet		
		transforms.		
[13]	Feature selection,	Feature	Accuracy of	Experimentatio
	CART	selection	93.84% was	n using
	(Classification and	consists of	achieved.	ionosphere data
	Regression Tree)	three steps.		set may be
	classifier,	Screening,		endorsed.
	CHAID (Chi-	Ranking,		chuorseu.
	(0		
	squared Automatic	0,		
	Interaction	classification		
	Detection)	method called		
	classifier, QUEST			
	(Quick, Unbiased,	used for		
	Efficient Statistical	decision tree		
	Tree) decision tree	building by		
	classifier,	using statistics		
	Ensemble Model	of chi-square		
		1		
		for		
		identification of		
		identification of optimal splits.		
		identification of optimal splits. Another		
		identification of optimal splits. Another method using a		
		identification of optimal splits. Another method using a sequence of		
		identification of optimal splits. Another method using a sequence of rules called as		
		identification of optimal splits. Another method using a sequence of rules called as QUEST was		
		identification of optimal splits. Another method using a sequence of rules called as		

			[
		different rules.It was used to evaluate the value of predictor variables based upon certain significance tests. Lastly, an ensemble combined the outputs of different classifiers into one composite classification.		
[14]	Many feature selection methods were proposed in the past. The selection method depends on the learning type (supervised or unsupervised) and the algorithm used. Most feature selection (evaluation function) methods were used in all algorithms (filter or wrapper), but there were some which were meant exclusively for wrapper methods.	to optimize the features obtained with the help of structures formed by Information Gain. The classifiers of neural network helped in training the extracted	Reduced processing time, 98.27% efficiency achieved	
[15]	Bi orthogonal Wavelets, Active contour model, Set Partitioning in Hierarchical Trees (SPIHT), Embedded zero tree wavelet (EZW)	using bi orthogonal spline wavelets	PSNR (Peak Signal to Noise Ratio) up to 40 dB was achieved.	

[16]	Screen, Scan and Selection	reconstruction. The Region of Interest (ROI) was segmented using Active Contours. Set Partitioning in Hierarchical Trees (SPIHT) and Embedded Zero Tree wavelet (EZW) were also used for compressing the image. The paper discovered that the selection algorithm calculated the			Missing values in predictors	Hybridization of selected features may be performed.
		authenticity of medical images through their efficient role as predictors.				
[17]	image retrieval technique for the feature selection method.	CBIR systems using adaptive feature extraction techniques. Discrete Wavelet Transform (DWT) was used with MGSA as an effective case study.	1000 set c colour images of 1 different	0		
[18]	Study of Detection methods used for tumour detection brain through MRI	Thepaperprovedamilestonestudyrelatedto				

[19]	and mammogram. Segmentation and Registration of Images	different steps of enhancement, segmentation, classifiers, selection and Extraction of features for the purpose of tumour detection. The paper proposed to identify and give the	MI can be performed either by the physician	
		concept of most relevant problems in medical image processing. The solutions were offered by assessing different strategies.	application	
[20]	Detection of Lung Cancer	A standard database of Lung Images was used for the recognition of cancer cells using the three techniques of screening, ranking and selection	Set of 1000 images was used for	
[21]	Discretization of data for selecting and extracting data	A new algorithm namely NANO was used to select and discretize the supervised features in one step. It was	High sensitivity and accuracy ranging in 96-98%	Performance may be improved further

		1 1			
		based on mean			
		global			
		inconsistency			
		and measures			
		of cut points to			
		enhance the			
		speed of the			
		diagnosis			
		framework for			
		medical			
		images.			
[22]	Content-based	Feature			
	Image Retrieval	selection of			
	techniques are used	past cases is			
	that retrieve images	performed by			
	based on their	comparing the			
	content.	present case			
	content.	images with			
		U			
		those stored in the database.			
		The digital			
		imaging and			
		communication			
		s in the medical			
		standard allow			
		storing textual			
		descriptions			
		known as			
		metadata.			
[23]	Artificial Bee	A comparative	97 to 100%	Data sets	
	Colony (ABC) was	analysis was	accuracy was	may be	
	used for feature	done for images	achieved	biased	
	selection in CT	segmented	using SVM		
	Scan images.	using Otsu	-		
	0	algorithm and			
		ABC. The			
		classifiers used			
		were k-NN and			
		SVM.			
[24]	Representation and	The study	NN and SVM	Data	Computer aided
L	Extraction of	presented in the	have	complexity	diagnosis may
	Features, for	paper helped to	classified	· · · · · · · · · · · · · · · · · · ·	be used to
	Classification of	diagnose	images		improve
	images	different	amongst		performance
		diseases of	different		and robustness.
		human body.	modalities		una 10005011055.
		Different	with high		
		classification	accuracy and		
			•		
		techniques with	sensitivity		

[25]	Feature selection algorithms(scannin g screening and ranking)	their pros and cons were discussed for various data sets. Four different feature selection algorithm were used with an adaptive fuzzy prediction model.	The feature selection algorithms have better performance concerning the empirical method.	Errors due to fractional motion error.	Real patient data can be used to improve result accuracy
[26]	CBIR methods, visual pattern exploration	The study suggests effective technologies using CAD systems for the ease of relieving workload of medical fraternity. Various state of art approaches using machine learning, computer vision, etc have been discussed to summarize the challenges and solutions of analysis of medical images on a large scale.			Deep learning may be used for future work
[27]	Principle Component Analysis (PCA)	High dimension data sets were used for challenging classification of Biomedical images in the study of the paper.	Due to the introduction of Ant Colony optimization, it extracted the most useful and relevant features from	High complexity	It also improved diagnostic quality more advanced feature extraction and selection methods are used for

European Journal of Molecular & Clinical Medicine ISSN 2515-8260 Volume 07, Issue 03, 2020

the image	accompanyation
the image	segmentation
and also	and Xray
improved the	images.
system	Further,
accuracy	improve the
with a	performance of
decrease in	(CT) images
the system	and phenotypes,
complexity.	Features are
	necessary

3. CONCLUSION

The study concludes the authenticity of medical image processing algorithms using various content based image retrieval techniques. Such methods involve the use of predictors for selecting and extracting key features of images for the purpose of successful diagnosis of harmful diseases. The future work emphasizes on use of hybrid methods to improve the performance of retrieved images in real time.

4. REFERENCES

- [1] Bhinder P, Singh K, Jindal N (2018)Image-adaptive watermarking using maximum likelihood decoder for medical images. Multimed Tools Appl 77: 1030310328.
- Bhinder, P., Jindal, N. & Singh, K. An improved robust image-adaptive watermarking with two watermarks using statistical decoder. Multimed Tools Appl 79, 183–217 (2020). https://doi.org/10.1007/s11042-019-07941-2
- [3] Thomas M. Lehmann, Claudia Gonner, and Klaus Spitzer, Survey: Interpolation Methods in Medical Image Processing IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 11, NOVEMBER (1999).
- [4] Thomas M. Lehmannal, Berthold Wein", Jörg Dahmenc, Jorg Bred Frank Vogelsang", and Michael Kohnen, Content-Based Image Retrieval in Medical Application :A Novel Multi-Step Approach Part of the IS&T/SPIE Conference on Storage and Retrieval for Media Databases 2000 312 San Jose, California, January 200 SPIE Vol. 3972 • 0277-786X/OO/\$1 5.00.(2000)
- [5] T. M. Lehmann, M. O. Güld C. Thies , B. Fischer1, K. Spitzer, D. Keysers, H. Ney M. Kohnen, H. Schubert, B. B. Wein ,Content based image retrieval in medical applications (2004)
- [6] Guo-Zheng Li, Jie Yang, Guo-Ping Liu, and Li Xue, Feature Selection for Multi-class Problems Using Support Vector Machines C. Zhang, H.W. Guesgen, W.K. Yeap (Eds.): PRICAI 2004, LNAI 3157, pp. 292–300, 2004. Springer-Verlag Berlin Heidelberg (2004).
- [7] Jin Yu, Syed Sibte Raza Abidi, Paul Habib Artes, A Hybrid Feature Selection Strategy for Image Defining Features: Towards Interpretation of Optic Nerve Images Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18-21 August (2005).
- [8] Huanzhang Fu, Zhongzhe Xiao, Emmanuel Dellandr´ea, Weibei Dou, and Liming Chen Image Categorization Using ESFS: A New Embedded Feature Selection Method Based on SFS J. Blanc-Talon et al. (Eds.): ACIVS 2009, LNCS 5807, pp. 288–299, 2009.Springer-Verlag Berlin Heidelberg(2009)

- [9] M.Vasantha, V.Subbiah Bharathi, R.Dhamodharan ,'Medical Image Feature, Extraction, Selection And Classification International Journal of Engineering Science and Technology Vol. 2(6), 2010, 2071-2076(2010)
- [10] Dougherty G, Image analysis in medical imaging: recent advances in selected examples(2010)
- [11] P. Gnanasekar, A. Nagappan, S. Sharavanan, O. Saravanan, D. Vinodkumar, T. Elayabharathi and G. Karthik ,Investigation on Feature Extraction and Classification of Medical Image World Academy of Science, Engineering and Technology, Vol:5, No:12, (2011)
- [12] E. Saravana Kumar, A. Sumathi, K. Latha Feature Selection and Extraction for Content-Based Image Retrieval International Journal of Mathematics Trends and Technology-Volume3 Issue2 (2012)
- [13] Pushpalata Pujari, Jyoti Bala Gupta, Improving Classification Accuracy by Using Feature Selection and Ensemble Model International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-2, Issue-2, May(2012)
- [14] Sasi Kumar. M and Dr. Y.S. Kumaraswamy, Medical Image Retrieval System Using PSO for Feature Selection, International Conference on Computational Techniques and Mobile Computing (ICCTMC'2012) December 14-15, Singapore (2012)
- [15] Loganathan R, Y.S.Kumaraswamy, Performance Evaluation of Image Compression for Medical Image, International Journal of Computer Science and Engineering (IJCSE) Vol. 4 No.2 Apr-May (2013)
- [16] K.Baskar, D.Seshathiri, A Survey on Feature Selection Techniques in Medical Image processing International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181(2013)
- [17] Esmat Rashedi, Hossein Nezamabadi-pour, Saeid Saryazdi, A simultaneous feature adaptation and feature selection method for content-based image retrieval systems knowledge based systems 39(85-94) (2013)
- [18] A.Sivaramakrishnan , Dr.M.Karnan, Dr.R.Sivakumar, Medical Image Analysis A Review International Journal of Computer Science and Information Technologies, Vol. 5 (1), 236-246 (2014)
- [19] Atul Mishra, Abhishek Rai and Akhilesh Yadav ,Medical Image Processing: A Challenging Analysis International Journal of Bio-Science and Bio-Technology Vol.6, No.2, pp.187-194(2014)
- [20] R. Kishore, An Effective and Efficient Feature Selection method for Lung Cancer Detection, International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August (2015)
- [21] J Senthil kumar, D.Manjula, A Kannan and R krishnamoorthy ,A Novel Feature Selection and Discretization Algorithm to Support Medical Image Diagnosis With Efficiency International Journal of Soft Computing 10 (1): 65-75 ,(2015)
- [22] Sérgio Francisco da Silva, Marcela Xavier Ribeiro, João do E.S. Batista Neto Caetano Traina-Jr. Agma J.M. Traina, Improving the ranking quality of medical image retrieval using a genetic feature selection method Decision support system, 51(810-820)(2011)
- [23] Vartika Agrawal, Satish Chandra, Feature Selection using Artificial Bee Colony Algorithm for Medical Image Classification (2016)
- [24] Eka Miranda, E. Irwansyah , A Survey of Medical Image Classification Technique International Conference on Information Management and Technology ,16-18 November (2016)
- [25] Saber Nankali, Ahmad Esmaili Torshabi, Payam Samadi Miandoab, and Amin Baghizadeh, Optimum location of external markers using feature selection algorithms

for real-time tumor tracking in external-beam radiotherapy: a virtual phantom study, Journal of Applied Clinical Medical Physics, Vol. 17, No 1, (2016)

- [26] Zhongyu Li, Xiaofan Zhang, Henning Müller, Shaoting Zhang, Large-scale retrieval for medical image analytics: A comprehensive review medical image analysis 43 (66-84) (2018)
- [27] Misbah Ziiaye ,Samina Khalid ,Yasir Mehmood , Survey of Feature Selection / Extraction Methods used in Biomedical Imaging, International Journal of Computer Science and Information Security (IJCSIS),Vol. 16, No. 5, May (2018).