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ABSTRACT 

The increase in mortality rate of the elderly in the recent years is mainly due to the occurrence of 

falls. Ensuring safely of the elderly is a crucial task since they cannot be monitored constantly all the 

time. In this research, we propose a novel scheme for the fall detection of the elderly using depth videos 

acquired from two Kinect sensors. The two sensors include the frontal-mounted Kinect sensor and the 

depth-mounted Kinect sensor. Fall detection using Kinect depth maps offers a low-cost, reliable and 

privacy preserving solution. Using the depth maps, depth motion maps (DMM) are generated. From these 

maps, depth ConvNet features are extracted using deep convolutional neural network (DCNN) structure. 

In this research, two convolutional layers and two max-pool sub-sampling layers are employed. The 

obtained features have extremely high discriminative strength to distinguish between fall and non-fall 

actions. From the extracted features, fall detection is done using Extreme Learning Machine (ELM) 

classifier. The temporal frame length of the depth motion maps is varied, and the corresponding fall 

detection accuracy is obtained for the identification of optimal temporal length. Since, this framework 

utilizes only Kinect depth maps, the privacy issue involved in fall detection during the usage of RGB 

videos are eradicated. Evaluation was done using publicly available University of Rzeszow Fall Detection 

(URFD) dataset. Performance evaluation was done based on confusion matrix obtained. Metrics like 

specificity, precision, sensitivity, and F-score were evaluated from the obtained confusion matrix. 

Evaluation results clearly show the efficacy of the proposed fall detection framework by comparing with 

the other state-of-the-art fall detection works proposed in the literature.   

Keywords: DCNN, URFD, ELM, Kinect and fall detection. 

1. Introduction 

The advancement in the field of Information and Communication Technology has led to the 

development of automatic systems for the safety of the elderly living[1]–[4]. Since, elderly people are 

extremely fragile they are prone to fall events[5]–[9]. It has been shown through research that one in 

every three elderly people (who live in US) are subject to fall in a year. This causes serious threat, since 

the fall event may eventually lead to serious injury or even to death if steps are not taken immediately. 

Hence, automatic fall detection is a recently trending research area. Recently Internet of Things (IoT) are 

widely being used for indicating the fall events to the caretakers [10]–[12]. The schemes for fall detection 

can be broadly categorized into two categories namely, the wearable sensor based[13][14][15][16][17] 

and computer vision[18][19][20][21][22] based schemes. The wearable sensor based schemes uses 

inertial sensors like accelerometers, gyroscopes, magnetometers, etc., that are worn by the elderly. 

However, the computer vision based schemes employ colour or infrared or thermal cameras to detect the 
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fall events. Deep learning for the fall detection has become very popular in the recent days [12], [23]–

[25][26][27]. Smart phones are also being used for the automatic detection of fall events [28]–[33].  

Accelerometer and gyroscope sensors were used for the identification of fall from the activities of 

daily living (ADL) in [13].The data from the accelerometer sensor was used for identifying four types of 

static postures. Based on the linear acceleration and the angular velocity, the intentional transitions and 

fall events were identified. An algorithm for fall detection using a pre-defined threshold was proposed in 

[14]. The value of the threshold was determined using the acceleration value from the accelerometer 

sensor. The sensor was mounted on two regions namely, the thigh and the trunk of the individual. In this 

framework, eight different types of fall events were evaluated. Fall detection framework using MEMS 

accelerometer was proposed in [15]. In this work, the wearable device was worn around the waist. Here, 

falls were detected based on the orientation of the accelerometer signal.  

Smart phone accelerometers were employed for fall detection in [16]. Here, the data was pre-

processed using support vector machine (SVM) algorithm. The classification of fall was performed using 

a combination of kernel fisher discriminate (KFD) and k-nearest neighbour (k-NN) algorithm. A scheme 

for fall detection using accelerometer sensor was proposed in [17]. Here, feature extraction was 

performed for the signal window whenever a peak was identified. Different types of classifiers like neural 

network, SVM, decision tree, etc, were employed for classification. Though wearable sensors produce 

good fall detection results, they cause discomfort to the users, as they must be worn all the time.  

Fall detection using RGB cameras based on tracking of head trajectories was proposed in [18]. 

The head tracking was performed using particle filtering technique. Based on the values of the 3D 

velocities, fall events were detected. A framework for fall detection using an omni camera was proposed 

in [19]. In this work, the personalized information about individuals like height, weight, etc., were loaded 

into the system to increase the sensitivity of fall detection. Fall detection was done based on the 

dimension of the silhouettes in the normal and the fall states. Fall detection using depth camera was 

proposed in [20]. Here, three types of features were used for fall identification that included area of the 

individual, shape of the individual and the distance between the head to the floor. Classification was done 

using a k-NN classifier.  

Camera-based system for the identification of fall was proposed in [21]. In this work, the main 

steps involved were background subtraction followed by application of Kalman filter. The optical flow 

features were then extracted from the filtered frames. Finally, classification was done using k-NN 

classifier. Detection of elderly fall using Kinect images was proposed in [22]. Here, the falls were 

detected based on the tracking of body parts. Here, tracking was done using key joints. These key spots 

were identified based on a novel randomized decision tree algorithm. 

Though RGB cameras offer a good solution for the fall detection, they have privacy issue. To 

avoid this, Kinect depth images are popularly being used for fall detection recently. Hence, in our 

research we propose a novel algorithm for fall detection using depth data. 

The overall contributions of this paper are fourfold: 

a) A novel scheme for fall detection using data from frontal and top view Kinect sensors. 

b) A novel deep learning architecture for the generation of ConvNet features. 

c) Performance evaluation and comparison with state-of-the-art techniques. 



                                          European Journal of Molecular & Clinical Medicine 
                                                                                 ISSN 2515-8260                 Volume 7, Issue 3, 2020              

 

5494 
 

d) Comparison with other features and classification techniques. 

 

2. Literature survey 

A scheme for fall detection by using a combination of accelerometer and depth camera was 

proposed by Kwolek et al. (2014) in [34]. In this work,a new scheme for fall detection that has a low false 

alarm value was proposed. The instants of potential fall were indicated using the accelerometer signal. 

The accelerometer signal was constantly checked against a pre-defined threshold value. When the signal 

goes beyond the threshold the instance was captured. Using this instance, the depth maps associated to 

that instant were extracted. From the depth maps, the person delineation was done. Using the extracted 

regions, features were extracted. Finally, the classification was done using SVM classifier.  

Kwolek et al. (2015) [35] proposed a scheme for fall detection using depth and inertial data. In 

this scheme, the potential fall was identified using accelerometer signal. Using the instance identified by 

the inertial sensor, the depth maps were downloaded from a circular buffer. From the extracted depth 

maps, features and point cloud data were extracted. Four features were extracted from the depth maps. 

The first feature was the ratio of the height to the width of the individual. The second feature was the 

height of the bounding box to the actual height of the individual. The third feature was the distance 

between the centroid to the floor. The last feature was the standard deviation of the centroid. 

Classification was done using k-NN classification algorithm. The outcome was compared with the SVM 

classifier. It was observed that the performance of the k-NN classifier was better than that of the SVM 

classifier.  

Kong et al. [36] presented a technique for fall detection using Kinect data. In this work, the depth 

maps are obtained, and noise reduction was performed using noise reduction techniques. From the 

denoised depth maps, the histogram of oriented gradient features was extracted. Using the extracted 

features classification was done using SVM classifier. Using internet of things (IOT), the system was 

designed to send alert messages to the caretakers or to the hospital whenever a fall event was detected. In 

this work, evaluation was done using a new dataset that comprised of 3500 images. Here, fall alert 

messages were sent whenever the fall event was detected to prolong for 60s. If the duration was less than 

60s, it was detected that the elderly person recovered from the fall, so the alarm was not sent to the 

caretaker. 

Xu et al. [37] introduced a scheme for fall detection using Kinect V2 camera. Here, the skeletal 

tracker was employed for the identification of joints location. Using these locations, posture was 

recognized using neural network structure. From the identified postures, fall events were identified. If the 

identified posture was a lying state, then the previous posture was identified. The total duration of the 

lying posture was also determined. Using these values, fall events were detected. The classification was 

done using neural network architecture.  This system attained a fall detection accuracy of about 97.3%. 

The main advantage achieved by this system was the privacy protection since it employed depth maps. 

Li et al. [38] proposed a scheme in which the fall events were determined using convolutional 

neural networks. The classification of fall was done based on the analysis of spatio-temporal patterns. 

Here, three layers of fine tuning were done to increase the reliability of fall detection. Using a sliding 

window, the video snippets were detected and fed as input to the convolutional neural networks for the 
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identification of fall events. Final detection was done using the SoftMax layer. This system employed the 

RGB images captured by cameras for fall analysis. Trials were conducted using five trainees. This system 

could identify fall within 0.5 seconds of the fall event. 

Panahi et al. [39] presented a scheme for fall detection using Kinect images. In this framework, 

initially, the foreground images were obtained using background subtraction technique. Then, the depth 

maps were converted to black and white images. The morphological operations were then applied on the 

binarized images. Then, contour extraction was performed. Using the contour regions, feature extraction 

was done. From the extracted features, the system checks if the current action was lying on the floor. If 

the output was yes, then the system identifies the duration of the lying action. If the lying duration was 

high, then fall events were confirmed. This system achieved specificity of 97.5%. 

A scheme for fall detection using deep learning was proposed in [40]. This scheme utilized neural 

network structure based on long short-term memory (LSTM). The proposed structure employed two 

LSTM structures. The first structure comprised of multi-class LSTM and the second structure involved a 

two-class LSTM. The general features extracted by the multi-class LSTM were transferred to the two-

class LSTM using transfer learning wherein the weights were kept constant. The output of the two-class 

LSTM indicated the occurrence of fall event. This system attained a recall of 96.12%. The overall ROC 

achieved for the fall detection was 0.99. The main advantage of this scheme was that no hand-crafted 

features were generated instead the deep learning structure was used to generate the features for the 

classification.   

Mastorakis et al. [41] proposed a scheme in which fall events were identified using infrared 

sensor of Kinect device. Fall events were detected based on the velocity computations and the inactivity 

details. The 3D bounding boxes were generated and the velocity was identified based on the width and the 

height of the box. The identified velocity was then used for the inactivity detection. The duration of 

inactivity is computed. If the length of this duration was greater than 2s, then the fall event was 

confirmed. Different types of fall like backward, forward, and sideways fall were analyzed in this system. 

The computational time of this scheme was very less around 0.3 to 0.4 ms. 

3. Proposed Methodology 

 

3.1. Proposed fall detection architecture 

The depth video comprising of depth frames are acquired from the Kinect sensor. To increase the 

accuracy of classification, we have employed the depth maps from two Kinect sensors in this work. The 

first Kinect sensor captures the depth images from the front view and the second Kinect sensor captures 

the depth images from the top view. Using these depth images, the depth motion map (DMM) is 

generated. From the DMM, ConvNet features are extracted. These features are then classified using 

extreme learning machine (ELM) classifier. The output of classification is either fall or non-fall. The 

flowchart of the proposed framework is given in Figure 1. 
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Figure 1. Flow chart of proposed fall detection framework 

3.2. Depth motion map(DMM) generation 

Depth motion maps are computed as a sum of the depth information in a depth sequence. These 

maps represent the history of depth information for a particular window. The higher the window, the more 

is the information. In our work, every M  depth frames are represented in the form of a depth motion map 
MDMM .  

For a sequence of M  depth frames, say, 
1 2, ,..., MD D D , the depth motion maps are generated 

using the following equation, 

1
1

1

| |
M

M j j

j

DMM D D
−

+

=

= −        (1) 

Here, 
5DMM  indicates that the depth motion map comprises of information from its previous 5 

consecutive depth images. Similarly, 
9DMM indicates that the depth motion map comprises of 

information from its previous 9 consecutive depth images. Figure 2 shows the depth motion map of 

walking action.  

 

 

Figure 2. DMM of a walking action 
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Figure 3 shows the depth motion map of fall action. From Figure 2 and Figure 3 we clearly 

observe that, the depth motion map of fall action has more distortion than that of depth motion map of 

walk action. These images were generated for M =64. 

The data in the depth motion map varies based on the value of M . Hence selection of 

appropriate values of M  is essential for accurate fall detection. In the forthcoming sections we have 

identified the optimum value of M  for this research. 

 

 

Figure 3. DMM of a fall action 

 

3.3. Feature extraction using ConvNet 

Feature extraction is done using the generated depth motion maps from both the Kinect sensors. 

For every M consecutive depth images, DMM are generated. These DMM are employed for the 

extraction of ConvNet features. In this work,we have employed a four-layer deep learning network 

architecture for feature extraction. This is shown in Figure 4.The proposed architecture comprises of a 

convolutional layer with a kernel size of 5×5 followed by a max-pooling sub-sampling layer with a kernel 

size of 3×3. These two layers are followed by a convolutional layer with a kernel size of 5×5. Finally, 

there is another max-pooling sub-sampling layer with a kernel size of 3×3. The output of the final max-

pooling sub-sampling layer generates the ConvNet features employed for fall detection. The depth motion 

maps from both the Kinect sensors are used for the generation of ConvNet features. 
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Figure 4. ConvNet feature extraction 

 

3.4. Extreme learning machine (ELM) classifier 

The generated ConvNet features are employed for classification using ELM classifier.The ELM 

classifier is a single hidden layer feed forward neural network. The ELM classifier is modelled using 

parameters such as threshold, weight and activation function. These parameters are iteratively optimized 

for maximum classification performance of the ELM classifier. In the learning process, the weights for 

the inputs are selected randomly whereas the weights for the outputs are calculated using analytical 

processing. For activating the hidden layer cells, non-linear functions like sigmoid and sinusoidal 

functions are employed.   

4. Results and Discussion 

 

4.1. Dataset description 

The proposed system was evaluated using URFD dataset [34]. This dataset comprises of both 

inertial sensor data (accelerometer) and Kinect depth data. The depth data was acquired using Kinect 

Xbox 360. The sampling rate for the acquisition of Kinect data was 30 fps. Each depth map has a 

dimension of 480×640. This dataset included data from two different Kinect devices. The first Kinect 

device was installed in the front of the scene at a distance of 1m from the ground level. This provided the 

front view data. The second Kinect was installed at the top of the ceiling. This provided the top view data. 

This dataset has a total of 70 video sequences out of which 30 represents fall events and the rest 40 

represents ADL events. The specifications of the URFD dataset is given in Table 1. The fall-based actions 

included fall actions from standing position and fall action from sitting position. The ADL actions 

included actions like sitting, object picking, crouching, quick lying, etc. 

Table 1. Specification of URFD dataset 

Class Action 
Number 

of videos 
Total 
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Fall Human fall 30 30 

ADL 

Crouch 8 

40 

Bend 7 

Sit 9 

Lye 19 

 

 

Figure 5 shows the sample images from the URFD dataset. In Figure 5,the top image shows the 

RGB image obtained from the frontal Kinect sensor during walking action. The bottom image shows the 

corresponding depth image obtained from the frontal Kinect sensor during walking action. 

 

Figure 5. RGB image and Depth map of walking action 

 

Figure 6 shows the sample images from the URFD dataset for fall action. In Figure 6, the top 

image shows the RGB image obtained from the frontal Kinect sensor during fall action. The bottom 

image shows the corresponding depth image obtained from the frontal Kinect sensor during fall action. 
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Figure 6. RGB image and Depth map of fall action 

 

Figure 7 and Figure 8 shows the sample images from the URFD dataset obtained by the two 

Kinect sensors. Figure 7 shows the RGB and depth image pair captured by the frontal Kinect device. 
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Figure 7. RGB and depth map images from front view Kinect sensor 

Figure 8 shows the RGB and depth image pair captured by the ceiling-mounted Kinect device. 

From Figure 8 we infer that, it provides complimentary information to that provided by the top-view 

Kinect sensor. Since data is captured from two different view, employing both of them increases the 

accuracy of classification.  

 

 

 

Figure 8. RGB and depth map images from top view Kinect sensor 

4.2. Selection of frame length 

 The selection of frame length M  for the generation of depth motion map is very crucial. The 

frame length M  should have an optimum value. Very low value of frame length may not be capable of 

capturing the actions and very high length may have redundant information. Hence, its value must be 

optimized. To identify the optimum value of M , we have varied the value of M  and computed the 

accuracy of classification. For various values of M , the value of accuracy was computed and plotted in 

the form of a graph. This graph is shown in Figure 9. From Figure 9 we see that, the value of M  was 

varied from 5 to 70, with increments of 5. It was observed that maximum accuracy was achieved at M

=35. Hence, in our work we have used 35 consecutive frames for the generation of depth motion maps. 

The highest accuracy achieved was 97.14%. 
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Figure 9. Variation of accuracy with frame length 

4.3. Simulation results 

We have used 10-fold cross validation technique. The dataset was divided into 10 parts wherein 

one part was employed for testing and the rest were used for training. This entire process was iterated 10 

times. The final accuracy was the average of all the iterations. The classification performance was 

evaluated using five metrics namely accuracy, recall, specificity, precision and F-score. 

Table 2 shows the results of the proposed deep learning based fall detection framework on 

the URFD dataset. We evaluated using three different cases. In the first case, only the frontal depth data 

was employed. In the second case, the top-view depth data was used. In the third case, both the frontal 

and the top-view data were employed.  

When only the frontal Kinect sensor (Kinect-F) was employed, out of 30 fall events, 29 were 

detected correctly. However, one fall event was misclassified. Out of 40 ADL data, 36 were classified 

correctly and 4 were mis-classified. When the top-view Kinect sensor (Kinect-T) was used, 28 fall events 

were classified correctly, and 2 fall events were misclassified as ADL. Out of 40 ADL events, 35 were 

correctly classified as ADL and remaining 5 were misclassified as fall. However, when we employed data 

from both the sensors for classification, good classification results were obtained. We find from the Table 

2 that, out of 30 fall events, all the 30 were correctly classified as fall. This makes the sensitivity of the 

classifier to be 100%. Among 40 ADL events, 38 were correctly classified and only 2 were misclassified 

as fall events. Thus, the proposed system achieved best results when data from both the sensors were 

employed. 

 

Table 2. Results of the proposed fall detection system 

Sensor 

used 
Fall/ADL Total Detected Missed 

Kinect-F 

Fall 30 29 1 

ADL 40 36 4 
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Kinect-T 

Fall 30 28 2 

ADL 40 35 5 

Kinect-F + 

Kinect-T 

Fall 30 30 0 

ADL 40 38 2 

 

Using the obtained results, various metrics were evaluated. 

True Positive (TP ):  

It indicates the number of fall events present and detected. 

True Negative (TN ):  

It indicates the number of fall events not present and not detected. 

False Positive ( FP ):  

It indicates the number of fall events not present but detected as fall. 

False Negative ( FN ):  

It indicates the number of fall events present but not detected as fall. 

From the above computed parameters, classification metrics like overall accuracy, recall, precision, 

specificity and F-score were calculated. 

Overall accuracy ( aO ): 

Overall accuracy is computed as 

a

TP TN
O

TP TN FP FN

+
=

+ + +
        (2) 

 

Recall ( eR ): 

The recall refers to the sensitivity and is determined using 

e

TP
R

TP FN
=

+
          (3) 

 

Precision ( rP ): 

The precision is evaluated as 

r

TP
P

TP FP
=

+
          (4) 
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Specificity ( pS ):           

The specificity is given by 

p

TN
S

TN FP
=

+
          (5)  

 

F-score ( sF ): 

The F-score is computed as 

2s

Precision Recall
F

Precision Recall


= 

+
        (6) 

Table 3 shows the performance metrics of the proposed fall detection system. From Table 3 we 

find that the value of accuracy for Kinect-F is 92.86%. For the Kinect-F the accuracy is 90%. However, 

for a combination of Kinect-F and Kinect-T, the system produces an accuracy of 97.14%. The specificity 

for Kinect-F is 89.99%. For Kinect-T the specificity is 97.49%. However, for Kinect-F with Kinect-T, we 

obtained a high specificity of 94.99%. The precision obtained for Kinect-F alone is 87.87%. For Kinect-T, 

the precision value obtained is 84.84%. The combination of Kinect-F with Kinect-T, the framework 

achieved high precision of 93.74%. The recall value achieved for Kinect-F is 96.66%. For Kinect-T, the 

recall achieved is 93.33%. In this research, for combination of Kinect-F with Kinect-T, recall of 100% 

was attained. The F-score value achieved for Kinect-F is 92.05%. For Kinect-T, the F-score achieved is 

88.88%. In this research, for combination of Kinect-F with Kinect-T, F-score of 96.76% is attained. 

Table 3. Performance metrics of the proposed fall detection system 

Performance 

metrics (%) 

Kinect-F Kinect-T Kinect-F + 

Kinect-T 

Accuracy 92.86 90.00 97.14 

Specificity 89.99 87.49 94.99 

Precision 87.87 84.84 93.74 

Recall 96.66 93.33 100.00 

F-score 92.05 88.88 96.76 

 

Figure 10 shows the performance comparison of the proposed system when RGB images, Kinect-

F depth images and combination of Kinect-F and Kinect-T depth images were used. The graph clearly 

shows that, when RGB images were employed the performance of classification was poor. However, 

when the Kinect-F depth images were used, the performance of fall detection improved. When both the 

depth maps from Kinect-F and Kinect-T sensors were employed, very high fall detection performance 

was achieved in this system.  
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Figure 10. Variation of performance measures 

Table 4 shows the comparison of performance when different combinations of features and 

classifiers were employed. When histogram of oriented gradient features was employed along with SVM 

classifier (HOG+SVM), the system achieved an accuracy of 78.57%. When Convnet features were 

classified using SVM (ConvNet + SVM), an accuracy of 84.29% was achieved. The histogram of 

oriented gradient features with extreme learning machine classifier (HOG+ELM), an accuracy of 88.57% 

was attained. The proposed system with ConvNet features with extreme learning machine (ELM) 

classifier (ConvNet+ELM), a very high accuracy of 97.14% was attained. This shows the efficacy of our 

system.  

HOG+SVM achieved a specificity of 79.99%. The specificity of the ConvNet + SVM framework 

was 84.99%. The specificity of the HOG+ELM system was 87.49%. However, the proposed system with 

ConvNet+ELM attained a high specificity of 94.99%. 

Similarly, HOG+SVM achieved a precision of 74.19%. The precision of the ConvNet + SVM 

framework was 80.64%. The precision of the HOG+ELM system was 84.37%. However, the proposed 

system with ConvNet+ELM attained a high precision of 93.74%. 

Similarly, HOG+SVM achieved a recall of 76.66%. The recall of the ConvNet + SVM 

framework was 83.33%. The recall of the HOG+ELM system was 89.99%. However, the proposed 

system with ConvNet+ELM attained a high recall of 100%. 

Similarly, HOG+SVM achieved a F-score of 75.40%. The F-score of the ConvNet + SVM 

framework was 81.96%. The F-score of the HOG+ELM system was 97.09%. However, the proposed 

system with ConvNet+ELM attained a high F-score of 96.76%. 

Table 4. Performance measure comparison of various fall detection schemes 
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Performance 

measure (%) 

HOG+SVM ConvNet+SVM HOG+ELM ConvNet+ELM 

Accuracy 78.57 84.29 88.57 97.14 

Specificity 79.99 84.99 87.49 94.99 

Precision 74.19 80.64 84.37 93.74 

Recall 76.66 83.33 89.99 100.00 

F-score 75.40 81.96 97.09 96.76 

 

Table 5 shows the comparison of the proposed system with the state-of-the-art techniques 

proposed in the literature for fall detection. Bourke et al. [14] proposed a scheme for fall detection using 

wearable sensors. Using the signal from the accelerometer sensor, fall detection was performed. This 

system achieved an accuracy of 95%. The specificity value attained was 90%. The value of precision of 

this framework was 90.91%. The value of recall reached was 100%. The F-score of this fall detection 

system was 92.13%.   

Kwolek et al. [34] proposed a scheme for fall detection using Kinect sensor. Using the signal 

from the Kinect sensor, fall detection was performed. This system achieved an accuracy of 90%. The 

specificity value attained was 80%. The value of precision of this framework was 83.3%. The value of 

recall reached was 100%. The F-score of this fall detection system was 94.34%.   

Kwolek et al. [35] proposed a scheme for fall detection using both Kinect sensor and 

accelerometer. Using the signal from the accelerometer fall indication was given. The fall events were 

confirmed using Kinect sensor. This system achieved an accuracy of 94.28%. The specificity value 

attained was 89.99%. The value of precision of this framework was 88.23%. The value of recall reached 

was 100%. The F-score of this fall detection system was 93.74%.   

The proposed system achieved an accuracy of 97.14%. The specificity value attained was 

94.99%. The value of precision of this framework was 93.74%. The value of recall reached was 100%. 

The F-score of this fall detection system was 96.76%.   

Table 5. Comparison of fall detection performance with state-of-the-art techniques 

Reference Data used Accuracy 

(%) 

Specificity 

(%) 

Precision 

(%) 

Recall 

(%) 

F-score 

(%) 

Bourke et 

al. [14] 

Acc. 95.00 90.00 90.91 100.00 92.13 

Kwolek et 

al. [34] 

Depth 90.00 80.00 83.30 100.00 94.34 
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Kwolek et 

al. [35] 

Depth+Acc. 94.28 89.99 88.23 100.00 93.74 

Proposed Depth 97.14 94.99 93.74 100.00 96.76 

 

4.4. Computational time comparison 

Table 6 shows the comparison of time complexity. The proposed system was evaluated using RGB 

images, depth images from frontal sensor alone and using a combination of frontal and top-view sensor. 

We inferred that, the average time for classifying one fall event was 1450 ms when RGB images were 

used. For Kinect-F sensor, the time was only 120 ms. when both the Kinect F and Kinect-T were used the 

time was 155 ms. From this analysis we find that the depth images consume less time than the RGB 

images. Though the time for using a combination of frontal and top-view sensor is higher than that of a 

single sensor, the accuracy is too high. Hence, we employed data from both he sensors in our work. 

Table 6. Comparison of computational time 

Method Average computational 

time (ms) 

RGB 1450 

Kinect-F 120 

Kinect-F + Kinect-T 155 

 

5. Conclusion 

A new scheme for fall detection of the elderly using Kinect depth data was proposed in this 

research. Using depth data from the frontal-mounted Kinect sensor and the depth-mounted Kinect sensor, 

depth motion maps (DMM) were generated. From these maps, depth ConvNet features were extracted 

using deep convolutional neural network (DCNN) structure. In this structure, two convolutional layers 

and two max-pool sub-sampling layers were employed.From the extracted features, fall detection was 

done using Extreme Learning Machine (ELM) classifier. The temporal frame length of the depth motion 

maps was varied, and the corresponding fall detection accuracy was obtained for the identification of 

optimal temporal length. It was found that maximum accuracy was achieved for a frame length of 35 

frames. The efficacy of the proposed system was validated using performance evaluation. This system 

achieved an accuracy of 97.14%. The time taken for classifying one action was only 155 ms. Thus, this 

scheme has a very low time complexity. Since, this scheme employs only depth maps, the privacy issue is 

solved. The proposed scheme was compared using other combinations of features and classification 

techniques like HOG+SVM, ConvNet + SVM and HOG+ELM. It was observed that, the proposed 

scheme attained best results compared to all other combinations. 
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