Assessment and Physiotherapeutic Interventions in Cancer-Related Fatigue among Breast Cancer Survivors: A Narrative Review

Neha Dubey¹, Dr Sunil kumar², Dr Kailash Kumar Mittal³, Dr Vaibhav Kanti^{4*}

 ¹ Physiotherapy Resident; Department of Physiotherapy, Faculty of Paramedical Sciences, UPUMS, Saifai, Etawah.
² Professor; Department of Orthopedics, UPUMS, Saifai, Etawah.

³Associate Professor; Department of Radiotherapy, Radiation Oncology; UPUMS, Saifai,

Etawah.

^{4*} Associate Professor; Department of Obstetrics and Gynecology, UPUMS, Saifai, Etawah.

Corresponding Author

Dr. Vaibhav Kanti Associate Professor Department of Obstetrics and Gynecology UPUMS, Saifai, Etawah-206130 Email- vaibkanti13@gmail.com

Abstract

Globally, breast cancer is considered one of the most common types of cancer among women. The National Institute of Health in collaboration with the National Coalition for Cancer Survivorship defines cancer survivors as an individual from the time of cancer diagnosis, through the balance of his or her life. Cancer-related Fatigue (CRF) is described as the distressing side effects of cancer and its treatment associated with physical, mental, and emotional manifestations including generalized weakness, diminished concentration, or attention, decreased motivation or interest to engage in normal activities and emotional lability. There are several validated tools for measuring cancer-related fatigue. The search for the relevant journal was carried out referring through many databases: PubMed, PubMed Central, Cochrane, and PEDro and mainly focuses on the RCTs, clinical trials, and systemic reviews. There are varieties of physical therapy interventions that play a beneficial role in reducing Cancer-related Fatigue followed by improvement in the physical activities, functional status thereby enhancing the lifestyle & quality of life among breast cancer survivors. These interventional programs will only be effective if the patient strictly adheres and follow the pre-designed exercise protocols referring through many guidelines for an effective outcome. The purpose of this research is to identify various effective assessment and physiotherapeutic interventions according to evidence-based studies on cancer-related fatigue among breast cancer survivors.

Keywords: Breast cancer survivors, Cancer-related fatigue, physiotherapy interventions

Abbreviations

ACS: American cancer society. BCS: Breast cancer survivors BPI: Brief pain inventory. CPEN: Cancer Patient Educator Resources CRF: Cancer-related fatigue. EBCAM: Evidence-Based complementary and alternative Medicine EBM: Evidence-based medicine.

ECSI: Energy conservation strategies inventory.

EORTC-QLQ-BR23: European organization for research and treatment: Breast-Cancer specific module.

EORTC-QLQ-C30: European organization for research and treatment: Quality of life: C-30 Questionnaire.

FACIT-FATIGUE SCALE: Functional assessment of chronic illness therapy- fatigue Scale GLOBOCAN_GCO: Global cancer_Global cancer observatory

HADS: Hospital anxiety and depression scale.

HPC: Hindawi Publishing Corporation

HRQOL: Health-related quality of life.

MET: Metabolic equivalent task.

MFR: Myofascial release.

MNA: Mini nutritional assessment questionnaire.

MOSS-SS: Medical outcome study-sleep scale.

NCCN: National comprehensive cancer network.

NIH: National Institute of health.

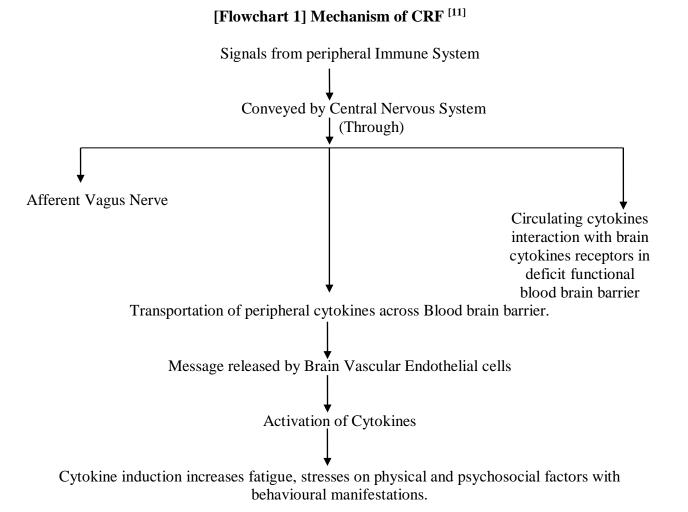
NLM: National library medicine

PMC: PubMed Central.

PROMIS FATIGUE SCALE: Patient reported outcome measurement information system fatigue scale.

Qol: Quality of life.

Introduction


Globally, breast cancer is considered as one of the most common types of cancer among women.^[1] The GLOBOCAN -2018 estimated a cancer burden of 18.1 million with 2, 088, 849 cases of breast cancer, and 9.6 million deaths worldwide for both sexes, and all ages, respectively. The incidence of cancer is 48.4% in Asian countries and 21.0% within the United States of America.^[2] The 5-year survival rate of women suffering from breast cancer is 99% with 62% diagnosed within this stage, while 47% diagnosed at early age of 15-39 years as compared to women older than 65 (68%). This difference might be due to delay in screening process.^[3] The National Institute of Health in collaboration with the National Coalition for Cancer Survivorship defines cancer survivors as an individual from the time of cancer diagnosis, through the balance of his or her life. ^{[4], [5]} The National Comprehensive Cancer Network (NCCN) explained Cancer related fatigue as an upsetting, constant, subjective sense of physical and psychosocial exhaustion related to cancer or cancer treatment that is not proportional to recent activity and interferes with usual functioning. The patient reports this persistent fatigue with the ongoing treatment, continue during radiation treatment/ chemotherapy, decline somewhat, and continue at a higher than the baseline rate after the treatment. It may also persist for several years in patients with no apparent disease. ^[6] The incidence rate of CRF during the treatment ranges from 25% to 99% depending on the sample and method of assessment and in most studies 30% to 60% of patients report moderate or severe fatigue symptoms.^[7] The factors that contribute to CRF are 1) Physical factors a) Cancer burden b) Treatment side effects (Chemotherapy, radiotherapy, surgery, etc) c) Comorbid medical conditions (Chronic pain, Anemia, etc).^{[8], [9], [10]} 2) Psychosocial factors (Anxiety, depression, coping with chronic illness, sleep disturbances, less food consumption, etc). The nonpharmacological approaches exercise act as an adjunct therapy in reducing burden related to fatigue among breast cancer patients and add support in the oncology Rehabilitation.^[14] The

European Journal of Molecular & Clinical Medicine ISSN 2515-8260 Volume 07, Issue 10, 2020

purpose of this research is to identify various effective assessment and physiotherapeutic interventions according to evidence-based studies on cancer-related fatigue among breast cancer survivors.

Mechanism of Cancer Related Fatigue (CRF)

The evidence over past two decades suggested that the pathophysiology of CRF focuses on anemia, cytokine dysregulation (mostly observed with focus on pro-inflammatory cytokines), Hypothalamic-pituitary-adrenal (HPA) axis dysregulation, 5 hydroxy tryptophan (5-HT) neurotransmitter dysregulation, and alterations in adenosine triphosphate, etc. The most observed CRF during cancer treatment targets on the activation of neural immune system by the mechanism of bioactive mediator Peripheral Inflammatory Cytokines^[11] as shown in the **[Flow Chart-1]**

Several studies contributed that physical and psychosocial factors are strongly correlated with fatigue followed by cancer treatment. Andrykowski MA et al (1998) correlates fatigue with sleep disturbance and pain in cancer population. ^[12] These factors deplete the level of physical functioning in cancer patients and may results to variations in the aerobic and anaerobic pathways. The aerobic pathway reduces the oxygen delivery to the cells with limited ATP synthesis thereby facilitating the anaerobic glycolysis for energy production. This anaerobic glycolysis accumulates the lactic acids as its end product with less ATP generation thereby decreasing the activity of intracellular and interstitial pH leading to additional metabolic stress. The collective burden increases the heart rate, respiratory work, with less effective energy production, and metabolic acidosis. However, these conditions may lead to reduction in physical activities with associated psychosocial factors like anorexia, sleep pattern disturbances, reduced exercise tolerance and stamina, tiredness, and inability to carry out intense physical effort resulting in anxiety and to some extent depression due to sedentary lifestyle of patients over extended period of breast cancer treatment. ^[13]

Cancer-Related Fatigue Assessment/Screening Scales for Practice and Research

Advancement in cancer assessment/screening increases the number of breast cancer survivors. The assessment of the known treatable factors must be undertaken, among them the physical and psychosocial factors must be initial step in managing fatigue. ^[15] There are several authenticate tools for measuring Cancer-related fatigue. ^[16] According to NCCN guideline a self-report scale with grade 0 (no fatigue) to 10 (severe fatigue) assesses various dimensions of CRF including intensity, duration, and interference with functioning.^[17] The only drawback of Self- report scale is that the patient barely participates believing that fatigue is untreatable and that the tool is not particularly important and can directly affect the ongoing treatment. ^[18] There are varieties of other tools for measuring CRF among them; Brief fatigue inventory assesses the psychometric/ psychological properties because of its easy words, translations, and less lengthy procedures that ease the patient to complete it without hindrance. This tool is used for both clinical trials and for screening purposes. ^{[19], [20]} **[Table 1]** describes the Screening of various dimensions with more emphasis on physical, & psychological factors associated with CRF that are used in practice settings. These include single-item, multi-item Unidimensional, and Multidimensional assessment tools for measuring CRF as reviewed from various data sources and by Piper and colleagues.^[21]

Tool	Explanation	Reference	Recommendation	Severity			
Unidimensional / Single item tool for Screening							
NCCN Intensity scale(s)	0-10 scale (0 = no fatigue, 10 = worst fatigue)	Mock et al (2007) ^[22]	Recommended for practice and screening fatigue in cancer survivors.	Assesses symptoms of cancer related fatigue severity			
Fatigue Intensity Scale (FIS)	0-10 scale (0 = no fatigue, 10 = overwhelming fatigue)	Borneman et al (2007) ^[23]	Recommended for research selection and practice purpose	Assesses symptoms of cancer related fatigue severity			
MD Anderson Symptom Inventory (MDASI)	13-item scale 0-10 scale with 13 symptom items with highest frequency in CRF.	Cleeland CS et al (2000) ^[24]	Recommended for screening mostly the psychological factors in cancer related fatigue research selection and practice purpose	A self-report scale that assesses severity and its impact on daily functioning during the last 24 hours with internal consistency of α =0.85-0.87.			
Functional assessment of cancer therapy: fatigue subscale (FACT-F)	5-point likert scale With 41 symptoms items, found stable with reliability and validity (test-retest $r =$ 0.87) and internally consistent (coefficient alpha range = 0.95- 0.96)	Yellen et al (1997) ^[25]	Recommended for clinical trials and Intervention tool in clinical management and as an outcome measures in health practice self-studies.	Assesses physical and psychological factors in Cancer related fatigue.			
		Unidimensional	tool for Screening				
Fatigue symptom inventory (FSI)	Likert type 14 item scales in which (14) is not scored; used for qualitative data only. (0= not at all fatigued and 10= as fatigued as I could be)	Jacobsen et al (2007) ^{[26], [27]}	Validated with both female and male cancer patients between the age group 18–24.	Assesses severity, Frequency, daily pattern of Cancer related fatigue, & perceived interference with the quality of life.			
Brief Fatigue Inventory (BFI)	0-10 scale (0 = no fatigue, 10 = fatigue as bad as one can imagine), 9 item symptoms that provides a global fatigue severity score (1-3, mild; 4-6, moderate; 7-10,	Jean-Pierre et al (2007) ^[28] Cleeland CS (2016) ^[29]	Recommended for clinical screening and in National and International Clinical trials.	Assesses the psychometric/ psychological severity of cancer related fatigue (now, usual, worst fatigue during the previous 24 hours that interferes with the			

[Table 1] Assessment and Screening of Cancer related fatigue

European Journal of Molecular & Clinical Medicine USSN 2515 8260 Volume 07 Josue 10, 2020

		IS		07, Issue 10, 2020
	severe)			daily activity. Its
				Internal consistency
				measures are high at
				0.8 or more.
Cancer-	0-10 scale, 20	Holley SK	Recommended for	Assesses the
Related	symptoms items are	(2000) ^[30]	clinically with good	psychological and
Fatigue	measured on a Likert		psychometric	other domains of
Distress Scale	scale, Higher scores		properties.	fatigue in cancer
(CRFDS)	indicate greater			patients during the
	distress from fatigue			previous week. Its
	symptoms, three			internal consistency
	additional questions			reliability was α=0.98
	are also asked from			with good construct
	the person's current,			validity.
	worst, and usual CRF			
	level.			
		-dimensional tool	0	
Fatigue	20 items scale.	Piper (2004) ^[31]	Developed to measure	Assesses the
Assessment	0-3 scale	Beutel et al	psychometric	psychometric
Questionnaire	(0 = not at all, 3 =	(2006) ^[32]	properties of fatigue in	dimensions (physical,
(FAQ)	strongly; (+3) indicates addition of		cancer patients.	affective, cognitive)
	VAS to measure			of fatigue over past week and month.
	fatigue and distress)			week and month.
Cancer	15 items scale.	Piper (2004) [31]	Quite simple and	Assesses the physical
Fatigue Scale	1-5 scale	Okuyama et al	complete within two	and psychometric
(CFS)	(1 = not at all, 5 =	$(2000)^{[33]}$	minutes even with	dimensions of
(015)	very much) Maximum	(2000)	patient with advanced	fatigue. Its average
	score is 60 (physical,		cancer. It is primary	test–retest reliability r
	1-28; affective, 0-16;		tested with a cancer	= 0.69, P < 0.001)
	cognitive, 0-16)		patient in Japan.	with good internal
				consistency
				(Cronbach's alpha
				coefficient for all 15
				items = 0.88).
Revised Piper	11-point scale	Berger et al	1) It is an easy scale	Assesses the
Fatigue Scale	including 22 + 5 open-	(2007) ^[34]	and takes only two	psychometric
(RPFS)	ended items not	de Jong et al	minutes to complete.	dimensions of fatigue
	included in the	(2006) ^[35]	2) It initially measures	in cancer patients
	scoring.	Piper et al	cancer related fatigue,	(behavioral /severity,
	0-10 NRS	(1998) ^[36]	but now used in other	affective meaning,
	(i.e., 0= None, $1-3 =$		clinical, non-clinical,	sensory, and
	Mild, 4-6 Moderate, 7-		and healthy groups	cognitive/mood) for
	10 = Severe)		globally.	entire scale. Its
				reliability is ($\alpha = 0.97$)
				and subscales well
				validated in patients with cancer ($\alpha =$
				0.92-0.96).
				0.92 - 0.90.

European Journal of Molecular & Clinical Medicine

		IS	SN 2515-8260 Volu	me 07, Issue 10, 2020
Multidimensi	5-point scale of 0-4	Stein KD et al	Recommended for	Assesses cancer
onal Fatigue	with 83 items with	(1998) ^[37]	multiple measurement	nt related fatigue in
Symptom	(0=not at all.	Stein KD et al	within short time scal	le. terms.
Inventory	4=extremely).	(2004) ^[38]		general, physical,
				emotional, and
				mental manifestations
				during the past week
				$(\alpha = 0.85 - 0.96)$
Revised	6-item scale assesses	Schwartz A et	It takes 1-2 min to	Assesses physical and
Schwartz	on 1–5-point Likert	al (1999) ^[39]	complete.	perceptual dimensions of
Cancer	scale with 1 "not at	Pattanshetty RB	Scores range from a	CRF in the previous 2-3
Fatigue Scale	all" to 5 "extremely."	et al (2016) ^[40]	minimum of	days. Its reliability is ($\alpha =$
			6 to a maximum of	0.90).
			30.	

Methodology

The search for the relevant journal was carried out referring through many databases: PubMed, PubMed Central, Cochrane databases, and PEDro. The main emphasis was given on RCTs, clinical trials, and systemic reviews to examine the role of physiotherapeutic interventions in cancer related fatigue among breast cancer survivors.

Result and Discussion Evidence-Based Physiotherapeutic Interventions

The physiotherapy procedures mostly depend on the underline causes and once the cause is identified then simultaneous improvement is noticeable within the patient's CRF and physical functions by assigning a systematic physical therapy protocol. ^[41] The CRF is associated with physical, psychosocial, and other domains. ^{[42], [43], [44]} Due to this reason a multi-faceted treatment of physical therapy is considered. ^[45] The growing research on CRF interventions shows a positive response covering the other domains like quality of life, behavioral manifestations other than physical and psychosocial factors. ^[46]

According to the NCCN guideline, the non-pharmacological treatments are considered effective in treating CRF. ^[47] The non-pharmacological approach includes 1) Physical exercise, 2) Psychological therapies, 3) Physical modalities, 4) Manual therapies, 5) Acupuncture, 6) Multidisciplinary/interdisciplinary rehabilitation, etc. ^[48] While Parock et al (2000) experimented on 11 patients with 28 days trial ^[49]; Buss et al (2010) on 38 patients with 3 weeks trial ^[50] reported that a pre-set exercise protocol increases the patient daily physical activity levels with therapies like 1) exercise in bed and sitting position, 2) treadmill walking, 3) cycle ergometer exercises, 4) rhythmic dancing. The evidence suggests that the 12 months of regular exercise on a pre-designed protocol with 5 years follow-up among breast cancer survivors reduces fatigue and improves the quality of life. ^[51] [**Table-2**] demonstrates some of the evidences on the significant improvement of CRF among BCS by physiotherapeutic Interventions.

Reference	Publication	Database	Outcome	Description	Conclusion
	type		measurement		
Penttinen H et al (2019) ^[51]	Clinical Trial	PMC	Physical activity by diary, Physical performance by a 2-km walking test, Quality of life by BR-23 questionnaires, fatigue by FACIT- Fatigue scale, Depression by Beck Depression Inventory.	(N=573); RCT shortly after adjuvant treatment into exercise group(n=302) and control group (n=271)with 1-year exercise intervention and 1- year follow-up among BCS	The improvement in physical performance and activity gives a positive change in QoL among Breast Cancer Survivors.
Pyszora A et al (2017) ^[52]	Clinical trial	PubMed & PMC	Brief Fatigue Inventory, Edmonton Symptom Assessment system, and satisfaction score (SC).	RCT on 60 patient a) Treatment Group (n=30); b) Control Group (N=30) for 3 times a week for 2 weeks.	Physiotherapy program includes 1) Active exercises, 2) Myofascial release, and 3) Proprioceptive Neuromuscular Facilitation reduces fatigue inpatient with CRF and advanced cancer post palliative care.
Kinkead B (2018) ^[54]	Comparative / RCT	PubMed	Multidimensional Fatigue Inventory, PROMIS Fatigue scale, Quality of Life Enjoyment and Satisfaction Questionnaire (Q-LES- Q)	RCT on 66 female with stage 0-III post adjuvant therapy, for 6 weeks into Swedish massage therapy (SMT) versus an active control condition (light touch [LT]) and waitlist control (WLC) on persistent CRF	6 weeks of Swedish Massage Therapy reduces fatigue symptoms among BCS.
Suzanna M. Zick (2016) ^[71]	RCT	PubMed	Pittsburgh Sleep Quality Index (PSQI) and Long- Term Quality of Life Instrument (LTQL) and Brief Fatigue Inventory (BFI) score.	10 weeks randomized, single-blind trial comparing self- administered relaxing acupressure with stimulating acupressure once daily for 6 weeks vs. standard care with a 4-wks follow-up and 5 research visit one at screening, baseline- 3	Acupressure considerably reduces the persistent fatigue compared with usual care, but only relaxing acupressure had significant effects on sleep quality and QoL.

[Table 2]	Synopsis of studies	regarding evid	lences on	physiotherapeutic	interventions in
Cancer-re	lated Fatigue among	Breast Cancer	Survivors	•	

European Journal of Molecular & Clinical Medicine ISSN 2515-8260 Volume 07, Issue 10, 2020

	•		IŜSI		Issue 10, 2020
				weeks, 6 weeks, and 10	
				weeks.	
Irene	RCT	Cochrane	Treatment group	RCT on 78 BCS	The multimodal Gp
Cantarero-		Review/	Primary tool: Profile of	between 25-65 years	focused on the core
Villanueva		EBCAM.	mood states (POMS)	post adjuvant therapies	stability exercises and
et al			questionnaire.	(First 6 months) into	Recovery MFR massage
(2012) ^[53]			Secondary tool: Trunk	a) experimental/	is highly effective for
			Curl Static Endurance	multimodal (n=39); b)	improving physical
			Test and multiple Sit-to-	control (n=39) groups	(muscle strength) and
			Stands Test.	with 8 weeks of	psychological (mood
			Control group	intervention	state and fatigue) aspects
			Minnesota Leisure Time		in BCS after the
			Physical Activity		intervention and 6
			Questionnaire		months after discharge
					as compared to the usual
					treatment group.
Anne	RCT	Cochrane	Schwartz Cancer	RCT on 67 women's	The generally
Marie		review/	Fatigue Scale- 6,	post- surgery into	recommended exercises
Lunde		HPC	International Physical	exercise group (n=33)	150 min/ week Moderate
Husebo et			Activity Questionnaire	3x/week and 30 minutes	Vigorous Physical
al (2014)			(IPAQ) Short Form, 6-	brisk walking/day and	Activity are enough to
[58]			Minute Walk Test (6-	control group regular	relieve CRF and restore
			MWT) & an Exercise	physical activity (n=34)	the physical capacity
			diary.	at the completion of the	among patients.
				chemotherapy (Post ₁),	
				and 6-month post-	
				chemotherapy	
				(Post ₂)	
Yuen HK		PubMed	Revised-Piper Fatigue	A Pilot study (RCT)	Aerobic exercises are
et al	Clinical Trial		Scale, 6MWT	between aerobic (AE) &	more viable and efficient
(2007) ^[59]				resistance exercises	in improving CRF while
				(RE) group and usual	RE (Z=2.366, one-tailed
				care control for	P=0.009) improves the
				3x/weeks for 12 weeks	functional capacity than
				at home at a light to	the usual care control
				somewhat hard intensity	group.
				assessed by Borg	
				Perceived Exertion tool	
				which was analyzed by	
				pre & post-training	
				levels between both	
				groups.	
Chome E - t	Curctama - ti-	Cocherry	Mata anal:-	Out of 56 at $\frac{1}{2}$	A anabia avanaises and
Cramp F et (2012)	Systematic	Cochrane	Meta-analysis	Out of 56 studies (4068	Aerobic exercises are
al (2012) $_{[60]}$	review	database of	for fatigue using a random-effects mode.	participants) with 38	found to be more beneficial with Standard
		Systematic reviews	random-enects mode.	studies compare fatigue between exercise	Mean Deviation of
		ieviews			
				interventions (1461) and	(-0.27, 95% CI, -0.37 to

European Journal of Molecular & Clinical Medicine

			IŜSI	N 2515-8260 Volume 07,	Issue 10, 2020
				(1187) control group,	0.17) with a moderate
				participants were studied	heterogeneity of $(P =$
				and analyzed.	$0.20; I^2 = 20.0\%$) than
				-	the control intervention
					group in individuals
					with cancer-
					related fatigue during
					and post-cancer therapy
Kessels E	Systematic	PMC	Primary outcome by	Out of 274 trials [11	Exercises improve CRF
et al	review and		self-report validated	studies with participants	with effect size
(2018) ^[61]	meta-		questionnaire and	{411 with exercise	(Cohen's d 0.605, 95%
(=010)	analysis		secondary outcome by	intervention} {377 with	Class Interval 0.235-
	unuryono		Adherence	non-exercise	0.975). The Aerobic
			ranerenee	intervention}] are	exercise are found to be
				selected for analysis for	more effective (Δ =1.009,
				comparison between	CI 0.222-1.797) than a
				both groups.	combination of AE &
				both groups.	RE (Δ =0.341, CI 0.129-
					0.552) with high
					adherence rate on patient
					with CRF.
Meneses	A Systematic	PubMed		9 RCT studies with	Multimodal intervention
Echavez et	review and	I dowled	_	(n=722participants)	including aerobic
al	meta-			were searched for	exercise, resistance
$(2015)^{[62]}$	analysis			systematic review and	training, and
(2013)	anarysis			meta-analysis from	stretching are more
				PubMed, CENTRAL,	effective with SMD =
				EMBASE, and	-0.23; 95% CI: -0.37 to
				OVID between January	-0.09; P = 0.001) than
				and March 2014 and risk	RE $(P = 0.30)$ with low
				of bias was searched	risk of bias (6.4 SD $+/-$
				using PeDro scale	1.0) in controlling CRF
					for cancer survivors and
					during treatments.
Meneses-	Systematic	PubMed	Functional Assessment	11 studies (n=1350)	Combined AE and RE
Echavez	review	i dell'idd	of Cancer Therapy	Participants	under supervision show
JF et al	101101		Fatigue Scale, European	i unicipunto	a positive response in
$(2015)^{[63]}$			Organization for		fatigue reduction.
(2010)			Research and Treatment		(SMD=-0.41, 95% CI -
			of Cancer, Quality of		$(500)^{-0.13}$; combined
			Life Questionnaire,		AE & stretching
			Piper Fatigue Scale,		(SMD=-0.67, 95% CI -
			Schwartz Cancer		1.17 to -0.17). The joint
			Fatigue Scale, and the		effect on fatigue was -
			Multidimensional		1.69 (95% CI -2.99 to -
			Fatigue Inventory.		0.39 using a random
			- angae myentory.		effect model.
Do J et al	Clinical trial/	PubMed	(EORTC QLQ-C30),	RCT (n-62) into early	Supervised multimodal
$(2015)^{[65]}$	RCT		EORTC Breast Cancer-	exercise group $(n-32)$ 4	rehabilitation program
(=010)			2011 C Broust Cuntor		remonitution program

European Journal of Molecular & Clinical Medicine

			IŜSI	N 2515-8260 Volume 07,	Issue 10, 2020
			Specific Quality of Life Questionnaire (EORTC QLQ-BR23), Fatigue Severity Scale	weeks of a multimodal rehabilitation program for 80 min/day, 5 times/week for 4 weeks and delayed exercise group (n=30) completed the same program at the next 4 th week among BCS.	improves the physical symptoms, QoL, and fatigue in patients with breast cancers.
Reif K (2013) ^[68]	Clinical trial/ RCT	PubMed	-	RCT (n=261) into intervention group; receiving a 6-session educational program for 90 min and control group with the usual care.	Findings suggest a significant reduction in CRF (f=76.510, $p<0.001$, $n^2 = 0.248$) with improvement in Qol, anxiety, self- efficacy, physical activity, & fatigue knowledge among the intervention group.
Young Ho Yun (2012) ^[66]	Comparative study/RCT	PubMed	Primary outcome: (BFI) & (FSS) Secondary outcome: (HRQOL, EORTC QLQ-C30, Hospital Anxiety and Depression Scale, self- report, and short message services).	RCT (n=273) allocated into an intervention group (n=136) and control group (n=137) in an individually tailored 12 weeks intervention program covering 7 areas (NCCN guideline) with various modules and Health navigation program (Self-assessment and graphic reports, health advice and online education, enhanced and short message services, caregiver monitoring and support, and health professional monitoring).	Web-based self- management is considered as an important route for improving fatigue and HRQOL significantly more than the routine care among patient with cancer.

Pyszora A et al (2017) concluded that physiotherapy program that includes 1) active exercise, 2) MFR, and 3) PNF facilitates a considerable reduction of CRF in post palliative care of cancer patients. ^[52] Similar study was done by Villanueva et al (2012) on 78 patients between the agegroup of 25-65 years for a period of 8 weeks. ^[53] The experimental group receives physical training (core stability exercises) for 4 hours followed by 12 hours of recovery procedures (MFR) 3 times/week for a period of 90 min each. The protocol [Table-3] was set for 2 weeks according to ACSM and AHA guidelines and found to be highly effective in improving muscle strength, mood states with the significant improvement seen in fatigue level (0.52) as compared to the previous studies (effect size 0.31, 95% CI 0.22–0.40) post intervention and 6 months after discharge as compared to the control group.

[Table 3]	Villanueva-2012	Exercise protocol	

Week-I (1-4wks)	Week-II (4-8wks)
Half squad arm, wall pushups, standing hip	Chest press on fit-ball with an elastic band,
circumduction, Superman on fit-ball Oblique	Seated rows on fit-ball with an elastic band,
partial sit-up, etc	Isometric abdominal sitting on fit-ball with arm
	and leg movement, Biceps curl on fit-ball with
	an elastic band, Biceps curl with an elastic band
	and leg semi-flexion maintained, Leg curl with
	fit-ball, etc

The long-term course of cancer treatment is quite frustrating for the patient due to this Kinkead B and colleagues (2018) ⁵⁴ performed a comparative study on 66 females for 6 wks. The experimental group received Swedish massage therapy and found a significant improvement in fatigue level, psychosocial dimensions, and quality of life. The American college of sports medicine (ACSM) recommended 150 minutes/week moderate to vigorous physical activity (MVPA) for breast cancer patients and survivors. ^[55] Many available data focus on resisted exercises, balancing exercises, breathing exercises, relaxation, and ergo meter training. ^{[56], [57]}

Husebo et al (2014) examine strength training by using a resistance band for arm, legs, and upper body for 3 times/week followed by 30-minutes of aerobic-brisk walking (light, moderate, vigorous, and very vigorous walking) and found a positive-relation of these exercises on patients fatigue level. He also suggests that adherence to exercises is the keystone for any exerciseregimen that will reflect its treatment outcome and effectiveness.^[58]

Adhering to aerobic exercises provide a better improvement than the combination therapy. Yuen HK (2007) demonstrated that aerobic exercises (AE) improve CRF, while Resisted exercises (RE) assist in improving functional capacity. ^[59] Cramp F (2012) indicates AE improves the fatigue and various psychosocial domains as compared to resisted exercises or alternative form of exercises. ^[60] Kessels E (2018) suggested that AE shows a positive effect on patient CRF domains as compared to the combination therapy (AE+RE). ^[61] Meneses-Echavez (2015) explains that multimodal exercise training i.e., varieties of exercise protocol (AE+ Training Stretching shows a better result as compared to RE individually. ^[62] Meneses-Echavez JF et al (2015) concluded that combined AE & RE under supervision shows a positive response in fatigue reduction with standard mean deviation (SMD) of 0.41, 95% CI -0.70 to -0.13) as compared to

combined AE & stretching (SMD=-0.67, 95% CI -1.17 to -0.17). ^[63] Many articles support that patient who receives radiotherapy, experiences less fatigue after engaging with aerobics exercises. ^[64] Do j et al (2015) combined aerobic and strengthening exercise with a cycle and arm ergometer and a steeper machine with other strengthening exercises including TheraBand, and core stability exercises in improving quality of life that decreases stress and anxiety level thereby improving the physical functioning of the patients. ^[65]

The non-pharmacological approaches are considered well-documented in many relevant data sources. There is a need to enhance patient's exercise motivation by various other modes like web-based self-management, and an educational program.

A study conducted by Young ho and colleague (2012) on 136 CRF patient for a period of 12 weeks by internet-based self-management covering seven-areas including physical and psychosocial domains (According to NCCN guideline) with modules (1) Introduction to CRF, 2) Two-session on energy conservation, 3) Ten session on physical activity, 4) four on nutrition, 5) Seven on sleep hygiene, 6) Seven on pain control, 7) and Eight on distress management and five-areas on Health navigation with modules (Self-assessment and graphic reports, health advice and online education, enhanced and short message services, caregiver monitoring and support, and health professional monitoring). The web based self-management is considered as an effective route for improving CRF and HRQOL more than the routine care among BCS.^[66]

According to the Cancer patient education network (CPEN) guideline, patient's educational program assists in depleting the cancer -related deteriorations with improvement in health and health-related quality of life among BCS. ^[67] Reif K et al (2013) study shows a positive result of a patient's education program on the reduction of CRF (f=76.510, p<0.001, $n^2 = 0.248$) followed by improvement in Qol and physical activity among Breast Cancer Survivors (BCS). ^[68]

Schmidt ME (2019) investigated the impact of treatment-related side effects and other factors on 135 Breast cancer survivors who return to work on their quality of life and found that 57% work the same, 22% working time diminished with depressive symptoms appears within 1 year and after 5 years persisting physical fatigue and cognitive problems were the major self-reported reasons among BCS to hinder a return to work. ^[69] A moderate level of evidence suggesting that Tai chi helps in reducing levels of cortisol and CRF with improvement in limb functions in Breast cancer survivors (BCS). ^[70]

Conclusion

There are varieties of physical therapy interventions that play a beneficial role in reducing Cancer-related Fatigue followed by improvement in the physical activities, functional status, psychosocial domains; thereby enhancing the quality and lifestyle among breast cancer survivors. The multimodal rehabilitation program including aerobic exercises, combination exercises, (AE+RE+stretching), 150 minutes/week moderate to vigorous physical activity (MVPA), SMT, MFR techniques reduces cancer-related fatigue, smoothen the progress of patient physical activity levels; improves the psychosocial factors anxiety, depression, sleep disturbances, etc and promotes relaxation. The educational program assists patients to maintain or improve health or, in some cases to slow-down the deterioration. Internet-based self-management is considered an important means for reducing fatigue levels and improving HRQOL among patients. A moderate level of evidence suggested Tai-chi exercises also helps in reducing levels of cortisol and fatigue with improvement in limb functions in Breast cancer survivors (BCS). These interventional

programs will only be effective when the patient strictly adhere and follow the pre-designed exercise protocol for a successful outcome. So it is highly recommended that the CRF assessment should be incorporated with the follow-up schedule among breast cancer survivors. Based on the screening, the physiotherapeutic Interventions must be prescribed, so to improve the CRF and Quality of life in Breast Cancer Survivors.

Acknowledgement

The author(s) acknowledge the authorities of Uttar Pradesh University of Medical Sciences, Saifai, Etawah for encouragement and for providing all possible support for smooth conduction of this article.

Source of funding: NIL

Conflicts of Interest: The authors declare no conflicts of Interest.

References

- 1. Brazil. National Cancer Institute (INCA). Ministry of health. Estimate 2016: Cancer incidence in Brazil. [Internet] [Last accessed Feb.-1-2016]. Available from: http://tinyurl.com/pnpjme.
- WHO. GLOBOCAN_GCO. International Agency for Research on Cancer. Cancer Today. [Internet] Available from: https://gco.iarc.fr/today/onlineanalysispie?v=2018&mode=cancer&mode_population=continents& nervelation_000 & nervelations_000 & here total & nervelation=0 & statistics_5 & nervelation

population=900&populations=900&key=total&sex=0&cancer=39&type=0&statistic=5&prevalen ce=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=7&g roup_cancer=1&include_nmsc=1&include_nmsc_other=1&half_pie=0&donut=0&population_gr oup globocan id.

- 3. Cancer.Net. Breast Cancer Statistics [Internet] [Last accessed by 01/2020] approved by cancer.net editorial board. Available from https://www.cancer.net/cancer-types/breast-cancer/statistics.
- 4. National Cancer Institute. About cancer survivorship research: survivorship definitions. [Internet] Available from http:// cancercontrol.cancer.gov/ocs/definitions.html.
- 5. Cancer.Net. About survivorship 2012 [Internet] Available from: www.cancer.net/patient/survivorship/about survivorship.
- 6. Morrow GR, Andrews PL, Hickok JT, Roscoe JA, Matteson S. Fatigue associated with cancer and its treatment. *Support Care Cancer* 2002; 10(5): 389-398.
- 7. Andrykowski MA, Schmidt JE, Salsman JM. Use of a case definition approach to identify cancer-related fatigue in women undergoing adjuvant therapy for breast cancer. *J Clin Oncol* 2005; 23: 6613–6622.
- 8. Cella D, Peterman A, Passik S, Jacobsen P, Breitbart W. Progress toward guidelines for the management of fatigue. *Oncology* 1998; 12: 369–377.
- 9. Portenoy RK, Itri LM. Cancer-related fatigue: guidelines for evaluation and management. Oncologist 1999; 4: 1–10.
- 10. Atkinson A, Barsevick A, Cella D, Cimprich B, Cleeland C, Donnelly J, Eisenberg MA, Escalante C, Hinds P, Jacobsen PB, Kaldor P, Knight SJ, Peterman A, Piper BF, Rugo H,

Sabbatini P, Stahl C.The National Comprehensive Cancer Network NCCN Practice Guidelines for Cancer-Related Fatigue. Oncology 2000; 14: 151–161.

- 11. Bower JE. Cancer-related fatigue--mechanisms, risk factors, and treatments. *Nat Rev Clin Oncol* 2014; 11(10): 597-609.
- 12. Andrykowski MA, Curran SL, Lightner R. Off-treatment fatigue in breast cancer survivors: a controlled comparison. *J Behav Med* 1998; 21: 1–18.
- 13. Dimeo FC (2001) Effects of Exercise on Cancer-Related Fatigue. *Cancer Supplement* 2001; 92: 1689-1693.
- 14. Dimeo F. Exercise for cancer patients: a new challenge in sports medicine. *Br J Sports Med* 2000; 34:160–161.
- National Comprehensive Cancer Network Practice Guidelines. Cancer-Related Fatigue Panel 2006 Guidelines; Rockledge (PA): National Comprehensive Cancer Network. [Internet] [Last accessed 10 Nov 2008]. Available from http:// www.nccn.org. Accessed 10 Nov 2008.
- 16. Dittner A.J, Wessely S.C, & Brown, R.G. The assessment of fatigue. A practical guideline for clinicians and researchers. *Journal of Psychosomatic Research* 2004; 56: 157-170.
- 17. Bower JE. Behavioral symptoms in breast cancer patients and survivors: Fatigue, insomnia, depression, and cognitive disturbance. *J Clin Oncol* 2008; 26(5): 768–777.
- 18. Cella D, Peterman A, Passik S, Jacobsen P, Breitbart W. Progress toward guidelines for the management of fatigue. Oncology (Williston Park) 1998; 12(11A):369-377.
- 19. Mendoza TR, Wang XS, Cleeland CS, Morrissey M, Johnson BA, Wendt JK. The rapid assessment of fatigue severity in cancer patients: Use of the brief fatigue inventory. *Cancer* 1999; 85:1186–96.
- Banipal RPS, Singh H, Singh B. Assessment of Cancer-related Fatigue among Cancer Patients Receiving Various Therapies: A Cross-sectional Observational Study. *Indian J Palliat Care*. 2017; 23(2): 207–211.
- Piper BF, Borneman T, Sun VC. Cancer-related fatigue: role of oncology nurses in translating National Comprehensive Cancer Network assessment guidelines into practice. *Clin J Oncol Nurs* 2008; 12(suppl 5): 37-47.
- 22. Mock V, Atkinson A, Barsevick AM. Cancer-related fatigue. Clinical practice guidelines in oncology. *J Natl Compr Canc Netw* 2007; 5(10): 1054-1078.
- 23. Borneman T, Piper BF, Sun VC, Koczywas M, Uman G, Ferrell B. Implementing the Fatigue Guidelines at one NCCN member institution: process and outcomes. *J Natl Compr Canc Netw* 2007; 5(10): 1092-1101.
- 24. Cleeland CS, Mendoza TR, Wang XS, Chou C, Harle MT. Assessing symptom distress in cancer patients: The M.D. Anderson Symptom Inventory. *Cancer* 2000; 89: 1634–1646.
- 25. Yellen SB, Cella DF, Webster K, Blendowski C, Kaplan E. Measuring fatigue and other anemia-related symptoms with the Functional Assessment of Cancer Therapy (FACT) measurement system. *J Pain Symptom Manage* 1997; 13(2): 63-74.
- Jacobsen PB, Donovan KA, Small BJ, Jim HS, Munster PN, Andrykowski MA. Fatigue after treatment for early-stage breast cancer: a controlled comparison. *Cancer*, 2007; 110 (8), 1851–1859.
- 27. Fakhria J. Muhbes. Assessment of Fatigue and Its Associated Factors in Breast Cancer Patients under *Treatment*. *International Journal of Clinical Pharmacology & Toxicology* 2012 1(1): 9-14.
- 28. Jean-Pierre P, Figueroa-Moseley CD, Kohli S, Fiscella K, Palesh OG, Morrow GR. Assessment of cancer-related fatigue: implications for clinical diagnosis and treatment. *Oncologist* 2007; 12(suppl 1): 11-21.

- 29. Cleeland CS. The M.D. Anderson Symptom User guide. Version-1 [Internet] [last accessed Nov-19; 2009] Available from https://www.mdanderson.org/content/dam/mdanderson/documents/Departments-and -Divisions/Symptom-Research/MDASI userguide.pdf.
- 30. Holley SK. Evaluating patient distress from cancer-related fatigue: an instrument development study. Oncol Nurs Forum 2000; 27(9): 1425-1431.
- 31. Piper B. Measuring fatigue. In: Frank-Stomberg M, Olsen SJ. Instruments for Clinical Healthcare Research. 2004; 3rd ed. Sudbury, MA: Jones and Bartlett, 538-553.
- 32. Beutel ME, Hinz A, Albani C, Brahler E. Fatigue assessment questionnaire: standardization of a cancer-specific instrument based on the general population. *Oncology* 2006; 70(5): 351-357.
- 33. Okuyama T, Akechi T, Kugaya A. Development and validation of the cancer fatigue scale: a brief, three-dimensional, self-rating scale for assessment of fatigue in cancer patients. *J Pain Symptom Manage* 2000; 19(1): 5-14.
- 34. Berger AM, Farr LA, Kuhn BR, Fischer P, Agarwal S. Values of sleep/wake, activity/rest, circadian rhythms, and fatigue prior to adjuvant breast cancer chemotherapy. *J Pain Symptom Manage* 2007; 33(4): 398-409.
- 35. De Jong N, Candel MJ, Schouten HC, Abu-Saad HH, Courtens AM. Course of the fatigue dimension "activity level" and the interference of fatigue with daily living activities for patients with breast cancer receiving adjuvant chemotherapy. Cancer Nurs 2006; 29(5): E1-E13.
- 36. Piper BF, Dibble SL, Dodd MJ, Weiss MC, Slaughter RE, Paul SM. The revised Piper Fatigue Scale: psychometric evaluation in women with breast cancer. *Oncol Nurs Forum* 1998; 25(4): 677-684.
- 37. Stein KD, Martin SC, Hann DM, Jacobsen PB. A multidimensional measure of fatigue for use with cancer patients. *Cancer Pract* 1998; 6: 143–152.
- 38. Stein KD, Jacobsen PB, Blanchard CM, Thors C. Further validation of the multidimensional fatigue symptoms inventory-short form. *J Pain Symptom Manage* 2004; 27: 14–23.
- 39. Schwartz A, Meek P. Additional constructs validity of the Schwartz Cancer Fatigue Scale. J Nurs Meas 1999; 7: 35–45.
- 40. Pattanshetty RB, Chopde C. Role of Physiotherapy in Cancer-Related Fatigue in Cancer Survivors A Narrative Review. J Nov Physiother Phys Rehabil 2016; 3(1): 030-034.
- 41. Cella D, Kallich J, McDermott A. The longitudinal relationship of hemoglobin, fatigue and quality of life in anemic cancer patients: results from five randomized clinical trials. *Ann Oncol* 2004; 15:979–986.
- 42. NCC. Patient and caregiver resources. [Internet] [Available from https://www.nccn.org/patients/resources/life_with_cancer/managing_symptoms/fatigue.aspx]
- 43. Winningham ML, Nail LM, Burke MB et al (1994) Fatigue and cancer experience. Oncol Nurs Forum 2:23–36.
- 44. Peters ME, Goedendorp MM, Verhagen CA. Fatigue, and its associated psychosocial factors in cancer patients on active palliative treatment measured over time. *Support Care Cancer* 2016; 24: 1349–1355.
- 45. NCC. Patient and caregiver resources. [Internet] [Available from https://www.nccn.org/patients/resources/life_with_cancer/managing_symptoms/fatigue.aspx]
- 46. Mock V. (2004). Evidence-based treatment for cancer-related fatigue. J Natl Cancer Inst Monogr, 32: 112-118. 15263051.

- 47. NCCN Clinical Practice Guidelines in Oncology Cancer-related fatigue. 2017. [Internet] [Last accessed on November 13, 2017; Version-2] Available from: https://www.nccn.org/professionals/physician_gls/pdf/fatigue.pdf.
- 48. Noninvasive, Non-pharmacological Treatment for Chronic Pain. US department of health and human Services [Internet] [Accessed on September 20, 2017]. Available from www.effectivehealthcare.ahrq.gov.
- 49. Porock D, Kristjanson LJ, Tinnelly K. (2000). An exercise intervention for advanced cancer patients experiencing fatigue: a pilot study. *J Palliat Care*, 3:30–36.
- 50. Buss T, de Walden-Gałuszko K, Modlińska A. (2010). Kinesiotherapy alleviates fatigue in terminal hospice cancer patients—an experimental, controlled study. *Support Care Cancer*, 6:743–749.
- 51. Penttinen H, Utriainen M, Kellokumpu-Lehtinen PL, Raitanen J, Sievänen H, Nikander R, Blomqvist C, Huovinen R, Vehmanen L, Saarto T. Effectiveness of a 12-month Exercise Intervention on Physical Activity and Quality of Life of Breast Cancer Survivors; Five-year Results of the BREX-study. *In Vivo* 2019; 33(3): 881-888.
- 52. Pyszora A, Budzyński J, Wójcik A, Prokop A, Krajnik M. Physiotherapy programme reduces fatigue in patients with advanced cancer receiving palliative care: randomized controlled trial; *Supportive care in cancer 2017;* 25(9): 2899-2908.
- 53. Irene Cantarero-Villanueva. Effectiveness of Core Stability Exercises and Recovery Myofascial Release Massage on Fatigue in Breast Cancer Survivors: A Randomized Controlled Clinical Trial. *Hindawi Publishing Corporation: Evidence-Based Complementary and Alternative Medicine* 2012, Article ID 620619, 9 pages.
- 54. Kinkead B. Massage therapy decreases cancer-related fatigue: Results from a randomized early phase trial. *Cancer* 2018; 124(3):546-554.
- 55. Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, Macera CA, Castaneda-Sceppa C. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association., American College of Sports Medicine. *American Heart Association Circulation* 2007; 116(9): 1094-105.
- 56. Windsor PM, Nicol KF, Potter J. A randomized controlled trial of aerobic exercise for treatment-related fatigue in men receiving radical external beam radiotherapy for localized prostate carcinoma. *Cancer 2004;* 3:550–557. Doi: 10.1002/cncr.20378.
- 57. Dimeo CF, Thomas F, Raabe-Manssen C. Effect of aerobic exercise and relaxation training on fatigue and physical performance of cancer patients after surgery. A randomized controlled trial. *Support Care Cancer 2004;* 12: 774–779.
- Anne Marie Lunde Husebo. Effects of Scheduled Exercise on Cancer-Related Fatigue in Women with Early Breast Cancer. Hindawi Publishing Corporation Scientific World Journal: 9. 2014 Article ID 271828.
- 59. Yuen HK, Sword D. Home-based exercise to alleviate fatigue and improve functional capacity among breast cancer survivors. *J Allied Health* 2012; 36(4): 257-75.
- 60. Cramp F, Byron-Daniel J. Exercise for the management of cancer-related fatigue in adults. Cochrane database of systemic reviews 2012; 14(11): CD006145.
- 61. Kessels E, Husson O, van-der Feltz-Cornelis CM. The effect of exercise on cancer-related fatigue in cancer survivors: a systematic review and meta-analysis. *Neuropsychiatric Disease and Treatment 2018; 14*(9): 479-494.

- 62. Meneses-Echavez JF. Effects of supervised multimodal exercise interventions on cancerrelated fatigue: systematic review and meta-analysis of randomized controlled trials. BioMed Research International 2015; 17(6): (328636).
- 63. Meneses-Echavez JF, Gonzalez-Jimenez E, Ramirez-Velez R. Supervised exercise reduces cancer-related fatigue: a systematic review. *Journal of Physiotherapy*; 2015 Jan; 61(1): 3-9.
- 64. Windsor PM, Nicol KF, Potter J. A randomized, controlled trial of aerobic exercise for treatment-related fatigue in men receiving radical external beam radiotherapy for localized prostate carcinoma. *Cancer 2004;* 101(3): 550-557.
- 65. Do J, Cho Y, Jeon J. Effects of a 4-week multimodal rehabilitation program on quality of life, cardiopulmonary function, and fatigue in breast cancer patients. *J Breast Cancer* 2015; 18(1): 87-96.
- 66. Young Ho Yun. Web-Based Tailored Education Program for Disease-Free Cancer Survivors with Cancer-Related Fatigue: A Randomized Controlled Trial. *Journal of Clinical Oncology* 2012; 30(12).
- 67. CPEN Guidelines draft_Oct7 2013.indd—CPENStandardsofPractice.Nov14.pdf. [Internet]. [Last accessed on 02 May 2016]. Available from http://www.cancerpatienteducation.org/docs/CPEN/Educator%20Resources/CPENStandardso fPractice.
- 68. Reif K, de Vries U, Petermann F, Görres S. A patient education program is effective in reducing cancer-related fatigue: a multi-centre randomized two-group waiting-list controlled intervention trial. *Eur J Oncol Nurs* 2013; 17(2): 204-13.
- 69. Schmidt ME, Scherer S, Wiskemann J, Steindorf K. Return to work after breast cancer: The role of treatment-related side effects and potential impact on quality of life. *Eur J Cancer Care (Engl)* 2019; 28(4):e13051.
- 70. Ni, X., Chan, R.J., Yates, P. The effects of Tai chi on quality of life of cancer survivors: a systematic review and meta-analysis. *Support Care Cancer* 2019; 27: 3701-3716.
- 71. Suzanna M. Zick . Investigation of 2 Types of Self-administered Acupressure for Persistent Cancer-Related Fatigue in Breast Cancer Survivors A Randomized Clinical Trial. *JAMA Oncol* 2016; 2 (11):1470-1476.